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Abstract 
The Chern topological numbers of a material platform are 
usually written in terms of the Berry curvature which 
depends on the normal modes of the system. Here, we use a 
gauge invariant Green’s function method to determine from 
“first principles” the topological invariants of photonic 
crystals. The proposed formalism does not require the 
calculation of the photonic band-structure, and can be easily 
implemented using the operators obtained with a standard 
plane-wave expansion. 

1. Introduction 
Topological systems have fascinating and intriguing 
properties, which can lead to novel physical effects and 
phenomena [1-8]. The Chern topological numbers of a 
material system are usually written in terms of the Bloch 
eigenmodes. Thus, from a computational point of view, the 
numerical calculation of the Chern invariants is a rather 
complex problem: it generally requires finding the photonic 
band structure and all the Bloch states in the Brillouin zone. 
The problem is specially challenging in the case of periodic 
systems, e.g., nonreciprocal photonic crystals. In a few 
recent articles [6, 7] it was shown that the gap Chern 
numbers can alternatively be written in terms of the system 
Green’s function. The theory is gauge invariant and does not 
require any detailed knowledge of the band structure or of 
the Bloch eigenstates. The method applies to both fermionic 
and bosonic platforms (even in case of material dispersion) 
and to non-Hermitian systems [6, 7]. Here, we illustrate the 
application of the formalism to ferrite photonic crystals. 
Specifically, we determine from first principles (i.e., without 
a tight-binding approximation) the gap Chern numbers of 
the photonic crystal relying on a plane wave expansion. 

2. General formalism 
Next, we briefly review the general Green’s function 
formalism reported in [6, 7] to characterize the Chern 
invariants of photonic platforms. Consider a generalized 
eigenvalue problem of the form ˆ

n n g nL ⋅ = ⋅k k k kQ M Q  

(n=1,2,…), where L̂k  and gM  are operators (possibly non -

Hermitian). The operator L̂k is parameterized by the real 

wave vector ˆ ˆx yk k= +k x y and the operator gM is 
independent of k . Here, nkQ  are the generalized 

eigenstates of L̂k  and nk  are the generalized eigenvalues. 
The system Green’s function is defined by 

( ) ( ) 1ˆ
gi L

−
= −k k M   [7]. The Green’s function has 

poles at the eigenfrequencies n= k  , but otherwise is an 
analytic function of frequency. The band gaps are vertical 
strips of the complex plane ( { }ReL U< <   ) where the 
Green’s function is analytic. The gap Chern number is 
determined by [6, 7]: 
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where /∂ = ∂ ∂   and gap is some “frequency” in the gap. 

We denote 1 1 ˆ/ /j j jk i L k− −∂ = ∂ ∂ = − ∂ ∂k k k    (j=1,2) with 

1 xk k=  and 2 yk k= . The integral in   is over the line 

{ } gapRe =   and { }Tr ...  stands for the trace operator.  

3. Ferrite photonic crystal  
Consider a ferrite photonic crystal formed by a hexagonal 
array of ferrites embedded in air [9], as illustrated in Fig.1. 
Assuming transverse electric (TE) polarization ( ˆzE=E z ) 
and propagation in the xoy plane it can be shown that the 
secular wave equation is of the form 
( )ˆ

z g zL i E E− ∇ ⋅ = ⋅M  with ( )2/ cω= , g z zE Eε⋅ ≡M  
and  

1 1ˆ
z x x z y z y y z x z

ef ef ef ef
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   −
⋅ ≡ −∂ ∂ + ∂ − ∂ ∂ + ∂   

      
.

(2) 
Thus, gM  is a multiplication operator and ( )L̂ i− ∇  is a 

differential operator. In the above, ( ),x yε ε=

 

is the 

permittivity, ( )11 ,x yµ µ=  and ( )12 ,i x yκ µ= − are the 
diagonal and anti-diagonal elements of the permeability 
tensor, respectively, and ( )2 2 /efµ µ κ µ= − . For simplicity, 



in this work we ignore material dispersion and take 12ε = , 
1µ =

 

and 0.9κ = . The Bloch modes associated with the 
wave vector k  are of the form ( ), i

z zE e x y e ⋅= k r  with 

( ),ze x y  a periodic function that satisfies ˆ
z g zL e e⋅ = ⋅k M , 

with ( )ˆ ˆL L i≡ − ∇ +k k . The band structure can be found 
using the plane wave method by expanding ze  into plane 
waves, iE

ze c e ⋅= ∑ JG r
J

J

 ( 1 1 2 2j j≡ +JG b b  is a generic 

reciprocal lattice primitive vector) [10]. Thus, the operators 

gM  and L̂k  can be represented by matrices (in the 
simulations the plane wave expansion was truncated with 

max 3ij N≤ = ). The Chern topological number can be 
calculated by feeding the matrices that are used in the plane 
wave method into the integral (1). The band structure of a 
photonic crystal formed by ferrite cylinders with radius 

0.2 3r a=  is shown in Fig.2. As seen, there is a complete 
band-gap delimited by 2 21.13 / 1.53 /a a< < . The Chern 
number   is found through the numerical integration of Eq. 
(1) taking 2

gap 1.3257 / a=  the mid-point in the gap. A 
generic wave vector in the Brillouin zone is of the form 

1 1 2 2β β≡ +k b b  with 1/ 2iβ ≤  and generic   is of the 

form gap iξ= +  . Figure 3a depicts the integrand of Eq. 
(1) as a function of 1β  for 0ξ =  and 2 1/ 3β =  (solid line) 
and 2 1/ 3β = −  (dashed line). As seen, the integrand is 
peaked near 1 2 / 3β =  , which corresponds to the 
coordinates of the K  and K ′  points, respectively. This 
reveals that the topological charge is concentrated near the 
two Dirac points. The integral is numerically evaluated 
using the trapezoidal rule. The Brillouin zone is sampled 
with 1 2N N N= =  points. The integral along the imaginary 
axis is truncated at 2

max 5 / aξ ξ≤ =  and is sampled with 
2 50wN = ×  points. Figure 3b shows that for sufficiently 

large N the numerical result approaches 1≈ , consistent 
with the topological nature of the Chern number.  

 
Figure 1: (a) Hexagonal array of ferrite cylinders. The distance 
between nearest neighbors is a. (b) First Brillouin zone of the 2D 
lattice. 

Figure 2: (a) Photonic band structure of the ferrite photonic crystal. 
(b) Zoom in of panel (a) around the K  point. 

 
Figure 3: (a) Integrand of Eq. (1) [in arbitrary units] as a function 
of 1β . (b) The numerically calculated Chern number   as a function 
of N . 

The computation time is on the order of a few minutes in a 
standard personal computer. At the conference, we will 
present additional examples and in particular we will discuss 
how the effect of loss impacts the topological properties of the 
material. 
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