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Resumo

O rápido crescimento das redes sociais introduziu novas formas de comunicação digital,
mas também contribuiu para um aumento preocupante do discurso de ódio online (DOO).
Este fenómeno incentivou a investigação de métodos de processamento de linguagem nat-
ural para a deteção de discurso de ódio. Apesar dos avanços desta área, existe uma lacuna
notável na investigação focada na variante europeia do português. Assim, investigou-se a
eficácia de vários modelos de transfer learning, que estudos prévios demonstram ter neste
contexto um desempenho superior em relação a abordagens tradicionais de aprendizagem
profunda. Foram utilizados modelos do tipo BERT, como o BERTimbau e o mDeBERTa,
pré-treinados em texto português, juntamente com modelos generativos como o GPT, o
Gemini e o Mistral, para a deteção de DOO em conversações online no espaço português.
Esta investigação recorreu a dois conjuntos de dados, anotados manualmente, compos-
tos por comentários do YouTube e tweets do Twitter, ambos classificados como DOO
ou não-DOO. Os resultados indicaram que uma variante do BERTimbau, re-treinada es-
pecificamente para deteção de DOO em tweets em português europeu, foi o modelo com
melhor desempenho no conjunto de dados do YouTube. Este modelo obteve um F-score
de 87,1% para a classe positiva, o que representa uma melhoria de 1,8% em relação ao
BERTimbau original. No conjunto de dados do Twitter, o modelo GPT-3.5 foi o que
apresentou melhor desempenho, com um F-score de 50,2% para a classe positiva, embora
com resultados inferiores comparativamente ao conjunto de dados do YouTube. Adi-
cionalmente, foram avaliados os efeitos do uso de conjuntos de treino in-domain versus
mixed-domain, bem como o impacto da informação contextual nas prompts dos mode-
los generativos. Concluiu-se que os dados mixed-domain podem melhorar os resultados,
desde que seja assegurada a sua qualidade, e que a informação contextual tem um impacto
positivo tanto no DOO geral como no DOO indireto.

Palavras Chave: Discurso de ódio, transfer learning, modelos transformer, modelos
generativos, classificação de texto
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Abstract

The rapid rise of social media has brought about new ways of digital communication,
along with a worrying increase in online hate speech (HS). This escalation has prompted
researchers to develop various Natural Language Processing techniques for HS detection.
Despite the progress made, there is a notable lack of research focused on the European
Portuguese language, which is typical for many under-resourced languages. To fill this gap,
we investigate the effectiveness of several transfer learning models that prior studies have
indicated to outperform traditional Deep Learning approaches in this context. We utilize
BERT-like models, including BERTimbau and mDeBERTa, pre-trained on Portuguese
text, along with generative models such as GPT, Gemini, and Mistral, to identify HS in
Portuguese online discourse. Our research is based on two annotated datasets comprised
of YouTube comments and Twitter posts, both manually labelled as HS or non-HS. The
results indicate that a retrained variant of BERTimbau, fine-tuned for the HS detection
task using European Portuguese tweets, achieved the highest performance for the YouTube
dataset, with an F-score of 87.1% for the positive class, showing an 1.8% improvement
over the original BERTimbau. For the Twitter dataset, GPT-3.5 emerged as the top
model, achieving an F-score of 50.2% for the positive class, with models having a far
worse performance compared to when applied to the YouTube dataset. Additionally, we
evaluate the effects of utilizing in-domain versus mixed-domain training sets and the role
that contextual information in generative model prompts has on their overall performance,
concluding that mixed-domain data has the potential to improve results, provided its
quality is ensured, and that contextual information has a discernable impact in both
general and covert HS.

Keywords: Hate speech, transfer learning, transformer models, generative models,
text classification
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CHAPTER 1

Introduction

This dissertation focuses on the issue of detecting Hate Speech (HS) in online platforms,
with a particular emphasis on the Portuguese language and on the Portuguese communi-
ties, and was developed in the context of the kNOwHATE: kNOwing online HATE speech
project [1]. HS poses a significant threat to social harmony, and addressing it effectively
requires advanced automated methods. This chapter introduces the problem, outlines
the motivation behind the research, presents the goals and key research questions, and
discusses the contributions of this work.

1.1. Context and Motivation

In recent years, the surge in social media usage has dramatically transformed the way in-
dividuals express themselves and engage with others [2]. With the widespread availability
of smartphones and internet access, social media platforms have become accessible to a
global audience, offering users the ability to share thoughts, opinions, and ideas freely.
This democratization of expression has fostered empowerment and meaningful dialogue,
but it has also brought significant challenges, most notably the proliferation of HS [3],
which poses a severe threat to social cohesion, online communities, and society at large.

While there is no universally accepted definition of HS [4], the United Nations defines it
as any form of communication that uses derogatory or discriminatory language directed at
individuals or groups based on intrinsic identity factors [5]. Such communication can lead
to severe emotional and psychological distress among its targets, manifesting as stress,
anxiety, or even depression [6]. Moreover, prolonged exposure to HS erodes societal bonds,
fostering an atmosphere of mistrust and polarization. This fragmentation often leads
individuals to retreat into echo chambers, where biases and prejudices are amplified [7].

The scale of the problem has driven numerous organizations to implement policies
aimed at limiting the spread of HS on digital platforms. However, given the vast volumes
of data generated daily, manual moderation methods are impractical. Consequently, the
need for automated systems capable of detecting and classifying HS has become increas-
ingly urgent. In response, a wide range of Machine Learning (ML) techniques have been
developed to address this challenge. From traditional ML models to more recent advances
in Deep Learning (DL) and Transformer-based architectures, such as Bidirectional En-
coder Representations from Transformers (BERT) [8]. All these approaches have shown
promising results in the detection of HS [9].
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1.2. Background

As previously stated, defining HS is not an easy task, since this is a complex phenomenon
that is heavily reliant on the subtleties of language. It is nonetheless necessary to under-
stand how HS is defined and what constitutes it, in order to begin to detect and combat
it. Many organizations, companies and countries have defined HS in their policies and
below we can see some examples of these definitions. Since this work was developed in
the scope of the kNOwHATE project, we also provide the definition used in it:

• United Nations: “any kind of communication in speech, writing or behaviour, that
attacks or uses pejorative or discriminatory language with reference to a person
or a group on the basis of who they are, in other words, based on their religion,
ethnicity, nationality, race, colour, descent, gender or other identity factor” [5].

• Meta hate speech policy: “a direct attack against people – rather than concepts or
institutions – on the basis of what we call protected characteristics: race, ethnic-
ity, national origin, disability, religious affiliation, caste, sexual orientation, sex,
gender identity and serious disease. We define attacks as violent or dehumanising
speech, harmful stereotypes, statements of inferiority, expressions of contempt,
disgust or dismissal, cursing and calls for exclusion or segregation” [10].

• Twitter (now X) policy on hateful conduct: “attack other people on the basis of
race, ethnicity, national origin, caste, sexual orientation, gender, gender identity,
religious affiliation, age, disability, or serious disease” [11].

• YouTube hate speech policy: “content that promotes violence or hatred against
individuals or groups based on any of the following attributes, which indicate a
protected group status under YouTube’s policy: Age, Caste, Disability, Ethnicity,
Gender Identity and Expression, Nationality, Race, Immigration Status, Religion,
Sex/Gender, Sexual Orientation, Victims of a major violent event and their kin,
Veteran Status” [12].

• Definition in the eBook The Content and Context of Hate Speech: “is directed
against a specified or easily identifiable individual or, more commonly, a group
of individuals based on an arbitrary or normatively irrelevant feature... stigma-
tizes the target group by implicitly or explicitly ascribing to it qualities widely
regarded as undesirable... casts the target group as an undesirable presence and
a legitimate object of hostility” [13].

• kNOwHATE project: building on scholar definitions [i.e., 14] and guidelines pro-
vided by the Council of Europe in its latest recommendation (CM/Rec/2022/16),
the project defines online HS as “bias-motivated, derogatory language that spread,
incite, promote, or justify hatred, exclusion, and/or violence/aggression against
a person/group because of their group membership” [15].

When examining the various interpretations of HS used by multiple organizations
and research initiatives, we can identify some similarities. Firstly, all definitions mention
2



that HS targets a specific group or individual based on group membership, and not con-
cepts or institutions. Secondly, these groups are targeted with malicious intent, based on
real or attributed characteristics, and some organizations consider these characteristics
as protected. Depending on the characteristic that is being targeted, there are different
categories of HS. The main characteristics mentioned in the aforementioned definitions
include religion, ethnicity, nationality, race, colour, descent, gender, and sexual orienta-
tion.

As previously stated, this work was developed in the scope of the kNOwHATE project.
This project aims to combat online HS by implementing an innovative, interdisciplinary,
and participatory approach that integrates social and linguistic sciences with computa-
tional techniques. The primary goals of kNOwHATE include gaining a comprehensive
understanding of the psychosocial and linguistic characteristics of HS, analysing its con-
tent and propagation within user-generated content in Portugal, and creating automatic
detection models informed by scientific knowledge and the lived experiences of targeted
communities. This work specifically contributes to the latter, by developing and eval-
uating ML models for detecting HS, thereby providing essential insights and tools for
effectively addressing this pressing social issue.

1.3. Goals and Research Questions

The primary goal of this work is to advance the field of HS detection by exploring the
effectiveness of modern ML techniques, particularly focusing on novel Transformer-based
and generative models, in the context of the European Portuguese language. More specifi-
cally, this work aims to firstly provide a comprehensive overview of HS detection research,
including the evolution of methods and datasets used. By systematically reviewing the ex-
isting literature, we aim to map out the current state of research and inform later stages
of this work. Another key objective is to investigate the performance of Transformer-
based models designed for Portuguese HS detection and comparing their effectiveness to
traditional ML and DL approaches. This evaluation will assess whether these models,
when applied to real-world social media data from platforms such as YouTube and Twit-
ter, yield measurably better results in detecting HS. Additionally, this work explores the
potential of mixed-domain learning and context-enhanced generative models in improv-
ing the detection of both overt and covert forms of HS. A central aspect of this goal is
to evaluate how generative models like Generative Pre-trained Transformer (GPT) [16],
Gemini [17], and Mistral [18] perform in comparison to BERT-based models. By incorpo-
rating contextual data into generative models, this work seeks to address the challenge of
detecting Covert Hate Speech (CHS), which is often more nuanced and difficult to iden-
tify. Through these efforts, this research aspires to fill the identified gaps in the literature,
particularly in the context of HS detection in the European Portuguese language.

To achieve the objectives outlined above, the following research questions will be
explored in this work:
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• RQ1: What is the landscape of HS detection research since the advent of Transformer-
based models, and how has it evolved in terms of methods and datasets used?

• RQ2: How do Transformer-based models, specifically designed for HS detection
in Portuguese, and generative models perform in comparison to traditional ML
and DL approaches?

• RQ3: Can mixed-domain learning and the incorporation of context in generative
models improve the detection of HS, and its covert forms, in Portuguese social
media data?

1.4. Contributions

This work makes significant contributions to the field of HS detection, with a particular
focus on the Portuguese language, through a series of publications that address various
aspects of this problem.

The first major contribution is the following SLR of the topic: [19]. This review
mapped the landscape of HS detection research, specifically analysing the evolution of
the methods used for HS detection since the development of Transformer-based mod-
els. By systematically reviewing existing literature, this article filled a critical gap by
offering a comprehensive overview of the state of the art in HS detection, focusing on
how Transformer-based solutions compared to more traditional approaches. This review
also highlighted the scarcity of research targeting HS detection in European Portuguese,
thereby identifying a gap in the literature that laid the groundwork for the subsequent
experimental studies.

The second contribution explored the effectiveness of generative models and Transformer-
based models designed for Portuguese HS detection: [20]. In particular, a comparison
between the performance of HS domain-specific models with more general models. We
also experimented with mixed-domain learning to assess whether training on diverse data
sources, such as YouTube and Twitter, improves model generalization. In addition, ex-
periments were also made with generative models. The results of this study provided new
insights into the relative effectiveness of different model architectures for HS detection
in Portuguese, filling the gap in understanding how Transformer and generative models
perform in comparison to traditional ML and DL approaches when applied to Portuguese
social media data. Additionally, this work also contributes with two new datasets devel-
oped specifically for the HS detection task, that are one of a kind in terms of number of
annotated messages and its annotation schema.

The third contribution focused on the detection of CHS, which is inherently more
difficult to identify than Overt Hate Speech (OHS): [21]. This work utilized generative
models (GPT-3.5-turbo and GPT-4-turbo), and explored how incorporating context could
improve the detection of both overt and covert forms of HS. This study filled a key gap
by addressing the challenge of detecting CHS with generative models, an area previously
4



underexplored in the HS detection literature. It provided a novel utilization of context-
enhanced generative models for the task, contributing to the broader understanding of
how context can influence model performance in detecting nuanced forms of HS.

Each of these publications not only contributed individually to advancing the field,
but this dissertation, being the combination of the knowledge present in each work, ad-
dresses significant gaps in HS detection research, particularly in the European Portuguese
language. By tackling issues related to the evolution of HS detection techniques, the
performance of Transformer-based and generative models, and the detection of CHS, this
work provides a comprehensive and multi-faceted contribution to the growing body of
knowledge on automated HS detection.

Lastly, a significant contribution of this work is the development of a dedicated Hug-
ging Face space for HS detection, where users can interact with the models developed in
this research: https://huggingface.co/knowhate. This platform allows the public to
perform real-time HS classification on any given text, providing an accessible and practical
tool for HS detection.

1.5. Document Structure

This dissertation is structured in four chapters: In Chapter 1 (Introduction), the context
and motivation behind the research are presented, followed by a detailed discussion of
the background, goals, research questions, and contributions. Chapter 2 (Related Work)
provides a comprehensive Systematic Literature Review (SLR), encompassing works from
2018 until 2024 and analysing the methods and data used for HS detection. In Chapter 3
(Automatic Classification of Hate Speech), the datasets used in this work are introduced
and described in detail, in addition to the models and experiments conducted for HS
detection, including the setup, the different experiments conducted, and the results ob-
tained. Finally, Chapter 4 summarizes the key findings of this work and outlines potential
directions for future research.

5
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CHAPTER 2

Related Work

As mentioned previously, there is a growing need for automated systems capable of detect-
ing and classifying HS, and as a consequence various techniques, ranging from approaches
like traditional ML and DL models, have been applied for this task. With the devel-
opment of Transformer-based models [22], we have seen a growing expansion in the HS
detection landscape. The recent advances in Transformer-based models have introduced
new possibilities, but a comprehensive synthesis of these efforts is lacking, particularly in
terms of comparing them to other ML methods.

This SLR addresses this gap by exploring the current research landscape of HS de-
tection on social media, with a specific focus on Transformer-based models, by answering
the following questions:

• Q1: What is the landscape of HS detection literature since the development of
Transformer-based models?

• Q2: How do Transformer-based models compare to other ML solutions in the
context of HS detection?

• Q3: What are the characteristics of the data used for HS detection?

2.1. Prisma Methodology

This section presents an overview of the methodologies employed in this SLR. In de-
veloping our methodology, we drew inspiration from the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [23]. PRISMA provides a
widely recognized framework for conducting systematic reviews, ensuring transparency
and methodological rigour in the review process. The structured approach outlined in
PRISMA facilitated a comprehensive overview of the methodologies employed in our SLR,
covering key aspects from search criteria delineation to data extraction. Our goal was to
adhere to the principles of PRISMA to enhance the reliability and reproducibility of our
review and to ensure a robust and exhaustive coverage of the literature under review.

Our primary goal is to provide an analysis focusing on key trends in performance
across different methods employed in the field of HS detection within the context of social
media. Specifically, our review seeks to address the following key objectives: First, we
aim to examine the ML and Natural Language Processing (NLP) methods that have been
utilized for the identification and classification of HS in social media platforms and how
they have changed with the introduction of Transformer models, to better understand
what are the current trends and future perspectives (Q1); Then, we compare the several
methodologies employed with one another and with Transformer models, to identify which
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ones achieve better results (Q2). Finally, we analyse the characteristics of the resources
being used in the scope of this task, like languages and data sources, to identify which
areas can be further developed (Q3).

In the end, we also delve into the current challenges and limitations that researchers
face in this domain, with a focus on proposed strategies and potential solutions. By
addressing these goals, we aim to contribute valuable insights into the state-of-the-art in
HS detection, thus facilitating a better understanding of the field and its future directions.

To accomplish this, we first defined criteria to search and select studies to be examined
in our SLR, relevant to our objectives. We selected two databases, Scopus and Web of
Science, since they both have an extensive coverage of literature, across diverse academic
fields. This is beneficial, since HS detection can be seen as a multidisciplinary problem
ranging from linguistics and social sciences to computer science, so it is necessary to search
in databases that index a wide range of journals, in a variety of disciplines.

The search query was designed to maximise the retrieval of studies pertinent to our
subject, and for that the following keywords were established: ‘hate speech’, ‘abusive’,
‘offensive’, ‘classification’ and ‘detection’. ‘Hate speech’ is the most common keyword
used in this subject by the scientific community, since it is also a legal term in many
countries. The terms ‘offensive’ and ‘abusive’ were also added since they convey a similar
idea, in the sense that HS can be seen has an extreme of abusive text, and all of them
share an offensive aspect [24]. These terms are also present in the literature as key terms
to use when finding relevant studies [25]–[27]. These keywords were used in addition to
Boolean operators to form our search query (“hate speech” OR “abusive” OR “offensive”)
AND (“classification” OR “detection”). Our query was applied to the following parts of
the studies: title, abstract and keywords.

To define which articles should be included or omitted from our SLR some inclusion
and exclusion criteria were set to keep only the studies that fulfilled our goals for this
work.

The inclusion criteria where the following: firstly, to capture the most recent develop-
ments in the field, and since we want to focus on Transformer-based models, we limited
our search to studies published from 2017 to the present day, since it was in 2017 that
the Transformers’ architecture was introduced [22], and with that came a growing interest
in this area. Furthermore, to facilitate the comprehension and analysis of the research,
we restricted our selection to studies written in the English language. To assure high-
quality and peer-reviewed research, only journal articles were considered for inclusion,
while conference papers, data papers, and similar publications were excluded. Addition-
ally, we aimed to select studies that were published in journals with a high impact factor,
specifically those ranked in Quartiles 1 and 2 based on Scimago1 journal quality rank-
ings. Given the emphasis of this review on HS classification, we prioritized articles whose

1www.scimagojr.com
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primary focus centred on this specific area of research and that proposed or discussed
solutions related to this classification task.

The exclusion criteria were the following: articles primarily focused on other forms of
media, such as images, sound, memes, and non-textual content, articles that lacked a clear
approach or technical content related to HS classification, and finally, studies that did not
centre their main objectives on HS detection, but on another task, like the development
of HS resources.

Although we decided to include only journal articles, we recognized that by exclud-
ing high impact peer-reviewed conferences we were limiting the inclusion of cutting-edge
research, so in order to mitigate this side effect we decided to include the most relevant pa-
pers of two tasks held in the context of the SemEval international workshops of 2019 and
2020, published by the Association of Computational Linguistics (ACL). In these years’
editions, the OffensEval task was held, that aimed at detecting offensive language. By
including the most relevant studies of a competition with a high degree of participation,
we believe we get a glimpse of that time’s best techniques for the task. Additionally, to
ensure comprehensive coverage of recent innovations, we extended our search to include
ACL conference papers published between 2020 and 2024 that met our inclusion criteria,
specifically selecting long papers from the main conference proceedings.

Figure 2.1 shows the number of records identified in the database search, and the fil-
tering process that is applied afterwards, using a PRISMA flow diagram [28]. Our initial
query resulted in 2876 studies, plus the 15 ACL studies selected. After the removal of
duplicate entries, and the application of exclusion criteria, we were left with 105 arti-
cles for full-text analysis. After assessing the full text of the 105 articles selected from
our inclusion/exclusion criteria, an additional three articles were discarded because the
dataset used for HS detection was not manually annotated, but instead algorithms were
used to automatically annotate the data used for building the classifiers [29]–[31]. Given
the nuanced and context-dependent nature of HS, the reliance on automated processes
for annotation introduces potential biases and inaccuracies that may compromise the ro-
bustness and reliability of the classifiers developed in these studies, leading to the final
102 articles considered for our SLR.

For the full-text analysis of our studies, data extraction is a critical component, since it
helps to collect information in a methodological and comprehensive way, so we employed
a rigorous and systematic approach that involved the identification and extraction of key
elements from each study, that answered our initial objectives. The data collected was
mainly about the datasets utilized in each study, the methods they used for the classifi-
cation task (algorithms, pre-processing, feature representation, etc.), the metrics used to
evaluate the performance (with the actual values obtained) and the principal findings and
limitations. For this, an extraction form was used in order to ensure consistency.

The findings are divided into four distinctive categories: An overall analysis of the re-
sults of our search (Section 2.2), an analysis of the evolution of HS detection (Section 2.3),
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Figure 2.1. PRISMA flow diagram

Methods and Algorithms, where we will compare all different approaches employed for
this task (Section 2.4), and Resources where both the languages and the types of data
used for the detection will also be analysed (Section 2.5).

This SLR focuses on analyzing studies related to HS detection, especially those that
define HS within comprehensive frameworks. It also includes studies addressing offensive
and abusive speech, recognizing that these types of speech are frequently discussed along-
side HS in the literature. Although offensive and abusive speech do not involve targeting
individuals based on group membership (as is the case with HS) [15], the detection meth-
ods used for these types of speech are quite similar. So, in order to maintain clarity, the
remainder of the SLR refers to these collective studies (HS, offensive, and abusive speech
detection) as HS detection works. Nevertheless, Section 2.5 presents specific statistics
about the number of studies addressing each type of speech, as this breakdown may be of
interest to certain readers. This approach provides a clear and concise way to streamline
10



the discussion while still offering the detailed analysis and statistical information for those
who may want to differentiate between the types of speech.

2.2. Overall Analysis

When analysing the initial results of the 2155 articles (after the removal of duplicates)
resulting from our search query, we can see in Figure 2.2 a notable upsurge in the volume
of studies related to HS detection, confirming the increasing significance of this topic
within the research community. Over the years, we observed a considerable growth in
publications, with the data indicating a substantial increase in the number of studies
published annually. In 2017, 65 relevant studies were identified, which increased almost
10 times to the 588 results found in 2022. Since the search was conducted in September,
and the current year (2023) has not come to an end at the time of writing, the lower
number of publications found (369) is not surprising. We have also added the number of
documents included in our SLR from each year. This graph confirms the growth of this
research topic and the need for an updated review.
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Figure 2.2. Number of documents by year.

Our search across the Scopus and Web of Science databases yielded a substantial
number of results, with 1663 studies identified in Scopus and 1213 in Web of Science. The
presence of these studies across both platforms emphasizes the widespread recognition and
coverage of the topic within the academic community, while also reflecting the diversity
of academic sources that contribute to this discourse.

Categorically, the types of studies were delineated into two main groups: conference
papers and journal articles, has shown in Figure 2.3. The data demonstrated that con-
ference papers constituted most of the studies, with 1645 identified. In contrast, 1025
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studies were classified as journal articles. This can be explained in part by the number
of competitions dedicated to the task of HS classification [32]–[34], from which many
conference articles result, since each participant has their contribution in the form of a
conference paper.
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Figure 2.3. Number of documents by type.

Our initial search results show the growing prominence of HS classification as a research
field, the substantial volume of studies dedicated to the topic, and the diverse types of
publications contributing to this evolving discourse. This data forms a valuable foundation
for the subsequent synthesis and filtering of the findings in our initial search. Moving
forward, the results presented will be of the final 102 studies considered for this SLR.

2.3. Q1: Landscape of HS detection literature

Over the years, various approaches have been employed for HS detection, with notable
evolution in the methods used. This section provides an overview of the five major
approaches – Traditional ML, DL, Transformers, Generative Models, and Multi-Task
Learning – and examines their progression and impact on HS detection throughout the
years.

Figure 2.4 illustrates the evolving trends in the application of different approaches to
HS detection, highlighting a clear shift in techniques over time. By 2019, DL techniques
12
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Figure 2.4. HS detection approaches by year (MTL: Multi-Task Learning).

became more prevalent, reflecting the growing interest in neural network-based methods
for HS detection. This increase aligns with the first OffensEval task, where most par-
ticipants employed DL models, marking them as the state-of-the-art approach at that
time.

In 2020 and 2021, the landscape of HS detection continued to evolve. Transformer-
based models began to gain significant traction, with seven studies in 2020 and five in 2021.
This surge in popularity aligns with the introduction of the Transformer architecture by
Vaswani et al. [22], which took about three years to be widely adopted for HS detection.
The second OffensEval task further solidified this trend, as most competitors shifted to
BERT-based models, confirming that Transformers had become the dominant approach
during this period. Although traditional ML methods continued to be used, Multi-Task
Learning emerged for the first time, with one study appearing in both 2020 and 2021.

In 2022 and 2023, we observed a more diverse set of approaches in HS detection. DL
remained prominent, while Transformers continued to grow in popularity, becoming the
go-to method with 10 studies in 2022 and 14 in 2023. Traditional ML techniques remained
relevant, but with less usage compared to both methods mentioned before.

Generative and Multi-Task Learning models, newer approaches in the field, began
to gain recognition in 2023, highlighting their potential for HS detection. In 2024, one
study featuring Transformers was published, and another using generative models, both
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coinciding with ACL papers extracted after the search, explaining their presence as the
only studies from that year.

Fig 2.5 shows the total number of studies that employed each approach. DL and
Transformers are the most frequently used methods, with 40 and 37 studies, respectively,
accounting for over two-thirds of the research reviewed. Traditional ML follows with
19 studies, while Multi-Task Learning and generative models are represented by four and
three studies, respectively. These findings underscore the significant impact of Transform-
ers on the HS detection landscape, as they have become the preferred choice for many
researchers in recent years.
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Figure 2.5. Number of HS studies, grouped by approach.

The results presented may be limited by the relatively small number of articles included
in our analysis, potentially misrepresenting broader trends. To address this, we supple-
mented our review with conference papers from the top participants in OffensEval-2019
and OffensEval-2020, as well as other selected ACL papers, providing a more compre-
hensive representation of the state-of-the-art methods during that period. As shown in
Table 2.1, the results from these conferences align with our findings, demonstrating a
clear transition from ML and DL approaches in 2019 to the adoption of Transformer-
based models in 2020. Furthermore, the authors of the OffensEval-2019 reported that
over half of the participants explored DL models [32]. In contrast, OffensEval-2020 saw
most teams utilizing pre-trained Transformer models, with all the top 10 teams employing
either BERT, RoBERTa, or XLM-RoBERTa [33], which further confirms our findings.

In summary, the evolution of HS detection methods shows a clear shift from traditional,
simpler ML techniques to more advanced DL and Transformer-based models. The field
has also seen a growing diversity of approaches, with generative models and Multi-Task
14



Table 2.1. SemEval top papers.

Paper Model Method Rank
OffensEval-2019

[35] SVM model with RBF kernel ML 1st
[36] stacked BiGRUs DL 2nd
NAa Multiple Choice CNN DL 3rd
[37] LSTM DL 4th
[38] linear-kernel SVM ML 1st (Spanish task)

OffensEval-2020
[39] Ensemble of ALBERT models Transformer 1st
[39] RoBERTa-large Transformer 2nd
[40] XLM-R-base and XLMR-large Transformer 3rd
[41] XLM-R Transformer 4th
[42] BERT Transformer 5th
aParticipants did not publish paper

Learning gaining prominence in recent years. This progression highlights the dynamic
nature of the research landscape and the continuous efforts to enhance HS detection in
digital environments.

2.4. Q2: ML solutions for HS detection

As previously discussed, a wide range of approaches have been employed for HS detection,
from traditional ML methods to more advanced DL and Transformer-based models. This
section compares these approaches to determine which methods yield the most promis-
ing results and whether Transformers have consistently outperformed other models. To
facilitate this comparison, we categorize the studies into five distinct approaches. Before
examining each in detail, we provide a brief summary of each category to clarify their key
differences.

ML focuses on the development of algorithms and statistical models that enable com-
puters to perform tasks without explicit programming. The core idea is to allow machines
to learn patterns and make decisions based on data. DL is a subset of ML that employs
neural networks with many layers, that are more complex than traditional ML models.
Multi-Task Learning is an approach where a single model is trained to perform multiple
related tasks simultaneously. The goal is to enable the model to learn shared represen-
tations and features across tasks, potentially leading to improved performance compared
to training separate models for each task. Generative Models are a class of ML models
that aim to generate new data samples that resemble a given training dataset, increas-
ing the amount of data available for training. Finally, Transformer-based approaches use
transfer learning, by taking advantage of models pre-trained on large datasets for unsu-
pervised tasks that capture general language patterns, and fine-tuning them with smaller
labelled datasets on specific tasks, leveraging this pre-existing knowledge. This transfer
of knowledge allows the model to generalize well to diverse tasks, enhancing performance
and efficiency.
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In the subsequent sections, we delve into the findings of studies adopting each of these
approaches, assessing their effectiveness and making comparisons with one another.

2.4.1. Traditional Machine Learning

Starting with traditional ML techniques, we identified 19 studies that resorted to this type
of method, and made comparisons with various algorithms. Support Vector Machine
(SVM) and Logistic Regression (LR) were the algorithms that achieved better results,
outperforming other ML algorithms in three different studies respectively. Pitropakis et
al. [43], Shannaq et al. [44], and Mohapatra et al. [45] obtained better results with a
combination of SVM with n-grams and pre-trained embeddings, when compared with
other traditional ML models. Indurthi et al. [35] and Pérez and Luque [38] managed
to obtain good results with an SVM model with a RBF and linear kernel respectively,
topping the standings in the OffensEval-2019 task. Arcila-Calderón et al. [46], Vanetik and
Mimoun [47], and Saeed et al. [48] employed an LR model with pre-trained embeddings
and managed to outperform other traditional ML models. Other models that obtained
good results were Random Forest (RF) with count vectorizer embeddings, that managed
to outperform Bagging and Adaboost models [49], and the j48graft classifier, a type of
Decision Tree (DT) model, combined with text features [3].

Recently, pre-trained Transformer embeddings have been used in combination with
traditional ML models to improve performance. By using these embeddings as input
features for traditional ML models, they benefit from their ability to capture intricate re-
lationships and context in the text data, which can be challenging for traditional feature
engineering methods. [47], [50] combined BERT embeddings with a Multi-Layer Percep-
tron (MLP) and LR models, respectively, and managed to outperform ML and ensemble
models. In addition to this, [47], [51] showed that combining traditional ML models with
BERT embeddings can even outperform DL and Transformers on its own.

Ensemble models have gained prominence in the realm of HS detection, as a strategic
approach to overcome limitations associated with individual models. These models involve
combining predictions from multiple models to enhance overall performance, making them
a compelling alternative for addressing challenges posed by the use of single models in
HS detection. Seven studies used an ensemble of ML models, and although these models
did not outperform Transformers and DL models, they managed to outperform single
ML models, showing that they can enhance the performance of these simpler models,
by combining them. Four of these models used majority voting to get the predictions
[52]–[55], two studies used a LR meta classifier [56], [57], and one study used a stacking
approach [26].

Traditional ML models can be used effectively for the task of HS detection, and re-
cent improvements show that this type of simpler model, when combined with a richer
textual representation, or in an ensemble with other simple models, can even surpass
16



more complex models like Convolutional Neural Networks (CNN), Long Short-Term Mem-
ory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU) and BERT based models [47],
[48], [51].

2.4.2. Deep Learning

Jumping to DL techniques, these have been extensively used for the task of HS detection,
with 40 studies employing this approach. These studies have explored a variety of DL
models, including CNNs, LSTMs, Gated Recurrent Unit (GRU)s, and hybrid or ensemble
models that combine multiple DL architectures as we can see in Figure 2.6.
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Figure 2.6. Different DL models for HS detection.

CNNs have been used to effectively capture the local patterns and features of text,
making them well-suited for identifying HS. They have been applied in several HS detec-
tion studies [58]–[65] with promising results, even outperforming Transformers [64], and
getting 3rd place in OffenseEval-2019.

LSTMs are another class of Recurrent Neural Networks (RNN)s that are capable of
capturing long-range dependencies in text. This makes them well-suited for handling the
sequential nature of language, which can be important for identifying HS. They have also
been used in several HS detection studies [37], [66]–[71].

Both CNNs and LSTMs are two of the most widely used DL architectures for HS
detection. CNNs can capture local patterns and features in text, while LSTMs are adept
at handling long-range dependencies. The results of using CNNs and LSTMs for HS
detection are somewhat mixed, with some studies have shown that CNNs outperform
LSTMs [60], [61], while others have found the opposite [67], [68], [71].
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Taking advantage of these mixed results, hybrid models that combine these two
types of models have consistently shown strong performance. These models leverage
the strengths of each architecture, leading to improved results and generalizability. For
example, CNN-Bidirectional Long Short-Term Memory Network (BiLSTM) models have
been shown to outperform even Transformers in some studies [72], [73]. This suggests
that hybrid models may be able to more effectively capture the complexities and nuances
of HS. In addition, CNN-BiGRU models have also shown promising results, by combining
the local feature extraction ability of CNNs with the long-range dependency modelling
ability of BiGRU’s they managed to outperform all other single DL models [74], [75].
Nine other studies used an ensemble approach of DL models managing to outperform
single DL and ML models, and in some cases even the state-of-the-art Transformers. A
majority voting ensemble of several LSTM models with different features [76], a meta clas-
sifier of several combinations of models with different embeddings [77], a combination of
a BERT, BiLSTM and BiGRU models [78] and finally a deep neural network with several
text features [79] all managed to outperform ML and DL models with good results. In
addition, five other studies managed to get better results than all other approaches (ML,
DL and Transformer models). These studies employed an ensemble of CNN models [80],
BERT models [81], a bagging of BiGRU, BiLSTM and CNN [82], a stacking of BiLSTM,
LSTM, CNN and CNN-LSTM models [83] and a combination of a BERT, MuRIL and
Deep Neural Network models [84].

Ensembles emerge as a compelling solution to HS detection, especially when individual
models like CNNs or LSTM’s do not perform well. By leveraging the strengths of diverse
architectures and addressing limitations in generalization and imbalanced datasets, en-
sembles offer a robust and effective approach for enhancing the accuracy and reliability
of HS detection systems even managing in some cases to outperform the state-of-the-art
models.

Similarly to LSTM’s, GRU’s are also a type of RNN’s that are capable of capturing
short-term dependencies in text. They were used in three HS detection studies, even doe
the comparisons were made with traditional ML models, that they outperformed [85]–[87].
Another study used a BiGRU model, managing to place top two in the OffensEval-2019
task [36]. Other DL models used were Bidirectional RNNs [88] and a Softmax classifier
combined with text features [89].

These studies demonstrate the versatility and effectiveness of DL techniques for HS
detection. DL models can capture complex patterns in text, making them well-suited for
identifying subtle and nuanced forms of HS. Additionally, hybrid models can combine the
strengths of different DL architectures to further improve performance.

2.4.3. Transformer-based Models

The Transformers were by far the ones that achieved the most promising results, surpass-
ing the state-of-the-art models in almost all studies that employed them, outperforming
all other approaches in most cases. It was also the most used approach, with 37 studies.
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The success of the basic BERT model on a plethora of different NLP tasks lead to the
widespread use of these models and many variants. This is mirrored on the large number
of studies that employed this models for HS detection.

A fine-tuned version of the basic BERT model for the English language was used in nine
studies [42], [90]–[97], outperforming all DL and ML models compared in the respective
studies. Other variants of the BERT model that were retrained in other languages were
also implemented, like BETO for Spanish [98]–[101], RuBERT for Russian [69], [102],
RoBERTuito also for Spanish [103], UmBERTo for Italian [104], MARBERT for Arabic
[25], HindiBERT for Hindi [105], Arabic BERT-mini also for Arabic [106], MuRIL for
seventeen Indian languages [107] and NAIJAXLM-T for English and Nigerian [108]. It is
also relevant to mention that this list goes beyond the set of articles found by our SLR and
includes models such as BERTimbau widely used for Portuguese [109], [110] and Bertie
for Dutch [111]. Besides these BERT models retrained for other languages, there are also
multilingual models being developed like mBERT and XLM-RoBERTa that were trained
with multilingual data and can be used in many languages. The mBERT model was used
in four studies [107], [112]–[114] and the XLM-RoBERTa was used in five studies [40],
[41], [115]–[117]. In addition to the models retrained on other languages, there have also
been models with different architectures or hyperparameters than BERT, also used for
HS detection like RoBERTa [39], [113], [118]–[121], ELECTRA [122] and AlBERT [39].

Transformers emerged as the most promising strategy for HS detection, consistently
outperforming other methods across all studies. The versatility and adaptability of TM,
coupled with the development of specialized variants and hybrid approaches, have signif-
icantly advanced the field of HS detection, paving the way for more comprehensive and
effective measures to combat online HS.

2.4.4. Generative Models

As we have seen, there has been a recent surge in the use of generative models, with two
studies employing this method in the year 2023 and one in 2024. Su et al. [123] utilized
a Semi-Supervised Learning Generative Adversarial Network (GAN) architecture. The
model incorporates RoBERTa sentence features as the backbone, combining them with
a generator that introduces random noise and a discriminator for adversarial training.
In this study, the authors also used vast amounts of unlabelled data from another re-
lated domain, and demonstrated that the generative model outperformed the baseline
RoBERTa model without the additional data generation. In another study, Cohen et
al. [124] combined multiple generative models for HS detection. This model utilizes De-
BERTa Large as a foundational element and incorporates back-translation augmentation
to enhance the diversity of the training dataset. Furthermore, the integration of GPT
and Test-Time Augmentation demonstrated superior performance compared to baseline
models, highlighting the effectiveness of generative models in achieving state-of-the-art
results in HS detection. Finally, Zhang et al. [125] also used GPT-3.5 for this task.
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The combination of pre-trained language representations, in this case RoBERTa and
DeBERTa, and generative capabilities allows these models to capture intricate patterns
and nuances present in HS texts. Generative techniques facilitate the augmentation of the
training dataset, addressing issues related to limited labelled data in HS detection scenar-
ios, like is the case with low-resource languages. This, in turn, enhances the generalization
capabilities of the models, ensuring better performance on unseen HS text. In addition,
adversarial training allows models to discern subtle differences between authentic and de-
ceptive HS content, contributing to heightened discriminative power in HS detection. The
utilization of generative models in HS detection has the potential to address one of the
most common challenges in HS detection scenarios, being the lack of training data, that
needs to be manually collected and annotated. With the introduction of these models, HS
detection in low-resource languages can be done, without the need of extensive collection
and annotation of data.

2.4.5. Multi-Task Learning

Previous studies have established the relevance of sentiment features in aiding HS detec-
tion tasks [3], [79], [89]. Recognizing the potential benefits of incorporating sentiment-
related features, researchers have extended their exploration into Multi-Task Learning.
The prevalent idea is that HS is a negative type of discourse, that has associated emo-
tions like anger, rejection and criticism, so in the Multi-Task Learning framework, the
model is designed to simultaneously learn and optimize multiple tasks during training,
through shared representations. Specifically, in the context of HS detection, the model
is tasked with emotion and sentiment classification in addition to HS detection. Shared
representations are employed across these interconnected tasks, allowing the model to
leverage common knowledge and patterns present in the data, aiming to enhance the
overall performance of HS detection models.

Studies referenced earlier have highlighted the informative nature of sentiment fea-
tures in HS detection. This recognition has spurred further investigation into Multi-Task
Learning, where sentiment and emotion classification tasks are jointly addressed to bol-
ster HS detection capabilities. Recently, four studies have employed Multi-Task Learning
for HS detection task. Two studies leveraged Multi-Task Learning to concurrently ad-
dress emotion and sentiment classification alongside HS detection [126], [127]. By sharing
information across these related tasks, the model aimed to capture linguistic nuances as-
sociated with HS. This integrated approach demonstrated notable improvements over ML
and DL models. Following this work, Min et al. [128] also developed a Multi-Task Learn-
ing model that tackled emotion classification in conjunction with HS detection, obtaining
a better performance when compared with the baseline Single-Task Learning model. The
last study that employed Multi-Task Learning diverged from the previous two, choosing
to develop a model that addressed simultaneously post level and token level aggression
[129].
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Multi-Task Learning, specifically integrating emotion and sentiment classification with
HS detection, emerges as a promising avenue for HS detection. The studies discussed un-
derscore the effectiveness of Multi-Task Learning, leading to improved model performance.
However, there is a downside to this approach, since the quality of corpora is important
in a Multi-Task Learning environment, and having enough data with quality is not always
possible, especially in low-resourced languages.

2.5. Q3: Data characteristics for HS detection

In this section, we look into the different languages where studies have been developed to
detect HS, and also what are the different sources where researches look to gather data
for the development of their models. This information will allow us to understand which
languages researches have focused their work on, and which languages are less explored
and may be more vulnerable to the negative effects HS. By looking at the data used,
we will also be able to see if data has been collected from a vast plethora of places, or if
studies have all converged to the same sources, thus making the models less likely to be
able to perform well outside their scope.

2.5.1. Information Sources

The majority of studies use data collected from different social media platforms, as shown
in Figure 2.7. They are a rich source of data for HS detection, given the extensive volume
of user-generated content. Twitter2, in particular, stands out as the dominant source in
HS detection research, with a staggering 73 studies using Twitter data. The brevity and
public nature of tweets make them highly accessible for research purposes. The Twitter
platform has been a focus due to the ease of collecting and processing large datasets.
While Twitter leads the way, other social media platforms also contribute to the HS
detection landscape. Facebook3, YouTube4, Instagram5 and Reddit6 are also present with
10, 11, three and three studies respectively. These platforms, although less prevalent,
offer insights into the multifaceted nature of HS across different online environments.

HS detection research also explores data outside social media, like news sites and
alternative platforms that cater to specific communities. Sites like Fox News and others
provide eight instances and niche platforms like GAB7 and Stormfront8, known for its
association with far-right ideologies, contributes eight instances. The inclusion of such
sources allows for a more comprehensive examination of HS across diverse online spaces.

It is important to note that not all data sources are created equal. Twitter, with its
character limit, differs significantly from platforms like Facebook or YouTube, where users
have more space to express their views. Furthermore, news websites and comments may
2www.twitter.com
3www.facebook.com
4www.youtube.com
5www.instagram.com
6www.reddit.com
7www.gab.com
8www.stormfront.org
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Figure 2.7. Data sources for HS detection.

not share the same characteristics as tweets, as they often involve more formal language
and context. Researchers must consider these nuances when developing and evaluating
HS detection models to ensure their applicability across various platforms.

HS detection research draws data from a wide range of sources, with Twitter being the
primary contributor. The prevalence of Twitter data highlights its accessibility and suit-
ability for large-scale studies. However, it is essential to recognize the distinctions among
different sources in terms of content, context, and user behaviour. Future research in this
field should continue to explore a diverse array of sources to gain a more comprehensive
understanding of HS in the digital landscape.

2.5.2. Languages

HS is a pervasive problem that transcends geographic and linguistic boundaries. It is a
global issue, and researchers have recognized the need to address it in various languages.
However, the research landscape in the domain of HS detection has exhibited a notable fo-
cus on the English language, as evidenced by Figure 2.8. A significant portion of research
efforts, resources, and datasets have been concentrated on English, with 60 studies focus-
ing on this language. Nonetheless, other languages were explored, like Spanish, Arabic
and Hindi, with 16, 11 and 8 studies respectively.

Recognizing the need to combat HS in various linguistic environments, researchers are
increasingly turning their attention to low-resource languages. These languages often lack
the extensive datasets and resources that are readily available for English, but has we can
see, some work is beginning to be made in order to include these languages in this field.

One promising avenue for addressing HS in low-resource languages is the utilization
of Transformer-based models, since they can leverage knowledge from languages with
22
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more extensive resources, like English, and fine-tune it on the limited available data
for a specific language, bridging the resource gap to some extent. Transformer-based
models, particularly those pre-trained on multilingual data, have shown promise in cross-
lingual HS detection. These models can generalize across multiple languages, learning
universal language features that enable them to detect HS irrespective of the language
used. They can be effective on zero-shot cross-lingual HS detection, because, by using a
high-resource language for training, like English, models can classify low-resource target
languages with promising results [97], [114]. Additionally, by fine-tuning these models on
a small dataset in the low-resource target language, researchers can effectively extend HS
detection capabilities to languages with limited resources [115], [116].

2.5.3. Portuguese Language

For Portuguese, the literature on HS detection is relatively limited, with only a few studies
focusing specifically on this language. In general, the existing work has primarily focused
on Brazilian Portuguese, with few addressing European Portuguese.

For European Portuguese, initial work focused primarily on constructing a hierarchi-
cally labelled dataset for HS detection, but the authors also describe the development
of an initial baseline classification for the dataset, using pre-trained word embeddings
and an LSTM, they achieved a 71% micro F-score [130]. More recent studies, focused
solely on the task of detecting HS, are based on BERT. [109] combine a GAN and a
BERT-based model to obtain a 66.4% positive class F-score. [110] use a BERT-CNN
architecture for the classification, and managed to obtain 72.1% F-score on the positive
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class, by also considering the annotations that had a higher inter-annotator agreement
score between them. Both of these studies used newly developed annotated datasets for
European Portuguese with HS instances from YouTube and Twitter [131], [132]. Other
recent works have addressed the European Portuguese variant by developing tools that
can be used for the HS detection task, like foundation encoder models to expand the still
very scarce ecosystem of large language models specifically developed for this language,
such as the Albertina family of models [133].

Although there are several studies on HS for Brazilian Portuguese [134]–[136], this fact
does not discard the need for further development in European Portuguese, since research
has identified several differences between European and Brazilian Portuguese. First, vari-
ations exist in both contemporary language and technical vocabulary, as demonstrated by
the differences in mood distribution. Brazilian Portuguese tends to prioritize the truth-
value of a proposition, whereas European Portuguese are characterized by a more neutral
tone [137]. Additionally, there are distinctions in the lexical, lexical-syntactic, and mor-
phosyntactic usages of temporal adverbials [138]. More importantly, besides these tech-
nical differences, because HS is intrinsically dependent on both the target communities
and social practice (i.e., the social and historical context), existing resources and models
cannot be directly transferable or easily adapted to other linguistic and pragmatic con-
texts [139]–[141]. Therefore, in this case, models developed for Brazilian Portuguese are
dependent on the context of the population that uses this variation of the language and
are not suited for a different social and historical context like the European Portuguese
one.

2.5.4. Types of Speech

As noted earlier, not all the included studies focus solely on HS, as our search criteria also
encompassed offensive and abusive speech. As illustrated in Figure 2.9, the majority (83%)
of studies included address either HS alone or a combination of HS with other types of
speech. The remaining 17% were split between 11% of studies focused on offensive speech
and 6% on abusive speech.

2.6. Summary

As we have seen, Transformers have had an impact on almost all areas of HS detection.
Firstly, these models have been gaining traction in HS detection tasks, and since 2022 have
been the most used models, which clearly indicates their popularity and success among
researchers. These models, characterized by their ability to capture intricate linguistic
patterns and contextual nuances, have consistently demonstrated superior performance
compared to traditional ML techniques and other DL architectures. Studies highlighted
in our review show that Transformers usually outperform other highly used models such
as CNN’s, LSTM’s, SVM and Ensemble models. Moreover, besides Transformers having
a better standalone performance, they have also been incorporated into other models to
further enhance detection accuracy. Generative models have also recently started being
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Figure 2.9. Percentage of works dealing with the different types of speech
included in our SLR.

used in HS detection tasks with promising results, taking advantage of the recent interest
and resources that these models have gained. Additionally, the review of the existing
literature on HS detection in Portuguese has revealed a relevant gap in the detection of
European Portuguese HS. Current research in this domain remains in its initial stages.
Consequently, there is a need for further research aimed at addressing this gap, which
could also provide valuable insights and methodologies applicable to other low-resourced
languages. By developing tools for a language that, as it does not yet have many resources,
may be more vulnerable to the risk of discrimination and abuse, we have the potential to
make a significant difference in mitigating the harmful effects of HS on the Portuguese-
speaking community.
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CHAPTER 3

Automatic Classification of Hate Speech

This chapter presents the data, methodology and results of the automatic classification of
HS using a variety of ML models. We begin by describing the data and models adopted
for the classification task, with their configurations and the computational setup used for
running the experiments. Next, we present the results of the experiments, covering both
datasets and addressing different aspects of HS detection, including mixed-domain and
context-rich experiments. The chapter then discusses the findings, providing insights into
the performance of the models, followed by an error analysis to examine the misclassifi-
cations made by the models. Finally, we conclude with a discussion on the deployment of
these models in a practical environment.

3.1. Data

This study uses two corpora containing annotated online HS messages, recently created
in the scope of kNOwHATE project: a YouTube corpus consisting of YouTube comments,
and a Twitter corpus containing tweets retrieved from Twitter. Table 3.1 presents both
corpora distributions.

Table 3.1. Corpora distributions.

#messages HS proportion
Corpus Train Test Train Test

YouTube 23912 825 64.90% 72.06%
Twitter 21546 805 11.48% 20.62%

3.1.1. YouTube

The YouTube corpus consists of 23912 comments collected from 88 distinct YouTube
videos, covering topics and events targeting, directly or indirectly, four specific target
groups: African descent, Roma, Migrants, and the LGBTQ+ communities. Initially,
videos containing HS messages were selected. To broaden this selection, additional videos
featured in the related section were also included, as illustrated in Figure 3.1.1. This
decision was based on the hypothesis that frequently suggested videos when watching an
already HS-flagged video were more likely to attract HS. To quantify the frequency of
video suggestions and to identify those most likely to contain HS, a sorted list of suggested
videos was generated. Videos that appeared more than 85 times on the list were added
to the dataset. After obtaining the final group of videos that were potential candidates,
videos were removed from selection if they did not have a minimum number of 1000 views
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and 100 comments, resulting in the final 88 videos, distributed by target group as follows:
Roma – 16, migrants – 19, LGBTQ+ – 24, and African descent – 29.

Figure 3.1. Related section (shown in red).

3.1.2. Twitter

The Twitter corpus consists of 21546 tweets retrieved using the Twitter API published be-
tween January 1, 2021, and December 31, 2022. For the collection of relevant tweets, a list
of 259 keywords associated with the four specific target groups (African descent, Roma,
migrants, and the LGBTQ+ communities) was compiled, and tweets containing those key-
words were collected. From the collected tweets, only those written in Portuguese were
selected, resulting in a dataset predominantly consisting of Brazilian Portuguese. There-
fore, to ensure geographical relevance, the tweets were further narrowed to tweets only
posted in Portugal. Additionally, the entire conversation to which the tweets belonged
was also retrieved, ensuring that the parent tweet of all conversations was published in
Portugal. In Table 3.2, we display some examples of messages with HS for the different
target groups for both corpora.

3.1.3. Annotation

The corpora were manually annotated by interdisciplinary teams, consisting of four re-
searchers for the YouTube corpus and three researchers for the Twitter corpus, all with
backgrounds in language sciences and social psychology. Each annotator was tasked with
annotating approximately 6000 comments on YouTube and, 7000 tweets on Twitter. Ad-
ditionally, a subset of comments/tweets (825 for YouTube and 805 for Twitter), that
served as our test sets, was assigned to all annotators to assess Inter-Annotator Agree-
ment (IAA) and annotation reliability using Krippendorff’s alpha [142]. The IAA for
YouTube was moderate, at 0.546, whereas for Twitter was considerably lower, at 0.355,
indicating variations in agreement levels between the annotators across the two datasets.
As mentioned, this IAA subset also served as the test set for model evaluation, and given
the task subjectivity, only the messages that were labelled as conveying HS by at least
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Table 3.2. Hate Speech examples of both corpora for the different target groups.

Corpus Target Group Example Message

YouTube Migrants Isso pulhiticos merdosos, continuem a importar lixo, até Portu-
gal deixar de ser Portugal. [That is right shitty politicians, keep
importing rubbish until Portugal stops being Portugal.]

Roma Mais um bairro de ciganos onde eles é que fazem a lei.. Se o nosso
belo governo lhes continuar a dar casas e dinheiro eles contin-
uam a procriar e a encher bairros, onde depois o próprio governo
não tem mão.. [Another gypsy neighborhood where they make the
law... If our beautiful government continues to give them houses
and money they will continue to procreate and fill neighborhoods,
where the government itself has no hand...]

LGBTQ+ as pessoas tem que perceber que ser "panasca"a não é deixar de
ser homem, é deixar de ser humano kek [People have to realize
that being "panasca" doesn’t mean stopping being a man, it means
stopping being human kek ]

African descent Ao menos os branco de raça superior ainda criam biologia, já os
pretos americanos nem sabem definir o que é biologicamente uma
mulher.... Este mundo está perdido... alguém me sabe dizer se
já aceitam voluntários para a missão a Marte? [At least superior
white people still create biology, while black Americans don’t even
know how to define what a woman is biologically.... This world is
lost... can anyone tell me if they are already accepting volunteers
for the mission to Mars? ]

Twitter Migrants Os zucasb podem ofender todos os portugueses mas se a gente
riposta já somos uns filhos da puta Nós tamos é cansados de ser
chacota desta escória de pessoas. Não são todos, aliás, a maioria
são gente boa MAS tem muito cabrão aí [The "zucas" may offend
all Portuguese people, but if we fight back, we are already sons
of bitches. We are tired of being made fun of by these scum of
people. Not all of them, in fact, most of them are good people
BUT there are a lot of bastards out there]

Roma Ta tanto cigano no loureshopping foda se qual deles é q foi a
julgamento [There are so many gypsies in Loures Shopping, fuck
which one went to trial ]

LGBTQ+ Vai pá puta que te pariu seu paneleiro do caralho, virgem ofendida
[Go fuck yourself you fucking faggot, offended virgin.]

African descent @UserID se calhar são os que cometem mais ilegalidades não??!?
Esta questão do coitadinho que é preto já passou de moda. Re-
sistiu às autoridades teve o que se encontra previsto na lei, sem
pôr nem tirar! [@UserID maybe they are the ones who commit the
most illegalities, right??!? This question of the poor thing being
black is out of fashion. He resisted the authorities and did what
is stipulated by law, without putting in or taking away! ]

a,bDerogatory terms used to refer to homosexual men and people from Brazil respectively
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two annotators were considered hatred content in the test sets. We did not consider the
messages containing only one vote to discard unintentional errors introduced by the an-
notator, as the possibility that the majority of annotators made a mistake would be less
likely.

The annotation scheme involved several dimensions describing: 1) different speech
acts; 2) the different target groups/communities involved in the project; 3) different forms
of discrimination; 4) a set of discursive strategies; 5) a selection of counter-speech strate-
gies; 6) the type of intergroup contact between members of different social groups; 7) a
set of rhetorical mechanisms that can be found in hate speech; and 8) a set of negative
and positive emotions to characterize both online hate speech and counter speech, namely
hate, anger, disgust, fear, guilt, shame, and hope.

3.2. Adopted Models

In this section, we present an overview of the different models used for HS detection,
along with the experimental settings used to run these models and the metrics used to
evaluate the performance of each model. Figure 3.2 presents the overall workflow of the
experiments conducted. As we can see, we resorted to three different types of models: DL
models, that served as baseline, Transformer-based models and generative models.

YouTube Corpus

Preprocessing

Classifiers

Twitter Corpus

Baseline DL BERT-models Generative models

Classification
(Hate Speech/ non-Hate Speech)

FastText
Embedding

CNN LSTM

Prompt

With
Context

Without
Context

Fine-tune BERT

Tokenization,
Special tokens &
Attention masks

Data Collection, Filtering & Annotation

Figure 3.2. Workflow of our HS detection system.
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3.2.1. Baseline

To serve as a baseline for comparison with the Transformer-based models, we employed a
CNN model based on Safaya et al. [143] work with 160 convolutional filters of 5 different
sizes (1, 2, 3, 4, and 5) and 32 filters for each size. We also employed a LSTM model with
an initial layer comprising 128 units, followed by one dense layer with 64 units and an
output layer with a softmax activation function. For both models, the embeddings used
were FastText CBOW for Portuguese [144], with dimensions of 300.

3.2.2. Transformer-based models

For the Transformer-based models, we used four different models based on BERT. The
BERT base model contains an encoder with 12 layers (transformer blocks), 12 self-
attention heads, and 110 million parameters. Because BERT-based models are pre-trained
on large general corpora, they were fine-tuned using the domain-specific one, and a linear
layer was added on top of the BERT architecture for the classification. For this, the [CLS]
token output of the 12th transformer encoder, a vector of size 768, is given as an input to a
fully connected network. Subsequently, the sigmoid activation function was applied to the
hidden layer to make the predictions. During training, some of the BERT weights were
also updated, allowing the model to adapt to the specific characteristics of our dataset.
Four different BERT-based models were used:

• BERTimbau [145] – although developed for Brazilian Portuguese, since our work
is also focused on a variant of Portuguese, we used BERTimbau, a pre-trained
BERT model on the brWac corpus [146];

• BERTimbau-hatebr [147] – an already fine-tuned version of the BERTimbau
model for HS with the HateBR corpus [148];

• mDeBERTa-hatebr [147] – a fine-tuned version of mDeBERTa [149], a multi-
lingual version of DeBERTa, which is an improved version of BERT, for HS
detection using the HateBR corpus;

• HateBERTimbau [150] – a retrained version of BERTimbau with 229103 tweets
in European Portuguese associated with offensive conversations.

For the training hyperparameters of the BERT models we followed the original paper
recommendations, with a batch size of 32, learning rate for Adam optimizer of 2e-5 and
3 epochs [8]. Other attempts were conducted with different parameters, also suggested
by the original article, like a batch size of 16 and epochs between 1 and 5, but the used
parameters proved to have better performance.

Although some of the models used were already fine-tuned on HS corpora, which
was the case with the BERTimbau-hatebr and mDeBERTa-hatebr, we performed further
fine-tuning of the models in our corpora, which led to better results. We did not use
the previously mentioned Albertina models since at the time of our work only the large
version was available, which is very resource intensive, and initial trials did not lead to a
better performance.
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3.2.3. Generative Models

In addition to the BERT-based models, we also explored three additional models for text
generation: GPT, Gemini and Mistral. For GPT versions 3.5 and 4 were used, for Gemini
version Gemini-Pro was used, and the Mistral version used was Mistral-7B-Instruct-v0.3.
The inclusion of Mistral in this work was due to its static nature, which addresses the
issue of varying performance over time, observed on other generative, that are updated
over time in an opaque way [151]. Mistral ensures consistent characteristics for all users of
the same version, which allows for a stable benchmark against which the dynamic nature
of GPT and Gemini can be compared, enhancing the robustness of this work. All runs
using the generative models were conducted on April 1st, 7th, 10th and June 27th, 2024,
ensuring that the results align with the versions of the models current at the time of use.

3.3. Experimental Setup

All experiments were conducted using the computational resources of an NVIDIA RTX
A6000 GPU with 48 GB of memory, housed within a dedicated machine accessed for the
purposes of this work.

For all models, an initial pre-processing of the text was performed to replace all user-
names with "@UserID". For the BERT models, the maximum sequence length of each
text sample was set to 350 tokens to avoid overloading the GPU. Despite this limitation,
a substantial number of messages did not exceed this length, with only 228 comments
in the YouTube corpus and none in the Twitter corpus surpassing the threshold. This
constraint did not adversely affect the model’s performance. To obtain the evaluation
metrics, an average of five runs was calculated, and the training data was split into 80%
for the training set and 20% for the validation set.

In the Transformer-based models both corpora underwent in-domain and mixed-domain
assessments. In the in-domain experiments, the model was trained exclusively on the cor-
pus being tested. In the mixed-domain experiments, both corpora were used to train
the model, to determine if additional information from a different source could further
enhance performance. For example, the model was trained using data from both the
YouTube and Twitter corpora and then tested on the Twitter corpus test set.

Concerning the generative models, the following prompts were used to obtain the
labels for runs with and without context:

• No context: “Consider the comment/tweet delimited by <START> and <END>
and indicate whether it is hate speech. Return only the number 1 if yes or the
number 0 if not, as in a classification task <START>0<END>”;

• With context (YouTube): “Consider the following data about comments of a
YouTube video, where <title> is the title of the video, <previous comments>
corresponds to previous comments, and <comment> corresponds to the com-
ment being analysed. Please classify the comment as being hate speech (1) or
non hate-speech (0) based on the context provided. Return only the values
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1 or 0, nothing more. <title>{title} <previous comments>{context} <com-
ment>{current_comment}”;

• With context (Twitter): “Consider the following data about Twitter conversa-
tions, where <context> corresponds to previous tweets in the conversation, and
<current_comment> corresponds to the tweet being analysed. Please classify
the tweet as being hate speech (1) or non hate-speech (0) based on the context
provided. Return only the value 1 or 0, nothing more. <context>{context}
<comment>{current_comment}”.

For the context runs, each YouTube comment was supplemented with the title of the
video in which the comment appeared, as well as preceding comments in the conversation
if they belonged to the same thread. For tweets, in the absence of video context, only
preceding tweets in the thread were provided, if available. All prompts were composed
in English, although the messages fed for classification were written in Portuguese, since
in our prompt engineering experiments, detailed in Section 3.5.1, we verified that this
configuration led to better results. We employed the OpenAI API to use the GPT models
for our experiments – the temperature parameter was set to 0 to assure consistent results,
and the Google API for the Gemini runs.

3.4. Evaluation Metrics

The performance of the models was evaluated using three standard metrics, namely, Pre-
cision, Recall, and F-score. These metrics are mathematically defined in Equations 1,
2, and 3, respectively, where True Postives (TP) refers to the total number of correctly
classified HS instances, False Postives (FP) refers to the total number of non HS instances
classified as HS, True Negatives (TN) refers to the total number of correctly classified non
HS instances, and, finally, False Negatives (FN) refers to the total number of HS instances
classified as non HS.

Precision =
TP

TP+FP
(3.1)

Recall =
TP

TP+FN
(3.2)

F-score =
2 ∗ Precision×Recall

Precision+Recall
(3.3)

We report the macro, weighted, and positive class scores, but when we assess the
models we give more importance to the positive class F-score since it evaluates the class
we want to detect and is a more balanced measure, taking into account both FP and
FN. For the comparisons between both types of HS (CHS and OHS), we compared them
based on the number of TP and FP that each model achieved, since we employed a binary
classification where the models were prompted to classify text as either HS or non-HS.
This approach does not allow us to determine whether the model distinguishes between
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OHS or CHS. As a result, it is only possible to obtain the above-mentioned metrics for
the general HS, and not for these finer types of HS.

3.5. Experiments and Results

This section is divided into four parts: the initial prompt engineering experiments con-
ducted to assess optimal prompts for the HS detection task, the results of our HS detection
experiments in both the YouTube and Twitter corpora (including the results of the BERT-
based models for both in-domain and mixed-domain experiments, as well as the results of
the generative models with and without contextual information), and finally, the results
of the impact that context has on detecting CHS. To ensure the statistical significance of
all results presented, we conducted McNemar’s test.

3.5.1. Prompt Engineering

To identify the most effective prompt for our experiments, we conducted several trials
using different prompt formulations and evaluated their performance based on the Positive
F1 Score metric. For resource optimization, these experiments were primarily conducted
on GPT-3.5-turbo. However, we also tested a smaller sample of data on GPT-4-turbo to
confirm the results. The prompts tested, and their corresponding scores, are summarized
in Table 3.3.

Table 3.3. Prompt engineering attempts.

Prompt Description Positive F1 Score

Task Prompt with only the description of the
task 70.6%

Definition Prompt with the description of the task
+ our definition of HS 69.2%

Example Prompt with the description of the task
+ an example message of HS 57.4%

Definition
+

Example

Prompt with the description of the task
+ our definition of HS + an example

message of HS
59.5%

The results from our prompt engineering experiments indicate that the “Task” prompt,
which includes only the description of the task, achieved the highest Positive F1 Score
of 70.6%. This prompt formulation demonstrated better performance when compared to
other variations that included additional components such as HS definitions or example
messages of HS. It is worth noting that we also experimented with different prompt
formulations and languages (Portuguese and English), to select the prompt, ultimately
arriving at the best version, as presented in Section 3.2.

Based on these findings, we selected the “Task” prompt as the optimal formulation to
be used for subsequent experiments, leveraging its effectiveness and simplicity in eliciting
high-quality responses from our generative models.
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3.5.2. YouTube

Table 3.4 summarises the results achieved for the in-domain and mixed-domain experi-
ments of BERT-based models, as well as the results of the generative models with and
without context. The results of the in-domain experiments reveal that all BERT-based
models significantly outperformed the baseline DL models by more than 20 p.p. in regard
to the positive class F-score (p-value < 0.01). The best model between the BERT-based
models was HateBERTimbau, with an increase in F-score of 1.5 p.p. when compared to
the next best model, with all BERT models having similar performance. No significant
differences were observed between the BERT-based models with an in-domain setting,
except HateBERTimbau and BERTimbau (p-value < 0.05).

For the mixed-domain experiments, the models were trained with the addition of the
Twitter corpora for a total of 45458 messages. The mixed-domain section of Table 3.4
shows that, although BERTimbau and BERTimbau-hatebr models improved their perfor-
mance by 0.5% and 0.2%, this difference was not significant, and that none of the models
surpassed the overall best F-score obtained in the in-domain results, with the best model
being again HateBERTimbau. Again, no significant differences were observed between
BERT-based models in a mixed-domain setting, and there were no significant differences
between in-domain and mixed-domain models, except for HateBERTimbau in-domain
and mDeBERTa-hatebr mixed-domain (p-value < 0.05).

Finally, the generative models section of Table 3.4 presents the results of all generative
models. Firstly, we can see that these models have a far worse performance than the BERT
models, with a decrease of almost 10 p.p. in F-score between the best models. This was
confirmed by the statistical test conducted, where all generative models were significantly
worse than all BERT-based models (p-value < 0.01). Comparing the runs where context
about the messages was provided versus the ones where no context was provided, we
see that the best result was obtained in a context setting, with GPT-3.5 achieving a
0.796 F-score, significantly different from all other generative models (p-value < 0.01),
excluding GPT-4 without context. The GPT-3.5 and GPT-4 models were the only ones
that improved their performance with the addition of context by 4.6 p.p. and 1.4 p.p.
respectively, with only the difference observed in GPT-3.5 being significant (p-value <
0.01). Both Gemini-Pro and Mistral have better performance in a no-context setting,
with only the differences observed in Mistral being significant (p-value < 0.05). Although
the results obtained were consistent in multiple iterations on the same day, subsequent
runs in different days with identical configurations revealed differences of approximately
25 p.p. in some models. For instance, on a previous run of the GPT-4 model, we got
a positive class F1 of 0.554, which marks a difference of 17.4% to the F1 presented in
Table 3.4 of 0.728. This goes in line with the literature that shows that the behaviour
of the "same" model can change substantially in a relatively short amount of time, since
these models are updated over time, in an opaque way [151], as mentioned before. This
was also observed for the Twitter generative models.
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Table 3.4. YouTube experiments for both BERT-based models and Gen-
erative models.

Model Positive Class Macro Avg Weighted Avg
Prec Rec F1 Prec Rec F1 Prec Rec F1
Baseline Models

CNN (Baseline) 0.840 0.590 0.690 0.610 0.640 0.590 0.720 0.610 0.640
LSTM (Baseline) 0.850 0.500 0.630 0.600 0.630 0.550 0.720 0.570 0.590

BERT-based models: In-domain
BERTimbau 0.858 0.850 0.853 0.742 0.746 0.744 0.792 0.791 0.792
BERTimbau-hatebr 0.848 0.861 0.855 0.742 0.736 0.738 0.788 0.790 0.789
mDeBERTa-hatebr 0.866 0.847 0.856 0.749 0.758 0.753 0.800 0.796 0.798
HateBERTimbau 0.863 0.879 0.871 0.770 0.762 0.766 0.810 0.813 0.811

BERT-based models: Mixed-domain
BERTimbau 0.867 0.848 0.858↑ 0.751 0.760 0.756 0.802 0.798 0.800
BERTimbau-hatebr 0.861 0.853 0.857↑ 0.749 0.752 0.750 0.797 0.796 0.796
mDeBERTa-hatebr 0.858 0.829 0.843↓ 0.729 0.740 0.734 0.785 0.779 0.781
HATEBERTimbau 0.866 0.853 0.860↓ 0.754 0.759 0.757 0.803 0.800 0.801

Generative Models: Without context
Gemini-Pro 0.888 0.669 0.763 0.685 0.727 0.680 0.782 0.691 0.706
GPT-3.5 0.873 0.658 0.750 0.665 0.704 0.659 0.750 0.669 0.686
GPT-4 0.875 0.624 0.728 0.661 0.699 0.648 0.754 0.666 0.683
Mistral-7B-Instruct-v0.3 0.895 0.616 0.729 0.675 0.716 0.657 0.770 0.672 0.688

Generative Models: With context
Gemini-Pro 0.924 0.555 0.693↓ 0.681 0.719 0.639 0.779 0.634 0.650
GPT-3.5 0.775 0.817 0.796↑ 0.611 0.601 0.604 0.729 0.660 0.676
GPT-4 0.862 0.651 0.742↑ 0.658 0.693 0.651 0.746 0.675 0.691
Mistral-7B-Instruct-v0.3 0.881 0.464 0.608↓ 0.632 0.653 0.567 0.740 0.571 0.585

3.5.3. Twitter

For the Twitter corpus, the results were far worse, when compared with the YouTube
corpus, as shown in the in-domain section of Table 3.5. All BERT-based models had a
positive class F-score bellow 50%, with the best being again HateBERTimbau with an
F-score of 47.3% (more than 3.5 p.p. above all other BERT models), although without
significant differences. Among the BERT models, all significantly outperformed the base-
line CNN model (p-value < 0.01), but only HateBERTimbau significantly outperformed
the LSTM model (p-value < 0.01), with a 3.3 p.p. increase.

In the Twitter corpus, the addition of information to the models, by incorporating the
YouTube comments in the training phase, resulted in an increase in performance, as shown
in the mixed-domain section of Table 3.5. There was in increase of 4 p.p., 5.2 p.p., and 5.1
p.p. in BERTimbau, BERTimbau-hatebr, and mDeBERTa-hatebr models, respectively,
all being statistically significant (p-value < 0.05). The previously best performing model,
HateBERTimbau, did not see an increase in performance, being significantly worse than
its in-domain counterpart (p-value < 0.01). Contrary to the in-domain models, all mixed-
domain models significantly outperformed both baseline models (p-value < 0.01).

Lastly, regarding the results of the generative models in the Twitter corpus, illustrated
in the generative models section of Table 3.5, the inclusion of context did not prove to
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be beneficial for enhancing the performance, with every model showing significant decline
with context (p-value < 0.01), excluding GPT-3.5. However, it is noteworthy that the
GPT-3.5 model without context achieved the highest performance out of any model,
attaining a score of 50.2%. This model was significantly superior to all in-domain and
mixed-domain BERT-based models, as well as all generative models without context (p-
value < 0.01), being the only one to exceed the 50% threshold.

Table 3.5. Twitter experiments for both BERT-based models and Gener-
ative models.

Model Positive Class Macro Avg Weighted Avg
Prec Rec F1 Prec Rec F1 Prec Rec F1
Baseline Models

CNN 0.290 0.750 0.420 0.580 0.600 0.510 0.730 0.530 0.560
LSTM 0.300 0.800 0.440 0.590 0.620 0.520 0.750 0.530 0.560

Transformer Models: In-domain
BERTimbau 0.511 0.371 0.429 0.679 0.639 0.652 0.778 0.796 0.784

BERTimbau-hatebr 0.494 0.395 0.438 0.672 0.645 0.655 0.777 0.792 0.782
mDeBERTa-hatebr 0.507 0.375 0.431 0.678 0.640 0.653 0.778 0796. 0.784
HATEBERTimbau 0.497 0.454 0.473 0.679 0.667 0.672 0.786 0.791 0.788

Transformer Models: Mixed-domain
BERTimbau 0.422 0.528 0.469↑ 0.645 0.670 0.654 0.777 0.754 0.763

BERTimbau-hatebr 0.440 0.542 0.486↑ 0.657 0.682 0.666 0.784 0.754 0.763
mDeBERTa-hatebr 0.440 0.534 0.482↑ 0.656 0.678 0.664 0.783 0.763 0.772
HATEBERTimbau 0.358 0.630 0.456↓ 0.619 0.667 0.619 0.772 0.689 0.715

Generative Models: without context
Gemini-Pro 0.388 0.614 0.476 0.635 0.681 0.643 0.774 0.737 0.751
GPT-3.5 0.400 0.675 0.502 0.649 0.706 0.656 0.799 0.720 0.743
GPT-4 0.389 0.705 0.501 0.646 0.708 0.649 0.797 0.711 0.735

Mistral-7b-v0.3 0.371 0.578 0.452 0.621 0.662 0.628 0.768 0.711 0.731
Generative Models: with context

Gemini-Pro 0.468 0.398 0.430↓ 0.659 0.640 0.648 0.758 0.779 0.766
GPT-3.5 0.293 0.729 0.418↓ 0.589 0.636 0.546 0.806 0.597 0.633
GPT-4 0.350 0.645 0.453↓ 0.616 0.667 0.613 0.772 0.680 0.707

Mistral-7b-v0.3 0.314 0.590 0.410↓ 0.588 0.628 0.580 0.749 0.650 0.681

Regarding the time performance of the models, all BERT-based models had simi-
lar performance, which is to be expected since they are all BERT versions, sharing the
same number of parameters and architecture. So BERTimbau, BERTimbau-hatebr, and
HateBERTimbau had a testing time of 3.97, 3.97, and 3.95 seconds, respectively, for 825
sentences. mDeBERTa-hatebr was the slowest model, taking 5.79 seconds, probably be-
cause this model is based on DeBERTa-V3 which has 184 million parameters instead of
the 110 million present on the other models. For the generative models, their testing time
is dependent on the company that provides them, seeing that they control the number of
requests allowed. For instance, the free version of Gemini is limited to 15 requests per
minute (RPM) which accounts for a 55 minute testing time for the same 825 sentences.

37



GPT-3.5 and GPT-4 took 5m19s and 5m57s respectively, and Mistral took 33m17s, al-
though Mistral was tested in a different machine, with the use of Ollama1 for resource
optimization, so it is not possible to draw direct comparisons.

3.5.4. Context role in Overt/Covert HS

The experiments conducted to assess the impact of context on the classification of OHS
and CHS were done using both the GPT-3.5-turbo and GPT-4-turbo models. As we
saw in the previous sections, both models showed improvement with the addition of
context, increasing 4.6% and 1.4%, respectively, in general HS. Now focusing specifically
on OHS and CHS, Table 3.6 presents the results for both types of HS classifications
with and without context. Overall, the addition of context led to improvements in True
Positives, particularly for CHS. This increase was more noticeable in GPT-3.5-turbo,
which increased in 21.64% the number of True Positives for CHS, compared to 6.5% for
OHS. GPT-4-turbo, although less noticeably, also increased the number of True Positives
for CHS by 3.23% compared to 0% in OHS. Despite these improvements, it is noteworthy
that the inclusion of context also resulted in a substantial increase in False Negatives,
with an additional 84 and 11 messages misclassified by GPT-3.5-turbo and GPT-4-turbo,
respectively.

Table 3.6. Results of OHS and CHS detection without and with addition
of context to the prompt.

Metric Type of HS No context Context Gain
GPT-3.5-turbo

True Positives
OHS 262 281 +19 (6.5%)
CHS 212 299 +88 (21.64%)

False Positives Both 57 141 +84 (10.18%)
GPT-4-turbo

True Positives
OHS 255 255 +0 (0.0%)
CHS 198 211 +13 (3.23%)

False Positives Both 52 63 +11 (1.33%)

In analysing the performance across different target groups, it is crucial to acknowl-
edge that CHS can vary significantly in expression based on the specific characteristics
and social dynamics of each group. Therefore, understanding the detection capabilities for
CHS within these groups is important, to verify the effectiveness of the models. Table 3.7
presents the Positive F1 Score obtained in the context run, as well as HS distribution and
IAA for each group. Notably, both Roma and Migrants groups exhibit the best results,
each achieving a Positive F1 Score exceeding 90%, in contrast to 73.7% for LGBTQ+
and 84.5% for African descent. Furthermore, our analysis reveals a correlation between
performance and IAA, with the proportion of CHS messages within each group. Groups
1https://ollama.com
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with lower performance and IAA, such as LGBTQ+ and African descent, exhibit a higher
percentage of CHS messages (more than 20%) compared to groups with higher perfor-
mance.

Table 3.7. Results of HS detection by Target Group, with HS distributions
and IAA.

Target Group GPT-3.5 F1 GPT-4 F1 %HS (%CHS) IAA
Roma 91.9% 85.6% 98.42% (48.6%) 0.691

LGBTQ+ 73.7% 57.0% 86.93% (68.6%) 0.494
Migrants 90.8% 83.6% 90.48% (44.7%) 0.627

African descent 84.5% 80.7% 83.16% (65.6%) 0.464

3.6. Discussion

Firstly, the observed impact of prompt design on model performance raises questions
about the role of information inclusion and rule specificity. Our findings suggest that
the addition of explicit definitions or specific examples of HS within the prompt may
inadvertently constrain the model’s ability to generalize across diverse instances of HS.
This phenomenon could result from the model becoming overly fixated on the provided
definitions or examples, potentially missing out on nuanced or less typical instances of
HS. Surprisingly, our results contrast with existing literature, which often indicates that
the provision of examples and information enhances model performance [152]. This dis-
agreement confirms the complexity of prompt engineering and the need for investigation
into optimal prompt strategies for each case study.

Regarding the overall results of the models employed, we can conclude that BERT-
based models are more effective for the HS detection task, when compared to generative
models and other DL models. This finding aligns well with existing literature [153] and
was, to some extent, anticipated, as BERT-based models underwent a fine-tuning process
with the used datasets, whereas the generative models were not optimised for our data.
Despite this, for the Twitter corpus, GPT-3.5 with the no-context prompt managed to
obtain the best result out of all the models. A possible explanation for the surprising
results in the Twitter corpus, where all models struggled to even break the 50% posi-
tive class F-score mark, could be the low IAA recorded, that showed the annotators had
differing views on what constituted HS in this corpus. This divergence of annotations
could have impacted the BERT models in the fine-tuning phase, which led to the poor
performance. Although the performance of the generative models was not great on its
own, they managed to match, and even outperform the BERT models with GPT-3.5.
The generative models were also in more agreement between them, with an IAA of 0.542
in their predictions, greater than the 0.355 obtained by the annotators. The disparity
observed between the performance obtained in the YouTube and Twitter corpora could
also be explained by the differences in discourse style and linguistic characteristics inher-
ent to each platform. Twitter, because of its character limit and fast-paced nature, often
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has condensed and cryptic language, that can make interpreting and detecting HS more
challenging compared to the relatively more verbose and explicit language typically found
in YouTube comments. Finally, the prevalence of HS messages on each corpus can also
be an explanation for the difference in results, since the Twitter corpus has a much lower
prevalence of HS messages (11.48%) when compared to the YouTube one (64.9%), and
although BERT-based models are generally not as susceptible to the quantity of data as
traditional ML models, having more data for fine-tuning could still improve the perfor-
mance of BERT models. This is even more relevant when the task requires domain-specific
knowledge and when the dataset is highly diverse or complex, which is the case. Addi-
tionally, the standard deviations for the BERT models’ results were around 0.002 to 0.012
for the YouTube results and 0.002 to 0.035 for the Twitter results. These higher standard
deviations for the Twitter results indicate greater variability in model performance, which
can be attributed to the low IAA and the challenging nature of the Twitter data, already
discussed. In contrast, the lower standard deviations for the YouTube results suggest
more consistent model performance in the YouTube corpus.

Upon examining the BERT-based models employed, we can see that HateBERTimbau
exhibited the best overall performance for both corpora. This model was retrained with
task-relevant data and further fine-tuned with our specific corpora. This model, alongside
BERTimbau-hatebr, that was already fine-tuned for the downstream HS detection task
and further fine-tuned on our corpora, had the best performances, outperforming both
multilingual mDeBERTa and general BERTimbau. The achieved results were expected
and are in line with the literature [98], [99]. These models are domain- and task-specific,
making them more adept at capturing the intricacies of Portuguese HS language and
context. This specialization results in improved performance compared to more general
BERT models. In addition, we can see that by retraining the model on European Por-
tuguese we have a better performance than using a model trained on Brazilian Portuguese,
confirming the need for European Portuguese resources, even in the presence of Brazilian
Portuguese ones. Regarding the mixed-domain tests, the results obtained do not con-
clusively demonstrate that incorporating information from a different context than the
target domain enhances model performance. Although when training the models with
both YouTube and Twitter data, we observed significant improved performance in the
Twitter test set, this improvement was not observed in the YouTube test set. This dis-
crepancy may be attributed to the Twitter data, which, as we already mentioned, may
lack sufficient information for effective training due to its low IAA and unique language
characteristic. Such specificities may have hindered the model’s ability to learn discrim-
inative features relevant to the YouTube domain, thereby limiting its performance. We
believe that the inclusion of diverse data sources can enrich the model’s understanding
and generalization capabilities across domains, as shown in literature [68], however the
quality of the data needs to be assured.
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Finally, concerning the generative models, GPT-3.5 outperformed Gemini-Pro, GPT-4
and Mistral for the HS detection task, and although their results fell short of the results of
BERT models, they still proved to be a viable alternative forHS detection, having fairly
good results and outperforming both baseline DL models. In addition, these models
were not fine-tuned with our datasets, so there is still room for improvement. When
running the models, it was apparent that prompt design matters a lot in this type of
setting, with different prompts leading to varying results, which is consistent with the
literature [154]. Lastly, our experiments with adding context to the prompts of these
models (as they were not fine-tuned) showed that there were improvements in GPT-3.5
and GPT-4 in the YouTube corpus. In all other runs, the addition of context decreased
performance, which appears to contradict the literature [152], where context typically
enhances performance. However, it has been demonstrated that while GPT-3.5 benefits
from context, other models may not [153]. Our findings align with this observation. For
the generative models, the standard deviations were between 0.003 and 0.025 for Gemini
and between 0.001 and 0.007 for GPT models. These relatively low standard deviations
for the GPT models indicate more consistent performance across runs, while the higher
standard deviations for the Gemini model suggest more variability.

Still with regard to the generative models, the impact of the addition of context to
the prompts on OHS and CHS classification, CHS, which relies heavily on contextual cues
and subtleties, appears to benefit significantly more from the addition of context to the
prompt, as is visible in Figure 3.3. This observation aligns with expectations, as context
plays a pivotal role in deciphering the hidden or implicit nature of CHS messages.

However, the notable increase in False Positives with context suggests a potential
drawback. The inclusion of contextual information may inadvertently lead the model to
misclassify non-HS messages as HS, emphasizing the need for careful consideration when
integrating contextual cues into HS detection systems. It is worth mentioning that the
False Positives misclassified with the addition of context were not cases of counter speech,
which can pose potential issues. Finally, our analysis reveals a correlation between the
percentage of CHS and IAA within target groups and model performance. Target groups
characterized by a higher proportion of CHS, such as LGBTQ+ and African descent,
exhibit lower model performance and IAA compared to groups with a lower prevalence of
CHS. This observation further highlights the challenges posed by CHS and the need for
tailored approaches to address the specific dynamics of different target groups.

3.7. Error Analysis

To gain insights into the performance of our models, we conducted an error analysis,
examining instances of FP and FN in the predictions. Notably, we can observe in Table 3.8
that many FP instances contained counter-speech instances, that commonly have words
associated with HS, leading to misclassifications. For example, the comment “Shut up,
wash your mouth.... white and black people do shit too” was classified as HS probably
because of the inclusion of the term “black” and the negative connotation of the message,
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Figure 3.3. Impact of context in the prediction of Overt and Covert HS
in GPT-3.5-turbo.

despite this being an instance of counter-speech, where the intention was to battle hate.
Looking at the other examples, we see the same phenomena happening with other terms
like “racism”, “gypsies”, “Angola”, and “LGBT”, that appear inserted in an aggressive
message, where the intent is to combat HS. While these findings may suggest that the
models rely heavily on lexical clues, it is important to note that the misclassified messages
closely resemble HS messages in their structure and wording. Thus, while lexical cues play
a role, the misclassifications may also stem from the nuanced similarity between these
messages and actual instances of HS. Similarly, FN instances often required additional
context to discern the presence of HS, particularly for covert forms. In these cases, the
absence of explicit HS language made it challenging for the models to accurately identify
the underlying harmful intent. For instance, the message “@UserID you are great.” lacked
overtly discriminatory language but probably implied support to a previously derogatory
sentiment toward a specific group, illustrating the nuanced nature of CHS.

Observing Table 3.9 we have examples where the model without context misclassified a
CHS instance as non-HS, and then the same model with the addition of context managed
to classify the comment as HS, confirming that the addition of context is necessary in
cases where the target comment is being implicitly hateful. In these examples, we can
see that the comment on its own does not contain any of the characteristics of an HS
comment, but when we integrate it in a thread of messages its intent becomes apparent.
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Table 3.8. Examples of misclassifications of our models.

Type Message

False Positive Imagina a seguinte situação... Um angolano chega em Portugal e leva corona
vírus... Agora pensem na reação de vcs. Sem mais... No cu dos outros é
refresco ne [Imagine the following situation... An Angolan arrives in Portugal
and carries the coronavirus... Now think about your reaction. Nothing more...
In other people’s asses its refreshment, right? ]

Cala te vai lavar boca.... brancos e pretos fazem merda tb [Shut up, wash your
mouth.... white and black people do shit too]

Os ciganos são muito bem vindes em Portugal. Eles tem cultura, educação e
valorizam os povos nativos. Carrega ciganos! Saudações do Brasil. [Gypsies
are very welcome in Portugal. They have culture, education and value native
people. Go gypsies! Greetings from Brazil.]

"Deles" quem meu?... Tás a falar de quem? Os portugueses são respeitados e
bem vindos em Angola mas é claro que uma minoria residual de gente estúp-
ida e mal formada existe em todo o lado. Isso não quer dizer com certeza que
a maioria dos angolanos é contra o povo português. Longe disso. ["Theirs"
who man?... Who are you talking about? The Portuguese are respected and
welcome in Angola but it is clear that a residual minority of stupid and poorly
educated people exists everywhere. This does not mean for sure that the ma-
jority of Angolans are against the Portuguese people. Far from it.]

False Negative Força gonçalo [Go gonçalo]

@UserID és grande. [@UserID you are great.]

olá amiga Marta. obrigado eu pela paciência em comentar sempre as pub-
licações e é um gosto perceber que concordo sempre contigo, e este não é
exceção. cumprimentos e beijinhos [Hello friend Marta. Thank you for your
patience in always commenting on posts and it’s a pleasure to know that I
always agree with you, and this one is no exception. greetings and kisses]

Mais um comentário excelente. Parece tudo demasiado óbvio e até parece
surreal alguém não entender ainda esta visão que é descrita pelo nosso amigo.
Obrigado [Another excellent comment. It all seems too obvious and it even
seems surreal that someone still doesn’t understand this vision described by
our friend. Thanks]

3.8. Model Deployment

In this section, we present the development and deployment of a functional prototype
based on the research conducted throughout this work. The prototype serves as a practical
application of the models created, offering a real-world solution for HS detection. This
deployment includes both the organization and infrastructure built on Hugging Face,
where the models are publicly available, as well as an interactive space that enables real-
time HS classification. Through this prototype, we aim to demonstrate the practical
utility and accessibility of the research outputs, allowing users to directly engage with the
tools developed in this work.
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Table 3.9. Effect of prompt context in predicted label.

Context Prompt Label
no Target: Isso sim uma limpeza sem dor nem remorsos [Yes a cleansing

without pain or remorse]
0

yes Context: Está na hora de deixarmos de ser um povo de brandos
costumes e limparmos a nossa casa. [It’s time for us to stop being a
people of soft customs and clean our house.]
Target: Isso sim uma limpeza sem dor nem remorsos

1

no Target: existem brasileiros do bem????????? [are there good
Brazilians????????? ]

0

yes Context: Esses bastardos só causam desgosto e vergonha aos
brasileiros de bem. [These bastards only cause disgust and shame to
good Brazilians.]
Target: existem brasileiros do bem?????????

1

no Target: Tal e qual. [Just like that.] 0
yes Context: Infelizmente quem imigrava respeitava o país que o recebia

ficava grato por trabalho e estudo. Hoje dia eles levam o inferno com
eles. [Unfortunately, those who immigrated respected the country that
received them and were grateful for work and study. Today, they take
hell with them.]
Target: Tal e qual.

1

To ensure the accessibility of the research outputs, an organization was created on
Hugging Face to centralize all resources related to this project,1 as shown in Figure 3.4.
This space serves as a repository for the models developed throughout the research, en-
abling other researchers, developers, and practitioners to easily find and access the tools
needed for their own projects. The choice of Hugging Face as a platform was strategic
due to its wide adoption within the NLP community, fostering an environment where the
results of this work can be further validated, improved, and utilized by a larger audi-
ence. Additionally, the platform offers model cards and detailed documentation, helping
to streamline the process for those unfamiliar with the specifics of the models developed
in this work.

The primary outcome of this research is the set of models specifically fine-tuned to
detect HS in Portuguese online content. Each model is publicly accessible on Hugging
Face, complete with training details, evaluation metrics, and use-case documentation. Fig-
ure 3.5 shows the publicly available models, that researchers can easily integrate into their
own systems through API calls or download them for offline use. This openness ensures
their continued relevance and utility in various domains, from social media monitoring to
academic research.

To demonstrate the real-world applicability of the research, a dedicated interactive
prototype was developed for HS detection. This prototype is hosted on a Hugging Face
space, also part of the organization created, allowing users to input their own text for anal-
ysis and receive real-time feedback on whether the content is classified as HS or non-HS.

1https://huggingface.co/knowhate
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Figure 3.4. Hugging Face organization where the outputs of this work are housed.

Figure 3.5. Models available for public use.

This space is particularly valuable for showcasing the capabilities of the models in a user-
friendly and accessible manner, making the complex task of HS detection approachable
for both experts and the public. Users can explore the models’ performance first-hand,
and test various input scenarios. The prototype also includes an intuitive interface, visu-
alizing the results to help users better understand the predictions, as seen in Figure 3.6.
This hands-on tool also raises awareness about the significance of HS detection in online
environments, emphasizing the broader societal implications of the research.

As of the time of writing, the models developed have gained significant traction, rank-
ing 4th, 5th, and 11th worldwide in the “hate” category based on the number of downloads,
with over 30000 downloads combined. This recognition highlights the impact and practi-
cal significance of both the models and the developed prototype in advancing the field of
HS detection, while also serving as a valuable tool for raising awareness about this topic.

3.9. Summary

In this chapter, we presented the results of applying various ML models for HS detec-
tion on two corpora: YouTube comments and Twitter data. The experiments included
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Figure 3.6. Prototype where users can perform HS detection on text using
the developed models.

Transformer-based models such as BERTimbau, and HateBERTimbau, as well as gen-
erative models like GPT-3.5, Gemini, and Mistral. A summary of the results obtained
is presented in Table 3.10, which shows the best-performing baseline, Transformer, and
generative models for each dataset. The results demonstrated that Transformer-based
models, particularly HateBERTimbau, consistently outperformed other models, achiev-
ing the highest F-scores for YouTube in-domain experiments. However, the addition of
mixed-domain data did not yield significant performance improvements. Generative mod-
els demonstrated worse overall results, with noticeable variability in their outcomes over
time. In contrast to the YouTube dataset, the Twitter corpus presented greater challenges,
with all models struggling to exceed a 50% F-score. Despite this, the GPT-3.5 model with-
out context performed the best, highlighting the difficulties posed by the shorter, cryptic
language typical of Twitter, as well as lower IAA in this dataset. Lastly, the chapter ex-
plored the role of context in distinguishing between CHS and OHS. Results indicated that
context significantly improved CHS detection, particularly for the GPT-3.5-turbo model,
although this came at the cost of higher false negative rates. The chapter concluded with
a discussion of the practical deployment of these models, including their integration into
an accessible space for public use and contribution to the kNOwHATE project.
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Table 3.10. Summary of results with best model by type for each dataset.

Type Model Setup Positive F-score
YouTube

Baseline CNN FastText 0.690
Transformer HateBERTimbau In-domain 0.871
Generative GPT-3.5 With context 0.796

Twitter
Baseline LSTM FastText 0.440

Transformer BERTimbau-hatebr Mixed-domain 0.486
Generative GPT-3.5 No context 0.502
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CHAPTER 4

Conclusion

In this work, we investigated the performance of various models in identifying HS in
European Portuguese online discourse in a YouTube corpus and a Twitter corpus. Specif-
ically, we compared different BERT-based models – BERTimbau, BERTimbau-hatebr,
mDeBERTa-hatebr, and HateBERTimbau – along with four generative models – GPT-4,
GPT-3.5, Gemini-Pro and Mistral-7B-Instruct-v0.3.

HateBERTimbau achieved the best positive class F-score with 87.1% for the YouTube
corpus, surpassing the baseline scores by more than 20 p.p., and GPT-3.5 achieved the best
performance for the Twitter corpus with a positive class F-score of 50.2%, with an increase
of 6.2 p.p. compared to the baseline. We showed that the incorporation of mixed-domain
data for the training of the models has the potential to improve performance, significantly
increasing the performance of BERT models in the Twitter corpus, by training them
with the Twitter and YouTube corpus simultaneously. In order to achieve this, it is
necessary to ensure the quality of the data, since none of the models had an improvement
in performance when the Twitter data was incorporated, which may be caused by the low
IAA between annotators, potentially adding noise to the models.

For the generative models, they had a worse performance when compared with the
BERT models in the YouTube corpus, but since there was no fine-tuning done, and the
models did not learn from the annotations of the training data – they made predictions
based on their representations of HS, that may not be aligned with our definition. This
can also be the reason why in the Twitter corpus they managed to outperform the BERT
models, because they were not exposed to the possible noisy data with low IAA. The ad-
dition of context had a discernible impact on the classification of OHS and CHS. Notably,
CHS, which relies heavily on contextual cues, exhibited significant performance improve-
ments with the inclusion of context. However, this enhancement was accompanied by an
increase in False Positives. Furthermore, our analysis of target groups revealed distinct
patterns of HS prevalence and model performance. Groups characterized by a higher
proportion of CHS demonstrated lower model performance, highlighting the challenges
associated with detecting subtle forms of HS within vulnerable communities

Overall, this work contributes to understanding the effectiveness of different models
for HS detection, in general, and in European Portuguese online discourse, specifically.
Our findings suggest that BERT-based models fine-tuned for the HS detection task have
better performance than general BERT models not fine-tuned for a downstream task,
and that models retrained on European Portuguese are more effective in identifying HS
in European Portuguese than models trained on only Brazilian Portuguese.
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Regarding the error analysis, we found that some of the messages mislabelled as non-
HS did not have sufficient context to be able to be classified as HS. This underscores the
necessity for additional context provided by preceding messages. Additionally, some of the
messages mislabelled as HS were in fact counter-speech attempts or messages containing
words that are often used in HS messages, which further confirms the need to provide some
context to the models in order to accurately predict HS. To overcome this limitation,
future work could focus on incorporating context alongside target messages to better
inform the models, especially the BERT-based ones; distinguishing between OHS and
CHS may also lead to better representations of the different types of HS and improve
classification accuracy; and, finally, pre-fine-tuning generative models with training data
to align with annotation criteria.

In conclusion, this research has thoroughly addressed the initial research questions
by exploring the effectiveness of various models in identifying HS in European Por-
tuguese online discourse. Regarding RQ1, this work has shown that the field of HS
detection has undergone significant advancements with the integration of Transformer-
based models, which have gradually superseded traditional ML and DL methods. RQ2
was explored through the comparative performance analysis of Transformer-based and
generative models, specifically designed or adapted for Portuguese, against traditional
DL models. Here, the Transformer-based models demonstrated superior performance
over conventional methods for detecting HS in Portuguese, with notable results on the
YouTube dataset. Lastly, RQ3 was addressed by examining the effects of mixed-domain
learning and contextual information on model performance. The findings indicate that
mixed-domain data can enhance model performance, while the inclusion of contextual
cues in generative models meaningfully improves their detection capabilities for CHS.

While this work has provided valuable insights concerning the effectiveness of different
transfer learning models for HS detection, it is important to acknowledge some limita-
tions. Specifically, our corpora were annotated by a small number of annotators, ranging
from three to four individuals, each with distinct backgrounds. This variability among
annotators may introduce considerable data variance, and should be taken into account
for future studies.

We believe that for future work, multi-class detection attempts should be made, es-
pecially in detecting HS directed at different target groups, such as those present in our
datasets. Furthermore, recent studies have explored network immunization after detec-
tion, in various ways. Either by proactive approaches [155], tree-based approaches [156],
community-based approaches [157], or real-time approaches [158], they aim to stop the
propagation of problematic content in networks. We consider this a very promising avenue
for application in the HS detection space. Future work should combine both tasks: HS
detection and network immunization, to not only identify forms of HS but also to effec-
tively mitigate their spread within online communities. This integrated approach could
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enhance the overall effectiveness of HS management and contribute to creating safer online
environments.

Reflecting on the overall conclusions of this dissertation, the advancements demon-
strated in the performance of these models suggests that they are not only effective but
also viable for real-world applications. Given their superior ability to identify HS, these
technologies can be integrated into existing moderation systems on social media plat-
forms. The findings indicate that with further refinement and implementation, such sys-
tems could enhance the safety of online communities by enabling timely detection and
intervention. While there are challenges to address, like the mitigation of false positives
and biases, the overall readiness of these technologies suggests a positive trajectory to-
ward practical applications in combating online HS. As we move forward, it is crucial
to explore the integration of these models into real-time monitoring tools, ensuring that
these solutions are developed in a manner that respects free speech and does not cross
the line into censorship, but rather supports open and safe dialogue.
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