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Resumo 

Esta dissertação explora novas abordagens no âmbito da metodologia em auditoria, com 

foco na melhoria do método Stringer Bound para uma estimativa mais precisa do erro na 

população. A revisão da literatura identificou algumas limitações do método Stringer 

Bound, incluindo a sua natureza excessivamente conservadora, o facto de se focar apenas 

em sobreavaliações e não considerar as contas sem erros, o que pode resultar em 

interpretações incorretas por parte dos auditores e na alocação desnecessária de recursos. 

De modo a mitigar estas limitações, o presente estudo propõe duas modificações ao 

Stringer Bound: o ajustamento do valor contabilístico no cálculo e a incorporação da 

proporção de contas sem erros. A implementação destas alterações foi realizada através 

de uma aplicação empírica com recurso ao software R. As abordagens propostas visam 

reduzir o conservadorismo na estimativa de erro, aproximando o erro estimado do erro 

real e permitindo que os auditores tomem decisões mais fundamentadas sobre a aceitação 

ou rejeição das demonstrações financeiras auditadas. Ao oferecer aos auditores a 

possibilidade de uma visão mais precisa, este estudo contribui para o avanço da 

metodologia em auditoria, proporcionando uma estimativa mais rigorosa do erro na 

população. 
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Abstract 

This thesis explores new approaches to audit methodology, focusing on improving the 

Stringer Bound method for a more accurate estimation of the error in population. A review 

of the literature has identified some limitations of Stringer Bound, including its overly 

conservative nature, its exclusive focus on overstatements, and its neglect of error-free 

accounts, which can lead to misinterpretation by auditors and unnecessary allocation of 

resources. In order to mitigate these limitations, this thesis proposes two key 

modifications to the Stringer Bound: adjusting the book value in the calculation and 

incorporating the proportion of error-free accounts. An empirical application, conducted 

using the R software, was employed to implement the proposed changes. These 

approaches aim to reduce the conservatism in error estimation, thereby approximating the 

estimated error to the actual error, and enabling auditors to make more informed decisions 

when deciding whether to accept or reject the financial statement under auditing. By 

offering auditors more accurate insights, this research contributes to advancing audit 

methodology by providing a more precise estimation of the error in population. 

 

Key Words: Auditing; Error Estimation; Stringer Bound; New Approach; R software. 
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1. Introduction 

Auditing plays a critical role in ensuring the credibility and integrity of a company's 

financial statements. When conducting an audit of a company, the primary objective of 

auditors is to ensure that the values reported in the financial statements are accurate and 

not materially misstated. This process involves examining every account in the 

population, but due to the time and cost involved, auditors often opt to use sampling 

techniques to estimate the total error of the population instead (Higgins & Nandram, 

2009). The audit process itself is multifaceted, involving meticulous examination, data 

scrutiny, and verification measures. It comprises a series of stages, including planning, 

fieldwork, and reporting, all of which contribute to a comprehensive evaluation of a 

company's financial health. 

Within this auditing process, the selection of representative samples from the 

population for in-depth analysis is a crucial point. To achieve this, auditors employ the 

MUS (Monetary Unit Sampling), which is an effective statistical sampling technique to 

evaluate potential monetary misstatements within an account balance (Wampler & 

McEacharn, 2005). It is based on sampling techniques for attributes and has the objective 

of estimating the upper and lower error bounds - the maximum values of overstatement 

and understatement, respectively - and comparing them to the tolerable error. The 

accounting entry is validated if both bounds are lower than the tolerable error (Curto, 

2019). 

Once the sample has been selected, the next critical task is to accurately determine 

the upper limit of the population. To accomplish this, auditors utilize a statistical method 

called the Stringer Bound. 

The Stringer bound was one of the first CAV (Combined Attributes and Variables) 

methods to be introduced (Dworin & Grimlund, 1984). This method considers the relative 

misstatement in the sampled items, called “taintings” (the difference between the book 

value and the audited value expressed as a percentage of the book value). These taintings 

are then arranged in descending order based on their magnitudes (Lucassen et al., 1996).  

Although the Stringer Bound is the most widely method recognized in auditing and 

is often used as a benchmark for evaluating other approaches (Clayton, 1994), it has its 

drawbacks. One of the main concerns is that it leads to overly conservative confidence 
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limits (Dworin & Grimlund, 1984), i.e., the actual confidence level obtained by this 

method is higher than the nominal confidence level (Burdick and Reneau (1978), Leitch 

et al (1982), Plante et al (1985), Reneau (1987), as mentioned in (Lucassen et al., 1996). 

Several authors have addressed this issue, illustrating the conservatism of the Stringer 

Bound. For example, as noted by Neter et al. (1977), “All known simulation studies have 

consistently indicated the method's conservatism.” (Lucassen et al., 1996, p. 19). Also, 

according to Mae Matsumura et al. (1991), the Stringer Bound has an issue of being 

overly conservative, so the confidence levels calculated often exceed the nominal level, 

potentially leading to unnecessary additional sampling of accounts. In the groundbreaking 

paper by Bickel et al. (1992), solid evidence was provided to support the conservatism of 

the bound, along with an asymptotic expansion of the Stringer Bound's probability, this 

ultimately resulted in Bickel's assertation that the Stringer Bound is consistently and 

substantially overestimated in the asymptotic sense. 

In terms of errors, this method only considers overstatements and completely ignores 

the existence of understatements which, although "less important" for the calculation of 

the Stringer Bound, are still errors. Consequently, it may lead to a less accurate estimate 

of the true error in the financial statements (Wampler & McEacharn, 2005). 

Another shortcoming of this method is that it doesn't take zero errors into account, 

since the Stringer Bound calculates non-zero upper bounds even if no error is detected in 

the selected sample. How can an error-free sample result in a substantially non-zero error 

rate for the population? Again, this may result in unreasonably high confidence values for 

the error, which can lead to less truthful interpretations. In addition, it fails to recognize 

the heterogeneous nature of the error distributions within the total population of account 

errors. These distributions typically include a dominant zero error mass, along with 

secondary distributions of small errors and 100% errors (Higgins & Nandram, 2009). 

According to Anderson and Kraushaar (1986) “The occurrence, magnitude, and 

direction of non-zero book errors in a sample affect the inferences that can be made” 

(p.381). 

The objective of this study is to propose and evaluate an alternative approach to the 

Stringer Bound method, taking into account the limitations of the original method and 

developing a new methodology that can effectively overcome these critical points. We 
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intend to elucidate the potential advantages of these methodological improvements, 

thereby contributing to both the practical application of auditing and to future research. 

The structure of the thesis is as follows: Chapter 1 introduces the study, including a 

brief contextualization of auditing, a definition of the problem, the study's objectives, and 

an explanation of its relevance. Chapter 2 provides a literature review on sampling 

methods and estimating error in the population, focusing specifically on the Stringer 

Bound method. In this Chapter, we also discuss the limitations of the method, along with 

the approaches proposed by other authors to overcome these weaknesses. Chapter 3 

delineates the methodology employed in the study, detailing the calculation of the Stringer 

Bound and presenting the two novel approaches proposed, along with their specific 

calculations, implementation, and testing in the R software. Chapter 4 presents a 

discussion of the results obtained from the new approaches, with a comparison to the 

traditional Stringer Bound method and to the proposals of other authors. Finally, Chapter 

5 summarizes the research findings and highlights the study's key contributions and 

implications for the field of auditing. 
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2. Literature Review 

At the beginning of this century, the global economy was affected by scandals and 

financial crises, and this has led regulators and supervisors to reflect a lot about the auditor 

– its role and responsibility in ensuring reliable and high-quality information (Quick et 

al., 2018). This concern is still prevalent today and, as a result, the auditor's role is subject 

to constant review and improvement. 

The relationship between audit firms and their clients is fundamental to trust and 

confidence in the audit. In this respect, trust in the auditor exists if the auditor is perceived 

to be independent of the audited entity, has the ability and attitude to perform a high-

quality audit, demonstrates adherence to relevant professional principles and rules, and 

operates in a fair and open market (Van Hoinaru & Mary, 2016). The audit performs an 

indispensable economic function in serving the public interest by reinforcing trust and 

confidence in financial reporting (Monroe & Woodliff, 1994). 

The auditor's objective is to assess whether the financial statements of the companies 

under scrutiny comply with the standards, and the opinion is then expressed in a final 

report Rocha et al. (2020). Given the time needed to carry out an audit in full and, 

consequently, its cost, the audit must be based on testing a sample representative of all 

operations. Sampling and testing are essential for the auditor to structure his opinion and 

issue a judgment on the financial statements. Tests can be either of compliance or 

substantive. Compliance tests aim to verify that the company's accounting procedures and 

internal control measures are in place, that they are effective in detecting material 

misstatements, and that they operate throughout the year. Substantive tests are designed 

to confirm the accuracy of the accounting process and the supporting documentation for 

specific balances and transactions (Curto, 2019). 

The purpose of this literature review is to provide a brief context for auditing, 

highlighting its role and importance in the financial context. This analysis will focus on 

one final stage of the audit process, the Stringer Bound method. It will also analyze other 

approaches that have been developed to complement or replace the Stringer Bound 

method and assess their advantages and disadvantages. 
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2.1.1 Theoretical Foundations of Auditing and MUS1 

An auditor's work involves several steps: defining the target population; selecting the type 

of sample to be used; determining the confidence level; calculating the sample size based 

on the confidence level; analyzing the data; and, finally, providing an opinion on the 

financial statements. 

One of the difficulties in the audit process is ensuring that the sample is representative 

of the population, which is not easy to determine and achieve. In fact, the auditor will 

never know whether the sample is representative or not unless the entire population is 

audited. This leads to two types of error: non-sampling error and sampling error. Non-

sampling risk occurs when the auditor fails to identify exceptions in the sample, either 

through the auditor's fault or inadequate procedures. Sampling risk occurs when there are 

more/fewer errors in the sample than in the population, which can lead to a false 

rejection/acceptance of the control mechanism. 

Audit risk is defined by: 

 𝑅𝐴 = 𝐼𝑅 × 𝐶𝑅 × 𝑂𝑃 × 𝑅𝐵 (2.1) 

 

IR (Inherent risk) – The probability of material errors in the financial statements. It 

is usually considered 100%, reflecting the expectation that such an error is very likely to 

occur. 

CR (Control risk) – The probability that internal control may fail to detect and correct 

material errors. A value between 10% and 100% is usually set. 

OP (Other Procedures Risk) – The probability of failure of (non-statistical) audit 

procedures to detect errors. This risk may not be less than 50%, i.e. it must vary between 

50% and 100%. 

RB (Detection Risk) – The probability of failure (statistical) audit procedures in 

identifying errors. 

In the compliance tests mentioned above, the auditor can estimate the percentage of 

items in the population that have a specific attribute, which is called the deviation rate. 

 
1 This section is mainly based on Curto (2019) 
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However, the same process for the sample is called the exception rate and the difference 

is called the sampling error. 

The key issue for auditors is the upper limit of the range of estimates for the exception 

rate (upper exception rate), which needs to be compared with the tolerable exception rate. 

This is the highest exception rate that the auditor is willing to accept to confirm that the 

audit is compliant.  

There are different types of sampling techniques, which can be divided into two 

categories: attribute sampling and variable sampling. In attribute sampling, although the 

hypergeometric distribution is applicable in most cases, the binomial and Poisson 

distributions are often considered conservative approximations. Variable sampling is also 

a source of concern for auditors because it is based on the central limit theorem and most 

accounting populations are skewed, which will increase the sample size (Gillett, 2000). 

In an attempt to overcome these shortcomings, Monetary Unit Sampling has been 

developed (MUS) and is broadly accepted among auditors (Wampler & McEacharn, 

2005). 

In MUS sampling, the population consists of monetary units (euro, dollar, pound, 

etc.) and each monetary unit has an equal probability of being included in the sample. 

However, the units that are the subject of the audit are the logical units to which each 

monetary unit in the sample belongs. This means that the more monetary units associated 

with a logical unit, the more likely it is to be included in the sample. 

MUS can be considered as an ultimate application of stratification by book value as 

it relates directly to monetary units, each of which is treated as a sampling unit. Since 

MUS involves sampling units of the same size, creating subgroups based on value is 

unnecessary. As a result, MUS has some efficiency advantages similar to those of 

stratified sampling, but without the need to divide the population into strata, thus 

simplifying the whole process (Higgins & Nandram, 2009). 

However, MUS also has some weaknesses, such as its inability to recognize that a 

total population of accounting errors is usually made up of many individual distributions. 

This can lead to exaggerated error estimates and conservative auditor judgments about 

the fairness of a client's financial statements (Higgins & Nandram, 2009). 
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To make decisions for different confidence levels, it is important to obtain reliable 

limits for the total error of the population. There are several methods for calculating these 

limits in MUS, one of which is the Stringer Bound method (Higgins & Nandram, 2009). 

While is based on attribute sampling principles, the goal of MUS diverges from that 

of conventional attribute sampling, which focuses on estimating the misstatement rate in 

a population. In particular, MUS requires the evaluation of two key factors: 

• The nature of the exception (overstatement or understatement), as this has 

significant implications for assessing the monetary misstatement within the 

population. 

• The magnitude of the exception, which must be measured and considered in the 

misstatement estimation (Wampler & McEacharn, 2005). 

 

2.1.2 Stringer Bound – A Critical Analysis 

Once the sample size has been determined, the auditor's objective is to estimate the 

maximum error limit in the accounting records as accurately as possible, taking into 

account the set level of confidence. If the estimated value exceeds the established 

tolerance level, the auditor may not be able to express an opinion (Curto, 2019). The MUS 

enables the calculation of an upper error bound for the accounting records through the 

application of the Stringer Bound (Lucassen et al., 1996). 

The Stringer Bound, introduced by Stringer in 1963, constitutes a non-classical 

heuristic methodology that employs the Binomial or Poisson distribution to determine the 

upper bound on the total error of a population (Clayton, 1994). This method gained 

popularity due to its simplicity and the ready availability of the requisite statistical tables 

(Swinamer et al., 2004), and so is widely used by auditors (Dworin & Grimlund, 1984). 

The Stringer Bound considers the relative misstatement of sampled items, referred to 

as taintings, which represent the difference between the book value and the audited value 

expressed as a percentage of the book value. Subsequently, the aforementioned taintings 

are ordered in descending order of magnitude. This is accomplished through a linear 

combination of the taintings, with particular coefficients assigned to each tainting. 

Importantly, these coefficients are designed to decrease as the tainting decreases 

(Lucassen et al., 1996). This approach helps to quantify the impact of errors in financial 
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records, by assigning greater coefficients to bigger discrepancies, thus providing a strong 

framework for error estimation. 

The Stringer Bound is typically employed when the auditor's principal concern is the 

overstatement of a specific accounting balance. Applying the Stringer Bound to calculate 

an upper error bound is appropriate in circumstances where there is a need to estimate the 

maximum amount of errors within a population to ascertain whether the total of errors 

within the population is significant. Furthermore, this approach is applicable when the 

sample result is the primary source of information regarding the population (De Jager et 

al., 1997). 

Nevertheless, this approach has certain limitations. In earlier studies, the confidence 

level achieved by the Stringer Bound was higher than the nominal confidence level, 

suggesting that the Stringer Bound may be conservative (Lucassen et al., 1996). De Jager 

et al. (1997) additionally observed a prevailing view in the literature that the Stringer 

Bound performs in such a manner that the actual confidence probability is at least equal 

to the nominal confidence level. 

Another limitation of the Stringer Bound is that accommodates only overstatements 

(Swinamer et al., 2004). This limitation results in tainting distributions that are 

predominantly situated within the unit interval (Pap & Van Zuijlen, 1996). 

It should be noted that the Stringer Bound method does not account for the possibility 

of zero errors in an audit population. It is, however, typical for a significant proportion of 

an audit population to be free of errors. This presents a challenge when attempting to 

utilize Stringer Bound for estimating the upper confidence bound for the population total 

error, which is based on the assumption of a normal distribution of the taintings (Pap & 

Van Zuijlen, 1996).  Once more, this can result in overly optimistic confidence levels, 

which may lead to less accurate interpretations. Furthermore, it fails to acknowledge the 

heterogeneous nature of the error distributions within the total population of accounting 

errors (Higgins & Nandram, 2009). 

2.1.3 Alternative Approaches2 

The consequence of pursuing high reliability is a reduction in efficiency (Swinamer et al., 

2004). It is therefore likely that a significant proportion of auditors do not extrapolate 

 
2 This section is mainly based in Swinamer et al. (2004) 
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sample results to populations to circumvent the potential for unrealistic conservatism and 

client resistance. However, the failure to extrapolate results gives rise to an error in 

judgment regarding the financial statements as a whole. This is one of the key reasons for 

the ongoing research and development of new methods (Higgins & Nandram, 2009). A 

review of the literature has been conducted to identify established approaches that 

complement conventional methods and provide auditors with greater adaptability and 

accuracy in their assessments. Next, we describe these approaches highlighting the 

strengths and weaknesses of each one. 

Stringer Bound with Meikle’s Adjustment for Understatements (ST-meik)- proposed 

by Meikle in 1972, expands the applicability of the Stringer Bound by taking into 

consideration the possibility of understatement errors, an aspect that was previously 

overlooked in the original Stringer method. 

Stringer Bound with the LTA Adjustment for Understatements (ST-lta) - In their 1979 

study, Leslie et al. explore a potential improvement to the Stringer Bound, known as the 

LTA adjustment, which accounts for understatement errors. This involves adjusting the 

upper bound for total population overstatement by the average understatement error 

calculated from the sample. Researchers Grimlund and Schroeder (1988) have found the 

LTA adjustment to be more accurate and consistently superior to the adjustment proposed 

by Meikle. 

Rohrbach Augmented Variance Estimator Bound (AVE) – In his 1993 paper, 

Rohrbach proposes a bound for probability proportional to size sampling without 

replacement that improves the jackknife variance of the Horvitz-Thompson estimator. He 

claims that the traditional unadjusted variance estimator is inadequate because it 

overestimates the correlation between the book and actual values, leading to an 

underestimation of the variance of the bound. This is because typical audit populations 

either have very low error rates or, in the case of high error rates, the majority of units 

have insignificant monetary error amounts. The AVE bound offers the advantages of 

simplicity and ease of computation while accommodating both understatement and 

overstatement scenarios. The bound requires an adjustment parameter, which may vary. 

Modified Moment Bound (MM) – Dworin & Grimlund (1984, 1986) introduced a 

novel concept: a parametric bound that uniquely accounts for both overstatement and 

understatement. This remarkable proposal incorporates a hypothetical tainting 
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observation, known as z∗, tailored to whether the population of interest is accounts 

receivable (external population) or inventory (internal population). In calculating the 

sample moments of the unknown monetary error distribution, z∗ is treated as an additional 

observed taint. As a result, the resulting moment bound is typically inflated compared to 

scenarios where this hypothetical observation is not considered. Dworin and Grimlund 

(1986) noted that this conservative approach serves to compensate for the limited 

information available due to the small number of non-zero errors. 

Multinomial-Dirichlet Bound (MD, MD-lta, MD-ext) – Based on the multinomial 

sampling model employed by Fienberg et al. (1977), Tsui et al. (1985) present a 

nonparametric Bayesian method in which all errors are considered to be overstatements, 

with a maximum error of 1.0. To classify these errors, they are first rounded and then 

grouped according to their value in cents, ranging from 0 to 100 cents. The researchers 

also introduce a Dirichlet prior distribution p=(p0, p1, p100...), specifically Dir(Kα0,…, 

Kα100) using alpha values (αi), where each αi > 0 and their sum equals 1. According to 

Tsui et al. (1985), the Multinomial-Dirichlet bound outperforms the Stringer Bound for 

various populations. However, the researchers also noted that the effectiveness of the 

bound may vary depending on the pre-existing values. Grimlund and Felix (1987) 

compared the various Bayesian bounds and found that the Multinomial-Dirichlet bound 

is the most reliable. By adding negative taint classifications, (Matsumura et al., 1990) 

expand the multinomial-Dirichlet model to account for understatements.  

Parametric Power Bound (PP, PP-lta) – Tamura and Frost (1986) employ a power 

function density to model the distribution of taints and utilize a parametric bootstrap 

method (Efron & Tibshirani, 1994) to establish a bound on the total population error. In 

cases where an audit sample reveals no errors, the maximum potential taints are assumed 

to be worth $1 and the conservative attributes method is used to obtain the 100 (1-α)% 

bound, as described by (Johnson et al., 2005). In the event that one or more errors are 

detected, the parameter λ of the power density can be estimated using the number and 

value of the taints. It is assumed that all errors are overstatements and that no accounting 

errors exceed their book value, with error values in the range z ∈ (0, 1]. The reliability of 

this bound was investigated under limited conditions. The results showed it to be 

significantly more reliable and restrictive than the Stringer Bound. Nevertheless, it was 

suggested that the performance of the bound should be investigated in other audit 

populations. 
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Overall, this literature review has highlighted the crucial role of auditing in ensuring 

the accuracy and integrity of financial statements, serving as a safeguard against errors 

and unethical practices. The widely accepted Stringer Bound method has been utilized by 

auditors, but it has faced criticism for its overly conservative nature, resulting in 

confidence levels that surpass nominal levels. This indicates that the audit industry is 

continuously evolving. In light of these concerns, auditors are actively seeking alternative 

methods that strike a balance between reliability and efficiency. To achieve the optimal 

blend of accuracy and efficiency, auditing techniques must be adaptable to diverse 

populations, and a multi-faceted approach may prove to be the key. 

 

 

 

 

 

 

 

 

 

 

 

 

  



13 

 

3. Methodology 

Having provided an overview of the Stringer Bound, including an assessment of its 

strengths and weaknesses, we will now elucidate its operational principles and the 

methodology employed to determine the final result, namely the upper misstatement 

bound. 

 

 

𝑆𝑇𝑅 = 𝐵 {𝑝𝑠(𝑛; 0) +  ∑[𝑝𝑠(𝑛; 𝑖) − 𝑝𝑠(𝑛; 𝑖 − 1)] 𝑡𝑖  

𝑘

𝑖=1

}   (3.2) 

 

X = i; is the number of exceptions (or misstatements) found in the sample, 1 ≤ i ≤ k 

n is the sample size  

B is the total book value of the population 

ps(n; i) is the exact upper confidence bound for p, which represents the probability in 

a binomial distribution X ∼ Binomial (n,p) 

t1 ≥ t2, . . . , ≥ tk are the taintings, which are the k ordered non-zero ti  

Σps(n;i)−ps(n;i−1) is the sum of the differences between the confidence bounds for 

successive exceptions, multiplied by their respective tainting. This process captures the 

contribution of each error to the overall upper misstatement bound, giving more weight 

to larger errors (i.e., larger taintings). The final result is multiplied by the book value (B) 

to give the upper misstatement limit, which represents the maximum possible 

misstatement for the population. 

To calculate the tainting associated with each account or item, it is necessary to 

consider both the book value (Bi) and the audit value (Ai) to determine the ratio of the 

discrepancy between the audit and book values to the book value. The tainting is 

calculated using the following formula (3.3).  

 
𝑡 =  

𝐵𝑖 − 𝐴𝑖

𝐵𝑖
 (3.3) 

 

3.1 New Approaches  

Building upon the foundation of the Stringer Bound method, this research aims to address 

its inherent conservativeness and its disregard for neglect of error-free accounts in the 

sample. While based in the Stringer Bound principles, the proposed approaches introduce 
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statistical refinements designed to mitigate these limitations. By incorporating a more 

restrictive treatment of book value and including error-free accounts, these methods strive 

to deliver more accurate and reliable estimates of audit error. 

 

3.1.1 Approach 1 – Adjust the book value 

In the traditional Stringer Bound formula, the book value used to calculate the upper limit 

of the error is the total book value of the population. We propose a more specific approach, 

i.e. we propose a modified approach that considers the specific book value of each 

account containing an error. By replacing the total book value (B), our method aims to 

provide a more accurate estimate of the total error, particularly in situations where errors 

are concentrated in a few large accounts. This refinement is expected to enhance the 

precision of audit risk assessments, and improve the efficiency of audit procedures, as 

well as provide a more accurate representation of the error distribution within the sample. 

Let's assume that the selected sample has a total book value of 18 000 and that in this 

sample there are two accounts with errors. An account with a book value of 5 500 and an 

audit value of 5 000 and an account with a book value of 390 and an audit value of 350, 

represent an overstatement error of 500 and 40 respectively. Under the traditional Stringer 

Bound, both errors would be calculated using the total book value of 18 000. However, 

our new approach, as shown in formula (3.4), utilizes the specific book values of the 

accounts in question, namely 5 500 and 390. 

 

𝑆𝑇𝑅1 = ∑ 𝐵𝑗

𝑚

𝑗=1

 {𝑝𝑠(𝑛; 0) +  ∑[𝑝𝑠(𝑛; 𝑖) − 𝑝𝑠(𝑛; 𝑖 − 1)] 𝑡𝑖 

𝑘𝑗

𝑖=1

}   (3.4) 

 

 Bj is the specific book value for each account j that has an error 

m is the total number of account  

kj is the number of errors found in the account j 

 tij is the tainting for the ith exception in the account j 
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3.1.2 Approach 2 – Incorporate error-free accounts 

In the traditional Stringer Bound framework, the treatment of accounts that exhibit zero 

errors, i.e., accounts where there is no discrepancy between the book value and the audited 

value, has been largely overlooked. This can lead to overly conservative estimates of the 

total error, given that a considerable number of accounts are typically error-free. 

The proposed modification aims to address this limitation by quantifying the 

proportion of error-free accounts and integrating this data into the final error estimation. 

To implement this modified approach, it is first necessary to identify the accounts that 

exhibit no discrepancies. Let B represent the total book value, and B0 represent the book 

value of accounts with zero errors. The proportion of these error-free accounts can be 

expressed mathematically as shown in formula (3.5). 

 
𝑃𝑧𝑒𝑟𝑜 =

𝐵0

𝐵
 (3.5) 

 

The calculated proportion Pzero, is employed as a tainting factor in the final error 

estimation. However, unlike conventional to tainting factors, the contribution of this zero-

error proportion is treated as a negative value in the calculation. The objective of this 

adjustment is to reduce the overall calculated error, thereby reflecting the reality that the 

majority of accounts are indeed error-free. 

The incorporation of this zero-error tainting into the Stringer Bound methodology 

follows the same calculation process as the original formula, with the only distinction 

being the inclusion of the negative Pzero factor. This adjustment recognizes the importance 

of error-free accounts without overshadowing the contributions of accounts with 

identified errors. 

By positioning the Pzero proportion at the end of the error list and applying a negative 

coefficient, this approach provides a more balanced assessment of the total misstatement. 

The result is a more refined estimation that more accurately reflects the nature of the 

audited accounts, thereby enhancing the reliability of the audit conclusions. 

 

𝑆𝑇𝑅2 = 𝐵 {𝑝𝑠(𝑛; 0) + ∑[𝑝𝑠(𝑛; 𝑖) − 𝑝𝑠(𝑛; 𝑖 − 1)] 𝑡𝑖 

𝑘

𝑖=1

}

+ 𝐵[𝑝𝑠(𝑛; 𝑘 + 1) − 𝑝𝑠(𝑛; 𝑘)](−𝑃𝑧𝑒𝑟𝑜) 

(3.6) 
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ps(n; k+1) − ps(n; k) refers to the lowest coefficient 

Pzero is the proportion of the error-free accounts (formula 3.5), treated as a negative 

value.  

 

3.2 Pratical Simulation 

To illustrate the Traditional Stringer Bound calculation and the proposed new approaches, 

we present a simple and practical example. The objective of this example is to provide 

readers with a comprehensive understanding of the methodologies in question. To this 

end, we utilize data from the article by Higgins & Nandram (2009), which is based on the 

characteristics of the population described in Table 3.1, originally sourced from Lohr’s 

book Sampling: Design and Analysis (1999). Table 3.2 presents the specific data for the 

four accounts in the sample that contain errors, all of which are overstatements. 

Table 3.1 - Population characteristics, an example taken from Higgins & Nandram (2009) 

 

Table 3.2 - Characteristics of the errors in the sample, Higgins & Nandram (2009) 

 

The columns Δps, B, and t represent parcels multiplied in the last column. Δps 

corresponds to the coefficient, B to the book value, and t to the tainting, which is 

represented in descending order.  

Table 3.3 shows the application of the traditional Stringer Bound. In Table 3.4, which 

illustrates Approach 1, the distinction lies in the book value. In the initial row, the book 

value to be utilized is calculated by subtracting the book value of the accounts with errors 

from the total book value. In the subsequent rows, the taintings are multiplied by the book 

value corresponding to the account in question. For instance, the 10.42% tainting will be 

multiplied by 2 399.  

Total Book Value 612 824

Mean Book Value 7 044

Total Accounts 87

Sample Dimension 20

Account Number Book Value Audit Value Error Tainting

24 7 090 7 050 40 0,56%

36 2 399 2 149 250 10,42%

46 69 540 69 000 540 0,78%

75 2 291 2 191 100 4,36%

81 320 80 390 930
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In Table 3.5, corresponding to Approach 2, the distinction lies in the final component 

of the sum, which incorporates the error-free accounts. To achieve this, the proportion of 

accounts without error is calculated and a negative value is derived. This negative value 

is then incorporated into the final calculation to effectively "remove" the weight of the 

accounts without error. 

Table 3.3 - Example of the application of Stringer Bound 

 

Table 3.4 - Example of the application of Approach 1 

 

Table 3.5 - Example of the application of Approach 2 

 

3.3 Design of Study 

The implementation of the proposed methodologies and the traditional Stringer Bound 

was conducted in R statistical software. To ensure consistency with previous studies, the 

populations utilized are based on those defined by Neter John & K. Loebbecke (1975) in 

the American Institute of Certified Public Accountants (AICPA) study. These populations 

Error ps Δps B t Traditional SB

0 2,95% 2,95% 612 824 100,00% 18 086

1 4,66% 1,70% 612 824 10,42% 1 089

2 6,16% 1,51% 612 824 4,36% 403

3 7,57% 1,41% 612 824 0,78% 67

4 8,92% 1,35% 612 824 0,56% 47

19 691

Error ps Δps B t SB traditional

0 2,95% 2,95% 612 824 100,00% 18 086

1 4,66% 1,70% 612 824 10,42% 1 089

2 6,16% 1,51% 612 824 4,36% 403

3 7,57% 1,41% 612 824 0,78% 67

4 8,92% 1,35% 612 824 0,56% 47

19 691

Error ps Δps B t Approach 1

0 2,95% 2,95% 531 504 100,00% 15 686

1 4,66% 1,70% 2 399 10,42% 4

2 6,16% 1,51% 2 291 4,36% 2

3 7,57% 1,41% 69 540 0,78% 8

4 8,92% 1,35% 7 090 0,56% 1

15 700

Error ps Δps B t Approach 2

0 2,95% 2,95% 612 824 100,00% 18 086

1 4,66% 1,70% 612 824 10,42% 1 089

2 6,16% 1,51% 612 824 4,36% 403

3 7,57% 1,41% 612 824 0,78% 67

4 8,92% 1,35% 612 824 0,56% 47

5 10,23% 1,31% 612 824 -86,73% -6 940

12 752

Error ps Δps B t SB traditional

0 2,95% 2,95% 612 824 100,00% 18 086

1 4,66% 1,70% 612 824 10,42% 1 089

2 6,16% 1,51% 612 824 4,36% 403

3 7,57% 1,41% 612 824 0,78% 67

4 8,92% 1,35% 612 824 0,56% 47

19 691

Error ps Δps B t Approach 1

0 2,95% 2,95% 531 504 100,00% 15 686

1 4,66% 1,70% 2 399 10,42% 4

2 6,16% 1,51% 2 291 4,36% 2

3 7,57% 1,41% 69 540 0,78% 8

4 8,92% 1,35% 7 090 0,56% 1

15 700

Error ps Δps B t Approach 2

0 2,95% 2,95% 612 824 100,00% 18 086

1 4,66% 1,70% 612 824 10,42% 1 089

2 6,16% 1,51% 612 824 4,36% 403

3 7,57% 1,41% 612 824 0,78% 67

4 8,92% 1,35% 612 824 0,56% 47

5 10,23% 1,31% 612 824 -86,73% -6 940

12 752
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have been employed in numerous prior studies, including those conducted by Mae 

Matsumura et al. (1991) and Lucassen et al. (1996). 

The article defined four populations, of which two - designated as Population 1 and 

Population 3- were selected for this study. These populations were chosen for their 

substantially different characteristics, allowing for a more comprehensive and 

representative study. The selection of two similar populations would not have contributed 

to the study's value, as the objective is to assess the proposed methodology in diverse 

contexts.  

The principal distinctions between the selected populations pertain to the magnitude 

of the transactions and the nature of the error (overstatement or understatement). As stated 

by Neter John & K. Loebbecke (1975), Population 1 consists of “accounts receivable of 

a freight company” (p. 6) where “the actual error rate is high, and the errors tend to be 

balanced between overstatements and understatements” (p. 7). In contrast, Population 3 

comprises “accounts receivable of a medium-size manufacturer” (p. 7) where “the actual 

error rate is moderate, with all errors being overstatements.” (p. 7).  

In our study, Population 1 is further distinguished by the inclusion of smaller 

transactions and a combination of overstatements and understatements. On the other 

hand, Population 3 is characterized by the prevalence of larger transactions, comprising 

overstatement errors.  

To initiate the simulation of the populations, starting with Population 1, we used Table 

3.6 from (Neter John & K. Loebbecke, 1975), which describes the frequency of book 

values. This table defines intervals of book values and the respective frequency of 

accounts within each interval. In R, we developed a code (Annex A - R script) that 

randomly generated book values for each account. For example, 2 039 accounts were 

simulated with random values ranging from 0 to 13.50. The process was repeated for all 

intervals to create a simulated population that closely resembled that described by Neter 

John & K. Loebbecke (1975). 

Once the population was established, comprising the book values, the subsequent step 

was to calculate the errors or audit values. It should be noted that Population 1 was 

configured following the specifications set forth by Neter John & K. Loebbecke, with 

five distinct error rates: 30%, 10%, 5%, 1%, and 0.5%. The calculation of the errors 
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begins with the 30% error rate, after which the remaining lower error rates are derived by 

randomly removing the previously defined errors until the expected error rate is reached. 

Table 3.6 - Frequency Distribution of Population 1 Book values (Neter John & K. 

Loebbecke, 1975) 

 

In accordance to the methodology proposed by Neter John & K. Loebbecke (1975), 

an error rate of 30% in the defined population requires the selection of 2 493 random 

accounts. Subsequently, a random error must be assigned to each account according to 

the range specified in Table 3.7, based on the value of the account that has been selected. 

To illustrate, if the first account selected has a book value of 50, it falls within the range 

[25.00; 99.99], thus a random value will be generated within the range [-12.38; 20.88], 

which will represent the error.    

Table 3.7 - Range and Mean of Error Amounts of Population 1 (Neter John & K. 

Loebbecke, 1975) 

 

At this stage of the process, Population 1 has been completed and Population 3 is now 

being constructed. The initial phase for establishing the base population of book values 

for Population 3 is consistent with that of Population 1, with the exception of the specific 

values employed, as outlined in Table 3.8. 

0 - 13.50 2,039

13.51 - 22.50 2,455

22.51 - 36.00 1,867

36.01 - 63.00 852

63.01 - 105.00 494

105.01 - 195.00 335

195.01 - 345.00 136

345.01 - 675.00 79

675.01 - 945.00 24

945.01 - 1,545.00 16

1,545.01 - 6,945.00 12

8,309

Book Amount Number of Accounts

Error Pool Minimum Maximum Mean

1 0 - 9.99 - 3.60 0.84 - 0.71

2 10.00 - 24.99 - 33.60 10.09 - 1.42

3 25.00 - 99.99 - 12.38 20.88 1.29

4 100.00 - 399.99 - 31.26 14.76 - 0.96

5 400.00 - or more - 42.18 55.40 9.93

Book Amount

                Error Range             
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Table 3.8 - Frequency Distribution of Population 3 Book values (Neter John & K. 

Loebbecke, 1975) 

 

Regarding the generation of errors, the methodology employed for Population 3 is 

markedly distinct from that used for Population 1, as Population 3 comprises solely 

overstatements. A random sample of 2 107 accounts was selected from a total of 7 026 

accounts. Subsequently, values are assigned in accordance with the probabilities 

illustrated in Table 3.9. The corresponding overstatement percentage is then applied to 

each selected account, according to the amount of the account in question. If the 

calculated error value exceeds 500, a correction is made to this amount in accordance 

with the proposal put forth by Neter John & K. Loebbecke (1975). To facilitate 

interpretation, an illustrative example is provided of a first account selected with a value 

of 300. This account has a probability of 0.017 of exhibiting an error representing 5% of 

the total book value, a probability of 0.08 of exhibiting an error representing 10%, and so 

on, following the established error distributions. 

Once the populations had been constructed, the next step in the R code was to define 

the sample size and the number of simulated samples. For the sample sizes, values 100 

and 200 were considered, with 100 regarded as the minimum acceptable size for 

substantive audit tests and 200 viewed as a moderate sample size. Regarding the number 

of repetitions, 600 was selected, as it yields reasonable estimates of the confidence 

coefficient (Neter John & K. Loebbecke, 1975). 

 

 

 

0 - 40.00 1,334

40.01 - 136.00 1,438

136.01 - 400.00 1,475

400.01 - 800.00 878

800.01 - 1,400.00 539

1,400.01 - 3,000.00 548

3,000.01 - 5,000.00 278

5,000.01 - 10,000.00 239

10,000.01 - 49,000.00 258

49,000.01 -100,000.00 39

7,026

Book Amount Number of Accounts
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Table 3.9 - Overstatement Percentages for Population 3 (Neter John & K. Loebbecke, 

1975) 

 

 

After defining the populations and delineating the samples, we proceeded with coding 

the traditional Stringer Bound and the new proposed approaches, in accordance with the 

methodology outlined at the beginning of this chapter. Furthermore, to guarantee the 

reliability of the outcomes and to evaluate the efficacy of the novel approaches, we utilize 

the R package JFA (Justifiable Financial Auditing). This package, in addition to the 

conventional Stringer Bound, encompasses alternative methodologies previously 

proposed (Meikle, Lta, Rohrbach, and Moment). Comparing our methods against these 

established approaches was invaluable in determining whether they contribute positively 

to the auditing community. 

The utilization of the JFA not only enabled the validation of our approaches but also 

facilitated a comparison of our results with those of established methodologies, thereby 

providing a robust analysis of the effectiveness of the proposed approaches. This 

Percentage Probability

1 0.06

2 0.13

5 0.06

50 0.13

75 0.13

100 0.50

5 0.17

10 0.08

15 0.17

25 0.08

50 0.25

95 0.17

100 0.08

0.01 0.17

0.05 0.17

0.1 0.17

0.2 0.17

0.3 0.17

0.5 0.17

Book Amount Exceeding 1.000

Book Amount Under 200

Book Amount Between 200 and 1.000
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comparison was crucial for determining whether the novel methodologies offer 

significant improvements to auditing practices. 

In the JFA package, we employed the "evaluation" function, which calculates the 

population error based on an audited statistical sample. The function enables the user to 

specify certain parameters, including materiality and level of precision. Upon completion 

of the function, an object of the JFAEvaluation class is returned, which can be analyzed 

using the summary() and plot() functions, thus facilitating the interpretation of the results 

(Derks, 2024). 

After executing the code for all scenarios and populations, the result consisted of an 

Excel table for each scenario, totaling 20 tables. These were subsequently compiled into 

just 4 summaries. For each method, we calculated the overall mean error, the proportion 

of errors, the number of values below the actual error, and the average of the errors that 

were under the actual error. These calculations were essential for evaluating the 

performance of each approach, enabling a more robust comparative analysis. These 

summaries can be found in the Results Chapter. 
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4. Results 

This chapter presents the results of applying various methods to estimate the maximum 

error in the population, with a primary focus on the two novel approaches proposed. The 

study is based on two populations, designated as Population 1 and Population 3, extracted 

from the article by Neter John & K. Loebbecke (1975). Additionally, the sample sizes of 

100 and 200 were derived from the same source. The main objective is to assess the 

predictive ability of the novel approaches (SB Approach 1 and SB Approach 2) in 

comparison to the traditional Stringer Bound method and the existing alternatives 

(Meikle, Lta, Rohrbach, and Moment). 

Below we present in Table 4.1 and Table 4.2, the characteristics of the book values 

of the populations previously defined in R, as we consider this essential for a better 

analysis of the study. 

 

 

 

 

 

 

 

 

 

 

The results are presented according to population and sample size, error rate, and the 

method employed. The primary objective is to assess whether the proposed novel 

approaches offer improvements over existing methods. To achieve this, a method is 

required that can get as close as possible to the real error without ever falling below it, 

i.e. the ideal method must meet two criteria: reduce the conservatism observed in methods 

Total book value 420 896,00

Mean 50,66

Standard deviation 201,76

Skewness 20,62

Kurtosis 535,45

Maximum 6 458,33

Minimum 0,00

Table 4.1 - Major Characteristics of Population 1 Book Values 

Total book value 16 719 884,00

Mean 2 379,72

Standard deviation 8 557,19

Skewness 6,62

Kurtosis 52,75

Maximum 99 864,85

Minimum 0,04

Table 4.2 -Major Characteristics of Population 3 Book Values 
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such as the Traditional Stringer Bound (SB Traditional), while simultaneously ensuring 

that the estimated error does not fall below the real observed error. 

4.1 Population 1 

To facilitate the analysis of the results, we will begin by examining Population 1, 

analyzing each method by error rate, and sample size. 

For an error rate of 30%, the real population error is 9 966. According to Table 4.3, 

the traditional SB significantly overestimates the error, with estimates of 46 147 and 38 

365 for sample sizes of 100 and 200, respectively. Approach 1, on the other hand, has 

lower estimates than the traditional method, of 12 399 and 6 234, for sample sizes of 100 

and 200, respectively. Despite this, the estimate for the sample size of 200 (Table 4.4) 

underestimates the error, which is undesirable. As for Approach 2, with estimations of 41 

454 and 36 081, they are closer to the real error, in a less conservative way than 

Traditional, which is positive. The other methods analyzed, although they have lower 

estimations than the traditional SB, also underestimate the error in several cases and to a 

greater extent.  Meikle method significantly underestimates the error, with an average 

estimated error that is 941% lower than the real error. In contrast, while Approach 1 also 

underestimates the error, is less severe, at only about 37%. 

For an error rate of 10%, the real population error is 3 183. The traditional SB method 

overestimates the error, with average estimates of 24 422 and 17 996, for sample sizes of 

100 and 200, respectively. For example, for a sample size of 100, the traditional SB 

estimate is approximately 8 times higher than the real error (Proportion column). 

Approaches 1 and 2 provide estimates lower than the traditional SB without 

underestimating the real error. Approach 1 is closer to the real value, with estimates of 12 

414 and 6 250 for the 100 and 200 sample dimensions, respectively. The Meikle and 

Rohrbach methods produce negative mean estimates, making them unsuitable. The 

Moment method, although it approximates the actual error with a mean of 5 768, presents 

29 negative estimates out of 600 repetitions, with the average of these negative values 

being approximately 371% lower than the real error. 

For an error rate of 5%, the actual error is 1 655 and the traditional SB method 

estimates an error of 18 748 and 12 312 for sample sizes of 100 and 200 respectively. 

This is 11 and 7 times higher than the real error, respectively. Approaches 1 and 2 are the 

most accurate, with Approach 1 outperforming the others by providing the lowest error 
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estimate for both sample sizes. The remaining methods, except for Rohrbach, yield 

estimates that are lower than the traditional SB method but higher than the real error, 

however, they produce negative estimates which compromise their reliability. 

For lower error rates of 1% and 0.5%, the actual error is 314 and 140, respectively. 

In these cases, as in the entire analysis, the traditional SB method overestimates the real 

error, reaching a proportion 96 times higher for an error rate of 0.5% and a sample size of 

100. In this case, the real error is 140 and the traditional SB method estimates it 13 356. 

Approach 2 outperformed Approach 1 and all other methods. The remaining methods 

continue to underestimate the true error, as previously observed. 

Comparing all simulations of Population 1, the remaining methods perform better in 

proportion, i.e. they can effectively reduce conservatism. However, although these 

methods reduce conservatism, it is very important to check that they do not fall below the 

true error and, if they do, to quantify this. This is what the last two columns of the table 

are for: they show how often the methods have a result below the real one, and then their 

average. These columns are essential and perhaps even the "key piece" by which we 

distinguish the methods.  

Methods such as Meikle, Lta, Rohrbach, and Moment have a significant number of 

estimated errors below the true error, with the Meikle and Rohrbach methods being the 

most problematic. These results indicate that although Meikle reduces conservatism in 

this case, it also carries a significant risk of underestimating the error, which is 

unacceptable from an audit point of view. The Lta and Moment methods perform 

reasonably well, although they occasionally underestimate the true error, the number of 

repetitions is lower compared to the Meikle and Rohrbach methods. 

In terms of sample size, it can be seen that the methods behave similarly in both 

dimensions, with the methods showing errors closer to the true error in samples of 200. 

This is to be expected as the larger the sample, the more accurate the representation of the 

population. 

In summary, Approaches 1 and 2 performed best in Population 1. For higher error 

rates (5% to 30%), Approach 1 demonstrated superiority, while for lower error rates (0.5% 

and 1%), Approach 2 stands out. Approach 1 only had one instance of underestimating 

the true error, at an error rate of 30% and a sample size of 200. All the other methods, 

without exception, failed to meet the requirement of not underestimating the true error. 
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This makes the proposed approaches clearly superior, as this type of error cannot be 

accepted from an audit perspective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 - Results for Population 1 and sample size 100 

Error Rate Real error Method Total Mean Proportion

Nº of values 

under the real 

error

Mean of errors 

under the real 

error

SB traditional 46 147 5 0 -

SB Approach 1 12 399 1 0 -

SB Approach 2 41 454 4 0 -

Meikle -24 871 -2 192 -350%

Lta 22 056 2 48 121%

Rohrbach 573 0 334 -94%

Moment -370 0 96 -104%

SB traditional 24 422 8 0 -

SB Approach 1 12 414 4 0 -

SB Approach 2 19 036 6 0 -

Meikle -9 370 -3 122 -3219%

Lta 14 911 5 23 -3079%

Rohrbach -1 622 -1 334 -371%

Moment 5 768 2 29 -8169%

SB traditional 18 748 11 0 -

SB Approach 1 12 419 8 0 -

SB Approach 2 12 863 8 0 -

Meikle 8 979 5 88 -549%

Lta 15 761 10 3 -136%

Rohrbach 985 1 345 -196%

Moment 15 057 9 8 -1923%

SB traditional 14 002 45 0 -

SB Approach 1 12 422 40 0 -

SB Approach 2 7 255 23 0 -

Meikle 8 219 26 19 -38234%

Lta 12 700 40 8 -16011%

Rohrbach -361 -1 393 -669%

Moment 10 005 32 8 -61618%

SB traditional 13 356 96 0 -

SB Approach 1 12 422 89 0 -

SB Approach 2 6 424 46 0 -

Meikle 8 359 60 12 -151554%

Lta 12 274 88 9 -36156%

Rohrbach -527 -4 463 -1066%

Moment 9 237 66 9 -142125%

9 966

3 183

1 655

314

140

30%

10%

5%

1%

0,5%
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Table 4.4 - Results for Population 1 and sample size 200 

 

 

4.2 Population 3 

Prior to undertaking a comprehensive analysis, it is worth noting that in Population 3, the 

Meikle and Lta methods yield highly similar results. Given that both methods are 

designed to address understatements, but Population 3 has only overstatement, their 

performance converges towards the traditional Stringer Bound method, as adjustments 

for understatement are not applicable. 

For an error rate of 30%, with a real value of 164 354, the traditional SB method 

significantly overestimated the actual error, with estimates of 3 288 649 for a sample size 

Error Rate Real error Method Total Mean Proportion

Nº of values 

under the real 

error

Mean of errors 

under the real 

error

SB traditional 38 365 4 0 -

SB Approach 1 6 234 1 600 -37%

SB Approach 2 36 081 4 0 -

Meikle -24 508 -2 253 -941%

Lta 14 747 1 82 -496%

Rohrbach 1 046 0 370 -179%

Moment -5 615 -1 160 -958%

SB traditional 17 996 6 0 -

SB Approach 1 6 250 2 0 -

SB Approach 2 15 455 5 0 -

Meikle -13 289 -4 181 -2174%

Lta 8 670 3 48 -1437%

Rohrbach -1 251 0 326 -333%

Moment -784 0 58 -4090%

SB traditional 12 312 7 0 -

SB Approach 1 6 254 4 0 -

SB Approach 2 9 561 6 0 -

Meikle 4 154 3 152 -310%

Lta 9 358 6 13 -70%

Rohrbach 966 1 365 -146%

Moment 9 024 5 16 -969%

SB traditional 7 795 25 0 -

SB Approach 1 6 257 20 0 -

SB Approach 2 4 537 14 0 -

Meikle 3 707 12 34 -12286%

Lta 6 836 22 9 -8014%

Rohrbach -38 0 317 -525%

Moment 5 130 16 9 -30516%

SB traditional 7 241 52 0 -

SB Approach 1 6 257 45 0 -

SB Approach 2 3 838 27 0 -

Meikle 1 941 14 27 -71519%

Lta 6 103 44 19 -17738%

Rohrbach -558 -4 359 -1375%

Moment 3 074 22 19 -68965%

1% 314

0,5% 140

30% 9 966

10% 3 183

5% 1 655
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of 100 (Table 4.5) and 2 901 847 for a sample size of 200 (Table 4.6). It is important to 

note that none of the methods underestimated the actual error. Therefore, to identify the 

most accurate method, we analyzed the 'proportion' parameter, with the lowest value 

belonging to Approach 1 with a proportion of 3 and 1, respectively, for sample sizes of 

100 and 200, and associated estimated errors of 491 409 and 246 517. 

For an error rate of 10%, with an actual population error of 53 202, the traditional SB 

method overestimated the error, providing estimates of 1 542 295 for a sample size of 100 

and 1 224 798 for a sample size of 200. The Rohrbach method underestimated the real 

error in 6 out of 600 estimates, with the average of these values being 64% below the 

actual error. Among the methods analyzed, Approach 1 demonstrated the best 

performance for this error rate, with an estimate of 492 668. Approach 1 overestimated 

the error to a lesser extent when compared to the traditional SB method, indicating greater 

accuracy. 

For an error rate of 5%, we observed a similar pattern to that described above. With 

an actual error of 24 900, the traditional SB method significantly overestimated the actual 

error, with estimates 42 and 30 times greater than the actual error for sample sizes of 100 

and 200, respectively. Approach 1 demonstrated the best performance, with estimates of 

493 197 and 248 289 for sample sizes of 100 and 200, respectively. The Rohrbach method 

underestimated the actual error in 31 of the estimates, with an average 77% below the real 

error. 

For error rates of 1% and 0.5%, with actual errors of 5,136 and 2,871, respectively, 

the traditional SB method significantly overestimated the real error. The ratio of estimated 

error to real error varied between 70 and 193 times, indicating that the estimates were 

significantly higher than the actual values. The Rohrbach method, as previously observed, 

underestimated the actual error, with this underestimation becoming more pronounced as 

the error rate decreased. Approach 2 demonstrated the best performance for rates of 1% 

and 0.5%, providing the estimates closest to the actual error when compared to the other 

methods. 

When analyzing the results for Population 3, they follow a similar pattern to that 

observed for Population 1. Traditional SB remains the most conservative method, with 

the highest proportions in terms of real error, both for sample sizes and for all error rates. 
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The new approaches proposed, stand out for producing estimates that are significantly 

closer to the real error, reducing the conservatism with respect to Traditional SB and 

without underestimating the error. In this population, only the Rohrbach method produces 

results that are lower than the true error, and this is not the case for all error rates. It 

happens more at lower error rates, i.e. the number of underestimations increases as the 

error rate in the population decreases. This may be due to the fact that Population 3 has 

higher book values than Population 1.  

Overall, it can be seen that only the Rohrbach method produces errors that are lower 

than the actual error, because as Population 3 has higher book values, the margin of error 

for the methods decreases, resulting in more conservative estimates with values that are 

closer to each other. 

Comparing the results of the two populations, we can affirm that approaches 1 and 2 

significantly outperform the traditional Stringer Bound. Considering the criteria of lower 

conservatism (lower estimated error) and the absence of underestimation of the actual 

error, the new approaches have superior performance. However, it is important to note 

that approach 1 did not prove to be entirely robust, underestimating the actual error in a 

specific scenario: Population 1, error rate of 30%, and population size of 200. Approach 

2, on the other hand, demonstrated consistency in all analyzed scenarios, meeting both 

criteria. 

Analyzing the performance of the approaches at different simulated error rates, we 

observe a distinct behavior. For higher error rates, Approach 1 proved to be more accurate, 

providing lower error estimates. On the other hand, for lower error rates, Approach 2 

proved to be more accurate. This behavior can be easily explained by the modifications 

made for each approach. Approach 1, by modifying the book value considered in the 

calculation, tends to impact all error rates equally, while Approach 2, by considering 

error-free accounts, is more sensitive to variations in the error rate, benefiting when there 

are more error-free accounts (i.e., lower error rate). 

Comparing the new approaches with the remaining (Meikle, Lta, Rohrbach, and 

Moment), we observe that the latter consistently underestimate the actual error in 

Population 1, regardless of the error rate or sample size. In Population 3, only the 

Rohrbach method presents this same limitation. Although the average of the estimated 

errors by these methods is lower than that of the traditional Stringer Bound, this average 
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is distorted by the presence of underestimations of the error, that is, the average is 

influenced by values that are systematically smaller than the actual error, which 

compromises the reliability of the estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5 - Results for Population 3 and sample size 100 

Error Rate Real error Method Total Mean Proportion

Nº of values 

under the real 

error

Mean of errors 

under the real 

error (%)

SB traditional 3 288 649 20 0 -

SB Approach 1 491 409 3 0 -

SB Approach 2 3 114 648 19 0 -

Meikle 3 288 649 20 0 -

Lta 3 288 649 20 0 -

Rohrbach 2 162 982 13 0 -

Moment 3 218 956 20 0 -

SB traditional 1 542 295 29 0 -

SB Approach 1 492 668 9 0 -

SB Approach 2 1 344 406 25 0 -

Meikle 1 542 295 29 0 -

Lta 1 542 295 29 0 -

Rohrbach 722 290 14 6 -64%

Moment 1 448 863 27 0 -

SB traditional 1 035 583 42 0 -

SB Approach 1 493 197 20 0 -

SB Approach 2 819 716 33 0 -

Meikle 1 035 583 42 0 -

Lta 1 035 583 42 0 -

Rohrbach 350 374 14 31 -77%

Moment 905 083 36 0 -

SB traditional 613 801 119 0 -

SB Approach 1 493 327 96 0 -

SB Approach 2 356 361 69 0 -

Meikle 613 801 119 0 -

Lta 613 801 119 0 -

Rohrbach 72 344 14 294 -93%

Moment 521 953 102 0 -

SB traditional 554 187 193 0 -

SB Approach 1 493 410 172 0 -

SB Approach 2 284 386 99 0 -

Meikle 554 187 193 0 -

Lta 554 187 193 0 -

Rohrbach 35 988 13 405 -98%

Moment 498 239 174 0 -

30% 164 354

10% 53 202

0,5% 2 871

5% 24 900

1% 5 136
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Table 4.6 - Results for Population 3 and sample size 200 

 

 

  

Error Rate Real error Method Total Mean Proportion

Nº of values 

under the real 

error

Mean of errors 

under the real 

error

SB traditional 2 901 847 18 0 -

SB Approach 1 246 517 1 0 -

SB Approach 2 2 815 759 17 0 -

Meikle 2 901 847 18 0 -

Lta 2 901 847 18 0 -

Rohrbach 2 151 220 13 0 -

Moment 2 887 640 18 0 -

SB traditional 1 224 798 23 0 -

SB Approach 1 247 765 5 0 -

SB Approach 2 1 129 847 21 0 -

Meikle 1 224 798 23 0 -

Lta 1 224 798 23 0 -

Rohrbach 706 605 13 0 -

Moment 1 200 107 23 0 -

SB traditional 756 651 30 0 -

SB Approach 1 248 289 10 0 -

SB Approach 2 654 784 26 0 -

Meikle 756 651 30 0 -

Lta 756 651 30 0 -

Rohrbach 342 363 14 3 -81%

Moment 708 918 28 0 -

SB traditional 359 864 70 0 -

SB Approach 1 248 424 48 0 -

SB Approach 2 237 194 46 0 -

Meikle 359 864 70 0 -

Lta 359 864 70 0 -

Rohrbach 67 142 13 194 -78%

Moment 296 933 58 0 -

SB traditional 310 701 108 0 -

SB Approach 1 248 540 87 0 -

SB Approach 2 179 628 63 0 -

Meikle 310 701 108 0 -

Lta 310 701 108 0 -

Rohrbach 36 777 13 305 -94%

Moment 266 335 93 0 -

30% 164 354

10% 53 202

0,5% 2 871

5% 24 900

1% 5 136
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5. Conclusion 

This thesis presents a detailed analysis and a comprehensive comparison of error 

estimation methods in audit populations, focusing on the development and evaluation of 

two proposed new approaches aimed at improving the performance and accuracy of these 

estimates. The main motivation was to reduce the excessive conservatism of the Stringer 

Bound method while maintaining the essential criterion of not underestimating the real 

error, in accordance with auditing standards. As identified in the literature review, the 

Stringer Bound method has some weaknesses, including excessive conservatism, failure 

to consider understatements, and error-free accounts. These limitations served as the basis 

for developing the new approaches, both of which aim to reduce conservatism, with 

Approach 2 also considering error-free accounts. 

The results of the analysis indicate that both Approach 1 and Approach 2 performed 

best, meeting the two criteria of reducing the estimated error value while never 

underestimating the real error. Approach 2, in particular, consistently met both criteria 

across all tested scenarios, making it a promising and robust alternative to the traditional 

Stringer Bound and other methods. Approach 1, while meeting the criteria in most 

situations, transgressed only in a specific scenario, suggesting that future adjustments 

may further enhance its robustness. 

The comparison of all methods revealed that approaches such as Meikle, Lta, 

Rohrbach, and Moment, although they may reduce conservatism, frequently fail and 

estimate values below the real error, making them less reliable from an auditing 

perspective. This result underscores the importance of research and the development of 

new approaches, as carried out in this thesis. 

It is essential to acknowledge that this study has certain limitations. One of the 

primary limitations is the use of simulated data, which, while covering a variety of 

amounts, error rates, and sample dimensions, does not fully reflect reality. In future 

investigations, it would be pertinent to expand the scope of the data to be analyzed, 

assessing the effectiveness of the methods in diverse contexts. However, the selection of 

the Higgins & Nandram (2009) populations, along with the choice of populations 1 and 

3, which have distinctly different characteristics in terms of value magnitude and types of 

error, aimed precisely to mitigate this limitation, encompassing a broader range of 

scenarios. 
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Another significant limitation to highlight relates to the weaknesses of the Stringer 

Bound method identified in the literature review, specifically, that it does not consider 

understatements. Although our new approaches were developed with the intention of 

improving existing limitations, this particular aspect was not addressed. Future studies 

could consider incorporating an analysis of understatements. 

In conclusion, this thesis, by developing new methods that are less conservative and 

more reliable, provides a solid foundation for the potential practical application of the 

new approaches in auditing, without undermining the need for further research that could 

deepen and expand the obtained results. 
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7. Annexes 

7.1 Annex A - R script 

rm(list = ls()) 

library(writexl) 

library(dplyr) 

library(e1071) 

library("jfa")  

 

# Population 1 

Book_Value <- c(runif(2039,0,13.5), runif(2455,13.51,22.5), 

runif(1867,22.51,36),  

                runif(852,36.01,63), runif(494,63.01,105), 

runif(335,105.01,195),  

                runif(136,195.01,345), runif(79,345.01,675), 

runif(24,675.01,945),  

                runif(16,945.01,1545), runif(12,1545.01,6945)) 

sum(Book_Value)   

sd(Book_Value) 

skewness(Book_Value) 

kurtosis(Book_Value) 

summary(Book_Value) 

 

#Error Rate 

Error_Rate <- 0.3 

Length_Book_Value <- length(Book_Value) 

error_indices <- sample(1:Length_Book_Value, Error_Rate * 

Length_Book_Value,  

                        replace = FALSE) 

Audit_Value <- Book_Value 

Audit_Value 

 

Add_Error <- function(x){ 

  if(x <= 9.99){ 

    Audit_Value[indice_i] <- x + runif(1, -3.6, 0.84) 

  } else if(x <= 24.99){ 

    x + runif(1, -33.60, 10.09) 

  } else if(x <= 99.99){ 

    x + runif(1, -12.38, 20.88) 

  } else if(x <= 399.99){ 

    x + runif(1, -31.26, 14.76) 

  } else{ 

    x + runif(1, -42.18, 55.40) 

  } 

   

} 

 

for(indice_i in error_indices){ 

  book_value_i <- Book_Value[indice_i] 

  Audit_Error_i <- -1 

  while(Audit_Error_i <= 0){ 

    Audit_Error_i <- Add_Error(book_value_i) 

  } 

  Audit_Value[indice_i] <- Audit_Error_i 

} 

 

#------------------------------------------------------------------ 

# Population 3 
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Book_Value <- c(runif(1334,0,40), runif(1438,40.01,136), 

runif(1475,136.01,400),  

                runif(878,400.01,800), runif(539,800.01,1400), 

runif(548,1400.01,3000),  

                runif(278,3000.01,5000), runif(239,5000.01,10000),  

                runif(258,10000.01,49000), 

runif(39,49000.01,100000)) 

sum(Book_Value) 

mean(Book_Value) 

sd(Book_Value) 

skewness(Book_Value) 

kurtosis(Book_Value) 

summary(Book_Value) 

 

#Error Rate 

Error_Rate <- 0.3 

Length_Book_Value <- length(Book_Value) 

error_indices <- sample(1:Length_Book_Value, Error_Rate * 

Length_Book_Value, replace = FALSE) 

Audit_Value <- Book_Value 

Audit_Value 

 

Add_Error <- function(x){ 

  if(x <= 200){ 

    overstatement_perc <- sample(c(.01, .02, .05, .50, .75, 1), size 

= 1, prob = c(.06, .13, .06, .13, .13, .50)) 

  } else if(x <= 1000){ 

    overstatement_perc <- sample(c(.05, .10, .15, .20, .50, .95, 1), 

size = 1, prob = c(.17, .08, .17, .08, .25, .17, .08)) 

  } else{ 

    overstatement_perc <- sample(c(.01, .05, .1, .2, .3, .5)/100, 

size = 1) 

  } 

  x - x * overstatement_perc 

} 

 

for(indice_i in error_indices){ 

  book_value_i <- Book_Value[indice_i] 

  audit_value_i <- Add_Error(book_value_i) 

  if(book_value_i - audit_value_i > 500) audit_value_i <- 

book_value_i - 500 

  Audit_Value[indice_i] <- audit_value_i 

} 

 

 

#------------------------------------------------------------------ 

#Errors 

Audit_Value_30 <- Audit_Value 

 

#Error rate 10% 

n_errors_10 <- round(0.1 * Length_Book_Value) 

error_indices_10 <- sample(error_indices, n_errors_10) 

Audit_Value_10 <- Book_Value 

Audit_Value_10[error_indices_10] <- Audit_Value_30[error_indices_10] 

table(Audit_Value_10 != Book_Value)/Length_Book_Value #Verificar 

 

#Error rate 5% 

n_errors_5 <- round(0.05 * Length_Book_Value) 

error_indices_5 <- sample(error_indices, n_errors_5) 

Audit_Value_5 <- Book_Value 

Audit_Value_5[error_indices_5] <- Audit_Value_30[error_indices_5] 
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table(Audit_Value_5 != Book_Value)/Length_Book_Value 

 

#Error rate 1% 

n_errors_1 <- round(0.01 * Length_Book_Value) 

error_indices_1 <- sample(error_indices, n_errors_1) 

Audit_Value_1 <- Book_Value 

Audit_Value_1[error_indices_1] <- Audit_Value_30[error_indices_1] 

table(Audit_Value_1 != Book_Value)/Length_Book_Value  

 

#Error rate 0.5% 

n_errors_05 <- round(0.005 * Length_Book_Value) 

error_indices_05 <- sample(error_indices, n_errors_05) 

Audit_Value_05 <- Book_Value 

Audit_Value_05[error_indices_05] <- Audit_Value_30[error_indices_05] 

table(Audit_Value_05 != Book_Value)/Length_Book_Value  

 

 

#Sampling 

sample_size <- 100 #100,200 

n_samples <- 600 

population_size <- Length_Book_Value 

 

create_sample <- function(population_size, sample_size){ 

  sample_indices <- sample.int(population_size, sample_size, replace 

= FALSE) 

  sample_indices 

} 

 

Stringer_Bound <- function(Book_Value, Audit_Value, sample_indices){ 

  Book_Value_sample <- Book_Value[sample_indices] 

  Audit_Value_sample <- Audit_Value[sample_indices] 

   

  # Taiting 

  Errors <- Book_Value_sample - Audit_Value_sample 

  Tainting <- Errors / Book_Value_sample 

   

  # Select positive taintings 

  Positive_Tainting <- Tainting[Tainting > 0] 

  Positive_Tainting <- sort(Positive_Tainting, decreasing = TRUE)   

  Positive_Tainting <- c(1, Positive_Tainting) 

   

  coefs_ps <- sapply(0:(sample_size - 1 ), function(x) { 

    qbeta_val <- qbeta(0.95, 1 + x, sample_size - x) 

    if (is.nan(qbeta_val)) qbeta_val <- 0.0001 

    return(qbeta_val) 

  }) 

  delta_coefs_ps <- c(qbeta(0.95, 1, sample_size), diff(coefs_ps)) 

   

  Total_error <- sum(delta_coefs_ps[1:length(Positive_Tainting)] * 

sum(Book_Value) * Positive_Tainting) 

     

  Total_error 

} 

 

#------------------------------------------------------------------ 

#Approach 1 

 

Stringer_Bound1 <- function(Book_Value, Audit_Value, 

sample_indices){ 

  Book_Value_sample <- Book_Value[sample_indices] 

  Audit_Value_sample <- Audit_Value[sample_indices] 
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  # Taiting 

  Errors <- Book_Value_sample - Audit_Value_sample 

  Tainting <- Errors / Book_Value_sample 

   

  # Select positive taintings 

  indices_Tainting_g0 <- which(Tainting > 0) 

  Positive_Tainting <- Tainting[indices_Tainting_g0] 

  Order_Positive_Tainting <- order(Positive_Tainting, decreasing = 

TRUE)   

  indices_Tainting_g0 <- 

indices_Tainting_g0[Order_Positive_Tainting] 

  Positive_Tainting <- Positive_Tainting[Order_Positive_Tainting] 

  Positive_Tainting <- c(1, Positive_Tainting) 

   

  coefs_ps <- sapply(0:(sample_size - 1 ), function(x) { 

    qbeta_val <- qbeta(0.95, 1 + x, sample_size - x) 

    if (is.nan(qbeta_val)) qbeta_val <- 0.0001 

    return(qbeta_val) 

  }) 

  delta_coefs_ps <- c(qbeta(0.95, 1, sample_size), diff(coefs_ps)) 

   

  Book_Value_specific <- Book_Value_sample[indices_Tainting_g0] 

#Book Value especifico de cada erro 

  Book_Value_rest <- sum(Book_Value)-sum(Book_Value_specific) #Book 

value da 1º linha 

  Book_Value_1 <- c(Book_Value_rest,Book_Value_specific) 

   

  Total_error <- sum(delta_coefs_ps[1:length(Positive_Tainting)] * 

Book_Value_1 * Positive_Tainting) 

   

  Total_error 

  } 

 

#----------------------------------------------------------------- 

#Approach 2 

 

Stringer_Bound2 <- function(Book_Value, Audit_Value, 

sample_indices){ 

  Book_Value_sample <- Book_Value[sample_indices] 

  Audit_Value_sample <- Audit_Value[sample_indices] 

   

  # Taiting 

  Errors <- Book_Value_sample - Audit_Value_sample 

  Tainting <- Errors / Book_Value_sample 

   

  # Select positive taintings 

  indices_Tainting_g0 <- which(Tainting > 0) 

  Positive_Tainting <- Tainting[indices_Tainting_g0] 

  Order_Positive_Tainting <- order(Positive_Tainting, decreasing = 

TRUE)   

  indices_Tainting_g0 <- 

indices_Tainting_g0[Order_Positive_Tainting] 

  Positive_Tainting <- Positive_Tainting[Order_Positive_Tainting] 

  Positive_Tainting <- c(1, Positive_Tainting) 

   

  coefs_ps <- sapply(0:(sample_size), function(x) { 

    qbeta_val <- qbeta(0.95, 1 + x, sample_size - x) 

    if (is.nan(qbeta_val)) qbeta_val <- 0.0001 

    return(qbeta_val) 

  }) 
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  delta_coefs_ps <- c(qbeta(0.95, 1, sample_size), diff(coefs_ps)) 

   

  Book_Value_specific <- Book_Value_sample[indices_Tainting_g0] 

#Book Value – specific error 

  Book_Value_rest <- sum(Book_Value)-sum(Book_Value_specific) #Book 

value da 1º linha 

   

  Tainting0 <- Book_Value_rest/sum(Book_Value) 

   

  Total_error <- sum(delta_coefs_ps[1:(length(Positive_Tainting) + 

1)] * sum(Book_Value) * c(Positive_Tainting, -Tainting0)) 

   

  Total_error 

} 

 

#------------------------------------------------------------------ 

Data_Population <- data.frame(Book_Value, Audit_Value_30, 

Audit_Value_10,  

                              Audit_Value_5, Audit_Value_1, 

Audit_Value_05) 

 

sample_indices_i <- create_sample(population_size, sample_size) 

Data_Population_sample <- Data_Population[sample_indices_i,] 

 

Stringer_Bound_JFA <- evaluation( 

  method = "stringer", data = Data_Population_sample, 

  values = "Book_Value", values.audit = "Audit_Value_30" 

) 

 

Stringer_Bound_meik <- evaluation( 

  method = "stringer.meikle", data = Data_Population_sample, 

  values = "Book_Value", values.audit = "Audit_Value_30" 

) 

 

Stringer_Bound_lta <- evaluation( 

  method = "stringer.lta", data = Data_Population_sample, 

  values = "Book_Value", values.audit = "Audit_Value_30" 

) 

 

Stringer_Bound_rohrbach <- evaluation( 

  method = "rohrbach", data = Data_Population_sample, 

  values = "Book_Value", values.audit = "Audit_Value_30", N.units = 

sample_size, 

) 

 

Stringer_Bound_moment <- evaluation( 

  method = "moment", data = Data_Population_sample, 

  values = "Book_Value", values.audit = "Audit_Value_30" 

) 

 

summary(Stringer_Bound_JFA) 

Stringer_Bound_JFA$ub*sum(Book_Value) 

Stringer_Bound_meik$ub*sum(Book_Value) 

Stringer_Bound_lta$ub*sum(Book_Value) 

Stringer_Bound_rohrbach$ub*sum(Book_Value) 

Stringer_Bound_moment$ub*sum(Book_Value) 

 

Stringer_Bound(Book_Value, Audit_Value_30, sample_indices_i) 

Stringer_Bound1(Book_Value, Audit_Value_30, sample_indices_i) 

Stringer_Bound2(Book_Value, Audit_Value_30, sample_indices_i) 
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#------------------------------------------------------------------ 

#Output 

 

Audit_Value_now <- Audit_Value_30 

Errors <- Book_Value-Audit_Value_now 

Total_positive_errors <- sum(Errors[Errors>0]) 

Total_positive_errors 

 

Errors_list <- c() 

Errors_list1 <- c() 

Errors_list2 <- c() 

Errors_list3 <- c() 

Errors_list4 <- c() 

Errors_list5 <- c() 

Errors_list6 <- c() 

Errors_list7 <- c() 

 

 

for (i in 1:n_samples){ 

  sample_indices_i <- create_sample(population_size, sample_size) 

  Error_i <- Stringer_Bound(Book_Value, Audit_Value_now, 

sample_indices_i) 

  Error_i1 <- Stringer_Bound1(Book_Value, Audit_Value_now, 

sample_indices_i) 

  Error_i2 <- Stringer_Bound2(Book_Value, Audit_Value_now, 

sample_indices_i) 

   

  Data_Population_i <- data.frame(Book_Value, 

Audit_Value_now)[sample_indices_i, ] 

  Stringer_Bound_JFA <- evaluation(method = "stringer", data = 

Data_Population_i, 

    values = "Book_Value", values.audit = "Audit_Value_now" 

  ) 

  Error_i3 <- Stringer_Bound_JFA$ub*sum(Book_Value) 

   

  Stringer_Bound_meik <- evaluation(method = "stringer.meikle", data 

= Data_Population_i, 

    values = "Book_Value", values.audit = "Audit_Value_now" 

  ) 

  Error_i4 <- Stringer_Bound_meik$ub*sum(Book_Value) 

   

  Stringer_Bound_lta <- evaluation(method = "stringer.lta", data = 

Data_Population_i, 

    values = "Book_Value", values.audit = "Audit_Value_now" 

  ) 

  Error_i5 <- Stringer_Bound_lta$ub*sum(Book_Value) 

   

  Stringer_Bound_rohrbach <- evaluation(method = "rohrbach", data = 

Data_Population_i, 

    values = "Book_Value", values.audit = "Audit_Value_now", N.units 

= sample_size, 

  ) 

  Error_i6 <- Stringer_Bound_rohrbach$ub*sum(Book_Value) 

   

  Stringer_Bound_moment <- evaluation(method = "moment", data = 

Data_Population_i, 

    values = "Book_Value", values.audit = "Audit_Value_now" 

  ) 

  Error_i7 <- Stringer_Bound_moment$ub*sum(Book_Value) 

   

  Errors_list <- c(Errors_list, Error_i) 
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  Errors_list1 <- c(Errors_list1, Error_i1) 

  Errors_list2 <- c(Errors_list2, Error_i2) 

  Errors_list3 <- c(Errors_list3, Error_i3) 

  Errors_list4 <- c(Errors_list4, Error_i4) 

  Errors_list5 <- c(Errors_list5, Error_i5) 

  Errors_list6 <- c(Errors_list6, Error_i6) 

  Errors_list7 <- c(Errors_list7, Error_i7) 

   

} 

 

today <- Sys.time() %>% stringr::str_replace_all(c("-" = "", ":" = 

"", " " = "_")) %>% substr(1,15) 

 

write_xlsx(data.frame("JFA"= Errors_list3, 

                      "Meikle" = Errors_list4, 

                      "Lta" = Errors_list5, 

                      "Rohrbach" = Errors_list6, 

                      "Moment" = Errors_list7, 

                      "Stringer Bound Traditional" = Errors_list,  

                      "Stringer Bound Approach 1" = Errors_list1, 

                      "Stringer Bound Approach 2" = Errors_list2, 

                      "Total Positive Error" = 

Total_positive_errors), 

                      paste0("Output_", today, ".xlsx"), 

            

           ) 

 

 

 


