
Autocorrection in Projectional Editors
André L. Santos

andre.santos@iscte-iul.pt
Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL

Lisboa, Portugal

Ângelo Mendonça
amlfm@iscte-iul.pt

Instituto Universitário de Lisboa (ISCTE-IUL)
Lisboa, Portugal

ABSTRACT
People often mistype words when using keyboards. Word proces-
sors commonly feature autocorrection that checks for dictionary-
based spelling mistakes and automatically performs text replace-
ment after the user types a word. Programs are mostly described
using text, and hence, the programmer may introduce typos when
writing program identifiers (or keywords). In this paper, we de-
scribe an approach to integrate autocorrection in a projectional
editor, capable of fixing program identifier typos. We implemented
two modes of autocorrection as an extension of Javardise, one that
resembles word processor autocorrection and a more experimental
one based on the substitution of individual user keystrokes.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Projectional editors, autocorrection, Java
ACM Reference Format:
André L. Santos and Ângelo Mendonça. 2024. Autocorrection in Projectional
Editors. In Companion Proceedings of the 8th International Conference on the
Art, Science, and Engineering of Programming (‹Programming› Companion
’24), March 11–15, 2024, Lund, Sweden. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3660829.3660844

1 INTRODUCTION
We know from personal experience that typing mistakes are fre-
quent. However, we did not find any study that quantifies how
frequent are these mistakes in programming, and how much they
affect the performance and experience of code writing. However, a
large-scale study on typing English sentences revealed that people
make an average of 2.29 error corrections per sentence [2]. Al-
though this error rate cannot be extrapolated to programming, it
demonstrated that misspellings are relatively frequent. Given that
program identifiers are words or abbreviations, typing them is also
prone to mistakes.

In most popular IDEs, when a programmer mistypes an iden-
tifier by accident or because of incorrect spelling a compilation
error is signaled with an error mark, which the programmer may
visit and fix the error. Among other code transformation options,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0634-9/24/03
https://doi.org/10.1145/3660829.3660844

Figure 1: Quick-fixes for correcting identifiers in VS Code.

IDEs provide quick-fix actions to trigger text replacements with
suggestions that match the identifiers in scope. Figure 1 presents
an example of this sort of feature illustrated with VS Code1. Other
industrial IDEs, such as IntelliJ IDEA2 and Eclipse3, offer similar
features.

Quick fixes are useful but require additional interaction activity
to trigger and select the actions. Our approach aims at fixing iden-
tifier misspellings, but in the manner that word processors do. The
words (i.e., references to program identifiers) are corrected while
the user is typing. We are not aware of code editors that provide
this sort of feature.

A related feature dates back to LISP environments, namely PI-
LOT, which provided a Do-What-I-Mean (DWIM) package [13] that
performed corrections in program symbols during interpretation,
based on string similarity. In contrast, our approach aims at a static
time correct-as-you-type feature, eliminating the presence of tran-
siently broken references that would otherwise require manual
intervention.

We describe how we implemented autocorrection in a projec-
tional editor through the injection of commands in addition to those
of the programmer. The commands correct mistyped identifiers
based on checking string similarity with identifiers in scope. These
are expressed as any other editing command, and hence, an unde-
sired correction may be canceled through the regular undo feature.
Existing projectional/structured editors have not exploited the sort
of autocorrection we propose [1, 4–6, 8–10, 12].

2 BACKGROUND
In projectional editors, the programmer sees a projection of a model
that is at every moment well-structured, as opposed to raw text,
1https://code.visualstudio.com
2https://www.jetbrains.com/idea
3https://eclipse.org

https://orcid.org/0000-0002-8247-7413
https://orcid.org/
https://doi.org/10.1145/3660829.3660844
https://doi.org/10.1145/3660829.3660844
https://code.visualstudio.com
https://www.jetbrains.com/idea
https://eclipse.org


‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden A. L. Santos and A. Mendonça

Figure 2: Screenshot of Javardise exhibiting compilation er-
rors.

Controller
(Javardise editor)

Command Stack

Model
(JavaParser ASTs)

View
(SWT widgets)

observes

notifies

modify
triggers

Autocorrect
(Javardise plugin)

observes

notifies

triggers

modification
correction

Figure 3: Model-view-controller architecture of Javardise
and the integration of autocorrection (gray elements).

which may be in an unparseable state. Every program modification,
such as adding a statement or renaming an identifier, is represented
in a well-defined model transformation. In our approach, we exploit
this characteristic of having the evolution of code represented in
a sequence of discrete transformation commands, which one may
analyze and manipulate.

Javardise [11] is a research projectional editor for Java, currently
supporting a subset of the language. At first glance, the editor’s
appearance resembles a conventional one (see Figure 2). However,
the user experience is that of a structured editor, characterized by
not allowing malformed constructs. What is visible on-screen is a

projection of an underlying model of the code that is at all times
structurally correct (equivalent to being accepted by the language
grammar). However, the code might have semantic errors (e.g.,
types) or missing expressions.

In contrast to tools such as Jetbrains MPS [10], there is no spe-
cific serialization format, Javardise works with regular Java files.
JavaParser [14] is a library comprising classes that model Java code
(ASTs) and a parser to instantiate those from source code. Javardise
uses this library to load in-memory representations of the code.
Upon modification, these are serialized back to Java code.

Javardise embodies a model-view-controller architecture (see
Figure 3, white components). For each file, the model consists of a
JavaParser’s AST, whereas views are UI widgets built with Eclipse’s
SWT4. A view widget observes changes in the model and updates
accordingly. However, it does not modify the model directly, instead,
it triggers commands [3] whose execution is centralized in the
controller. Commands have both the action and undo behaviors and
are kept in a stack. When commands originate changes in the ASTs,
observing views react accordingly.

3 IMPLEMENTATION
We implemented a proof-of-concept autocorrection feature by ex-
tending Javardise with a plugin that produces additional commands
as corrections. The source code is available at the Javardise reposi-
tory5 under the subproject autocorrect.

Figure 3 (gray components) illustrates how the autocorrection
plugin integrates with the base editor. It listens to the execution of
commands and triggers a command that performs the necessary
change whenever an opportunity for correction is detected. The
additional autocorrection commands are treated by the editor as
regular ones, and hence, one may perform undo to cancel their
execution. We implemented two modes of autocorrection, which
we detail next.

3.1 Command Refinement
One autocorrection mode resembles the feature of word processors
and is based on command refinement. The commands that result
from user interaction are “overridden” to better fit the existing code.

Autocorrection may occur whenever the user types an unre-
solved program identifier, either from scratch or by modifying an
existing one. If applicable, an autocorrection command is gener-
ated and executed right after the mistake. Because we have a well-
formed AST at every moment, we can reliably perform analyses
immediately after every node insertion or modification.

We used JavaParser’s symbol solver to attempt to resolve refer-
ences of newly added identifiers. When resolution fails, we consider
it an opportunity for autocorrection, triggering the match process.
Figure 4 illustrates this autocorrection mode, where the user typed
“myfield” (instead of “myField”) followed by “=” to write an assign-
ment, but the resulting instruction was “myField = “ due to the
injected autocorrection command.

In cases when the changes performed by a command do not lead
to any broken references, we do not attempt any sort of correction.

4https://www.eclipse.org/swt
5https://github.com/andre-santos-pt/javardise

https://www.eclipse.org/swt
https://github.com/andre-santos-pt/javardise


Autocorrection in Projectional Editors ‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden

“=“

(typed)

:Command
Add assignment
varId=“myfield”

:Command
Rename assignment
oldId=“myfield”
newId=“myField”

(autocorrection)

1 2

(undo)

:Command

Figure 4: Autocorrection mode with command refinement. (1) a command is executed holding a broken reference, and a cor-
rection command is triggered; (2) undo is performed to reverse the correction effect.

“v“

(typed)

1

“s“

(typed)

2 3

(undo)

Figure 5: Autocorrection mode with keystroke substitution. (1) the user types “v” (lowercase), which is substituted by “V”
(uppercase); (2) the user types “s”, which is substituted by “a” (adjacent in keyboard); (3) undo is performed, and the previous
keystroke is reclaimed.

On the other hand, the correction may be undesired for some rea-
son, for instance, the user may wish to write yet-to-be-declared
identifiers that are similar to existing ones. The user may cancel
the autocorrection using the regular undo feature, rolling back to
the state before the autocorrection command.

3.2 Keystroke Substitution
While typing an identifier, the user may notice a typo, and con-
sequently, may hit backspaces and correct it as soon as it was
noticed. In these situations, the user would not benefit from the
previous autocorrection mode. Therefore, we implemented another,
more invasive and experimental, mode of autocorrection based on
keystroke substitution. In this mode, certain keystrokes may be
replaced on the fly as the user types. For example, the user may
type a lowercase “v” and observe on the screen an uppercase “V”.
Figure 5 illustrates how this mode works.

The implementation of this mode required more low-level in-
terference with SWT events because every keystroke is an event
of interest. The AST modification commands of Javardise do not
work at this level of granularity, since a new command is triggered
only when a modification (or insertion/deletion) is performed. In
particular, if a variable expression is being edited, the command
only takes effect once the focus is out of the widget.

Every time the focus changes to a text-editable widget holding
an identifier, we attach a listener to capture the keystrokes therein
(and detach once the focus is lost). Depending on which type of
AST element the widget is addressing, we compute the valid iden-
tifiers. Every time a key is pressed, the current text content plus
the new character is matched against the list of identifiers, which
are trimmed to their prefix with a length equal to the current text.

When matched, the prefix of the valid identifier replaces the text in
the widget.

3.3 Matching Identifiers
Our main goal is to address all the programming elements that
involve identifiers, except when these are part of declarations. It
would not make sense to correct an identifier that does not yet
exist. In these cases, regular spell checkers may come into action, a
feature nevertheless already available in modern IDEs.

Corrections are based on calculating the string distance (Leven-
shtein edit distance [7]) to valid identifiers in scope, taking into
account the type of element that is being referred. A threshold value
can be altered to define how closely strings should match to trigger
the autocorrection. Next, we detail the different contexts in which
an identifier correction may be performed.

Type references. These apply to declarations of fields, methods,
parameters, and local variables. Except for type declarations, every
other declaration refers to an existing type. Autocorrection will
try to match the set of existing project types, as well as the types
imported in the file that is being edited. This could be broadened
to all the types in the classpath.

Variable expression. These apply to expressions that refer to
class fields or local variables (including parameters). Autocorrection
will try to match a valid variable identifier according to the scope
hierarchy of name resolution: local variables followed by fields.

Field expression. These apply to field access expressions (dot
notation), where a field is accessed by name (right) on an expression
scope (left). Autocorrection will consider the type of the expression
to find a valid field identifier within that scope. If the scope corre-
sponds to a type name, instead of a variable, a match to static fields
of that type will be performed.



‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden A. L. Santos and A. Mendonça

Figure 6: Autocompletion in VS Code of a partially
mistyped identifier (an almost valid identifier suffix with
one mistyped character).

Method expression. These apply to expressions and expres-
sion statements that hold method calls. Autocorrection will try to
match a valid method identifier in scope. Method calls may have
an expression scope; in that case, the behavior is analogous to field
expressions.

4 DISCUSSION
The availability of good code autocompletion features and their in-
tensive use may imply that the autocorrection feature we propose is
marginally useful since barely any identifier spellings would occur.
However, a user may still mistype characters, and autocompletion
is not as useful for dealing with text that was already (mis-)typed.
Figure 6 presents an example in VSCode illustrating this situation.

The sort of autocorrection feature we propose could also be
implemented in textual code editors. However, the editing process’s
nature could complicate the implementation, given that editing
actions are fuzzy (that is, without precise boundaries), hence more
difficult to track reliably. Furthermore, it requires dealing with code
that is not fully parseable due to malformedness.

The main advantage of a projectional editor is that every editing
step is well-defined in a command, turning the evolution of the
source code into a “discrete” process. In addition, the code elements
are represented in dedicated widgets aware of the AST node being
edited. This allows for precise lookups of identifiers to perform the
correction.

When compared to autocorrection of regular text (as in word
processors), achieving the analogous behavior with source code is
a considerably simpler problem. In word processors, corrections
are based on dictionary lookups to check word similarity, but may
also use the context of the word (immediate previous words) to
choose a substitution that maximizes likelihood with probabilistic
models. However, the state space of natural languages is wide and
context has ambiguity. In programs, the set of identifiers that are
valid in a given scope is both well-defined (no ambiguity) and with
relatively low cardinality (say, often not reaching hundreds). This
characteristic facilitates the accuracy of the autocorrections.

We did not investigate how users perceive the sort of autocorrec-
tion feature we proposed. We speculate that users would find the
command refinement autocorrection mode familiar, as it resembles
the autocorrection feature that has been available in word proces-
sors for many years. The autocorrection mode based on keystroke
substitution is more invasive and we acknowledge that it may con-
fuse users. Further, we did not devote much time investigating less
obvious undesired behaviors of such an autocorrection feature. This
aspect requires further investigation and user experiments.

An obvious drawback of autocorrection is when undesired modi-
fications are performed. However, given that those can be canceled
with undo — a simple and already existing mainstream command —
it should not compromise usability significantly. Recall that our au-
tocorrection feature never modifies an identifier that is not broken.
Hence, we foresee two main undesired scenarios: (a) the identifier
chosen by the autocorrection is not the desired one, and (b) auto-
correction overrides the deliberate intention of the user to type an
identifier that does not yet exist. Both scenarios are triggered due
to the presence of similar identifiers in scope. Regarding the first
scenario, the user overcomes the situation by performing undo and
writing the desired identifier. Without autocorrection on, the user
would have anyways to go back to the identifier location to correct
it. Regarding the second scenario, the user only has to perform
undo and continue writing the code.

In addition to the evaluation of the usability of our approach,
a user study involving code writing and modification tasks could
measure how often autocorrections are performed, as well as how
often these are canceled. The ratio of autocorrections per user com-
mand would measure how useful the feature is, whereas the ratio of
canceled autocorrections per autocorrection command would mea-
sure its accuracy. Accurate autocorrections save time and typing
effort for the user and in this way have the potential to make the
programming activity more efficient and ergonomic (less physical
activity).

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their valuable
suggestions to improve this paper. This work was partially sup-
ported by Fundação para a Ciência e a Tecnologia, I.P. (FCT) [ISTAR
Projects: UIDB/04466/2020 and UIDP/04466/2020].

REFERENCES
[1] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert

Hirschfeld. 2023. Structured Editing for All: Deriving Usable Structured Ed-
itors from Grammars. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (CHI ’23). Association for Computing Machinery, New
York, NY, USA, Article 595, 16 pages. https://doi.org/10.1145/3544548.3580785

[2] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018.
Observations on Typing from 136 Million Keystrokes. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (CHI ’18). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3173574.3174220

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc.

[4] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: a lightweight
user interface for structured editing. In Proceedings of the 40th International Con-
ference on Software Engineering (ICSE ’18). Association for Computing Machinery,
New York, NY, USA, 654–664. https://doi.org/10.1145/3180155.3180165

[5] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework
for Enabling New Tools, Interaction Techniques and Views in Code Editors. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’06). Association for Computing Machinery, New York, NY, USA, 387–396.
https://doi.org/10.1145/1124772.1124831

[6] Michael Kölling, Neil C. C. Brown, Hamza Hamza, and Davin McCall. 2019.
Stride in BlueJ – Computing for All in an Educational IDE. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 63–69. https:
//doi.org/10.1145/3287324.3287462

[7] Vladimir Levenshtein. 1966. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. Soviet Physics Doklady 10 (1966).

[8] Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. 1994. Evolution of
Novice Programming Environments: The Structure Editors. In of Carnegie Mellon
University. 140–158.

https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3173574.3174220
https://doi.org/10.1145/3173574.3174220
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/3287324.3287462
https://doi.org/10.1145/3287324.3287462


Autocorrection in Projectional Editors ‹Programming› Companion ’24, March 11–15, 2024, Lund, Sweden

[9] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live
functional programming with typed holes. Proc. ACM Program. Lang. 3, POPL,
Article 14 (jan 2019), 32 pages. https://doi.org/10.1145/3290327

[10] Vaclav Pech, Alex Shatalin, and Markus Voelter. 2013. JetBrains MPS as a Tool for
Extending Java. In Proceedings of the 2013 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools (PPPJ ’13). Association for Computing Machinery, New York, NY, USA,
165–168. https://doi.org/10.1145/2500828.2500846

[11] André L. Santos. 2020. Javardise: A Structured Code Editor for Programming
Pedagogy in Java. In Companion Proceedings of the 4th International Conference
on Art, Science, and Engineering of Programming (Programming ’20). Association
for Computing Machinery, New York, NY, USA, 120–125. https://doi.org/10.
1145/3397537.3397561

[12] Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. Intentional
Software. SIGPLAN Not. 41, 10 (oct 2006), 451–464. https://doi.org/10.1145/

1167515.1167511
[13] Warren Teitelman. 1969. Toward a Programming Laboratory. In Proceedings of the

1st International Joint Conference on Artificial Intelligence, Washington, DC, USA,
May 7-9, 1969, Donald E. Walker and Lewis M. Norton (Eds.). William Kaufmann,
1–8.

[14] Danny van Bruggen, Federico Tomassetti, Roger Howell, Malte Langkabel,
Nicholas Smith, Artur Bosch, Malte Skoruppa, Cruz Maximilien, ThLeu, Panayi-
otis, Sebastian Kirsch (@skirsch79), Simon, Johann Beleites, Wim Tibackx,
jean pierre L, André Rouél, edefazio, Daan Schipper, Mathiponds, Why you
want to know, Ryan Beckett, ptitjes, kotari4u, Marvin Wyrich, Ricardo Morais,
Maarten Coene, bresai, Implex1v, and Bernhard Haumacher. 2020. java-
parser/javaparser: Release javaparser- parent-3.16.1. https://doi.org/10.5281/
zenodo.3842713

Received 2024-02-08; accepted 2024-02-26

https://doi.org/10.1145/3290327
https://doi.org/10.1145/2500828.2500846
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.5281/zenodo.3842713
https://doi.org/10.5281/zenodo.3842713

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	3.1 Command Refinement
	3.2 Keystroke Substitution
	3.3 Matching Identifiers

	4 Discussion
	Acknowledgments
	References

