
An Educational Environment for Code Behaviour Inspection

Afonso Maria Pissarra Mendonça Centeno Neves

Master’s in Computer Science and Engineering

Supervisor:
PhD André Leal Santos, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD Sancho Moura Oliveira, Associate Professor,
Iscte - Instituto Universitário de Lisboa

October, 2024





Department of Information Science and Technology

An Educational Environment for Code Behaviour Inspection

Afonso Maria Pissarra Mendonça Centeno Neves

Master’s in Computer Science and Engineering

Supervisor:
PhD André Leal Santos, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD Sancho Moura Oliveira, Associate Professor,
Iscte - Instituto Universitário de Lisboa

October, 2024





Acknowledgments

I would like to thank everyone that contributed to the development of this project and
helped me create a product I can be proud of presenting.

First, I would like to acknowledge my supervisors, André L. Santos, who proposed
the topic of this dissertation and provided guidance throughout, and Sancho M. Oliveira,
whose feedback and advice were instrumental in shaping the project’s design.

I am also thankful for my family and friends for their support and encouragement
throughout the development of this dissertation. I would like to thank my parents, who
have always provided me with the opportunities to achieve the best possible outcome
in all aspects of my life; Sofia, whose constant presence and care supported me through
every stage of this project; and Afonso, who generously went above and beyond to greatly
enhance the quality of the final work.

Finally, I would like to thank the anonymous volunteers that kindly agreed to participate
in our study and contribute their time and insight.

i





Resumo

A programação é uma disciplina inerentemente difícil de aprender e ensinar devido à sua
natureza abstrata e complexa. Alunos em cursos introdutórios de programação enfrentam
regularmente desafios significativos que dificultam o seu percurso de aprendizagem desde
cedo. É também comum professores manifestarem dificuldades em ajudar os alunos com
os seus problemas de programação, uma vez que identificar a origem de um problema
no código nem sempre é trivial. Debuggers pedagógicos têm demonstrado melhorar a
experiência académica para ambos, porém, as abordagens existentes geralmente requerem
uma determinada proficiência em conceitos de programação e, frequentemente, operam
num ambiente separado do espaço dedicado à escrita de código.

Esta dissertação apresenta um protótipo de ambiente de debugging para Java integrado
no espaço de desenvolvimento de código, permitindo uma transição harmoniosa entre a
escrita e inspeção comportamental do código. O ambiente permite aos utilizadores aceder
a históricos de variáveis durante uma execução, consultar informação relativa a ciclos,
avaliar expressões em diferentes momentos do programa (nomeadamente, condições e
operações numéricas), e examinar mensagens de apoio para tratamento de erros. Além
disso, o ambiente visa promover a prática de test-driven development, fornecendo uma
estrutura para testes unitários integrada no sistema de debugging.

Realizámos um estudo para avaliar a eficácia do protótipo no auxílio à resolução de
problemas de programação. Recrutámos voluntários inexperientes na área, com o objetivo
de simular a experiência de um aluno principiante. Concluímos que o protótipo se mostrou
útil numa variedade de problemas que poderiam ser propostos a iniciantes em ambientes
académicos.

Palavras-Chave: Programação introdutória, inspeção de comportamento, debugger
pedagógico

iii





Abstract

Programming is an inherently difficult subject to learn and teach due to its complex and
abstract nature. Students in introductory programming courses often face severe challenges
which hinder their learning path at an early stage. Teachers also recurrently struggle
to assist students with their coding issues, as identifying the source of a problem is not
always straightforward. Pedagogical debuggers have been shown to enhance the experience
for both, however, existing approaches generally require a certain level of programming
expertise to be used effectively and often function in a setting separate from the coding
workspace.

This dissertation presents a prototype of a debugging environment for Java that is
integrated with the coding area, allowing for a seamless transition between the tasks of
writing and inspecting code. These inspections allow users to examine variable histories,
gather information on loop iterations, evaluate expressions at different points in the
code (namely, conditions and numerical operations), and examine error handling support
messages. In addition, the tool aims to promote test-driven development by providing a
structure for writing unit tests that are fully integrated into the debugging system.

We conducted a study to evaluate the effectiveness of the prototype in assisting
users in solving programming problems. For this purpose, we recruited inexperienced
volunteers simulating the experience a beginner student would have when using the tool.
We concluded that the prototype proved useful across a range of problems that could be
presented to novice students in an academic setting.

Keywords: Introductory programming, behaviour inspection, pedagogical debugger

v





Contents

Acknowledgments i

Resumo iii

Abstract v

List of Figures ix

List of Tables xi

List of Acronyms xiii

Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Research Questions 2
1.3. Objectives and Approach 2
1.4. Document Structure 3

Chapter 2. Background 5
2.1. Literature Review 5
2.2. The Strudel Library 6
2.3. Visualisation Tools 7
2.3.1. PandionJ 7
2.3.2. Aguia/J 8
2.3.3. TOD 8
2.3.4. Memview 9
2.3.5. JIVE 9
2.3.6. BlueJ 10
2.3.7. Jeliot 3 12
2.3.8. PlanAni 13
2.3.9. Overview 14

Chapter 3. The Environment 17
3.1. Layout 17
3.2. Running a Method 17
3.3. Unit Test Table 18
3.3.1. Table Layout 18
3.3.2. Running Tests 19

vii



3.3.3. Side Effects 19
3.3.4. Error Messages 20
3.4. Code Inspections 20
3.4.1. Variable Tracing 21
3.4.2. Expression Evaluation 24
3.4.3. Errors 25

Chapter 4. Implementation 29
4.1. User Interface 29
4.2. Argument Parsing 29
4.3. Data Collection 30
4.3.1. The Process 30
4.3.2. Listener Events 32

Chapter 5. Usability Study with Novice Programmers 37
5.1. Method 37
5.2. Results 38

Chapter 6. Conclusions 41
6.1. Limitations and Future Work 41

References 43

Appendix A. Usability Testing Task Code 45

viii



List of Figures

2.1 Code snippet illustrating how a Java procedure can be executed using the Strudel
library. 7

2.2 A screenshot of the PandionJ tool illustrating a method for summing the values
contained within a given interval of array indices. Figure 1 in [17]. 8

2.3 A screenshot of the Aguia/J tool. Java source code (on the left) is visually
represented in the GUI (on the right). Figure 2 in [16]. 9

2.4 Navigation history in TOD. Extracted Figure 3.a from Pothier and Tanter
(2009) [13]. 10

2.5 Debugging a program with Memview. Extracted Figure 3 from Gries et al.
(2006) [6]. 11

2.6 Interactive visualization in JIVE. 11

2.7 Interactive visualization in BlueJ. 12

2.8 Jeliot 3 Graphical User Interface (GUI). 13

2.9 PlanAni GUI. 14

3.1 Layout of the application. 17

3.2 Syntax for passing array arguments. 18

3.3 Visualisation of method execution results. 18

3.4 Usage example of the test table for the methods findMax and factorial. 19

3.5 Usage example of the “Side Effects” column. 20

3.6 Inspection of a constant variable. int size is a constant, however its assignment
value is not literal. 21

3.7 Tracing the history of values of a variable with no specific role – int reversed. 22

3.8 Tracing the value history of a stepper variable – int i. 23

3.9 Tracing the value history of a gatherer variable – int result. 23

3.10 Tracing the value history of a most-wanted-holder variable – int max. 23

3.11 Inspecting a loop table. 24

3.12 Inspecting a nested loop table. 24

3.13 Multiple part assignment expression – to - from + 1. 25

3.14 History of the assignment expression evaluation for seq[i]. 25
ix



3.15 Inspecting conditions. 25

3.16 Inspecting return expressions. 26

3.17 Error message obtained from attempting to create an array of negative size. 26

3.18 Error message obtained from an illegal array access. 27

4.1 The listener monitors the execution and invokes methods to handle each action. 30

4.2 Unified Modeling Language (UML) diagrams representing the data types
ExecutionData, ExpressionValue and VariableTrace 31

4.3 The variableAssignment method (pseudocode). 33

4.4 The expressionEvaluation method (pseudocode). 34

A.1 Factorial method implemented in Java. 45

A.2 Method in Java to check whether a given integer is palindromic. 45

A.3 Method in Java to move all integers equal to 0 in an array to the end. 46

A.4 Method in Java to fill an array with an integer sequence. 46

x



List of Tables

3.1 Variable roles and their descriptions. 21

5.1 Test results. 38

xi





List of Acronyms

IDE: Integrated Development Environment

TDD: Test-Driven Development

SDK: Software Development Kit

UI: User Interface

UML: Unified Modeling Language

GUI: Graphical User Interface

API: Application Programming Interface

xiii





CHAPTER 1

Introduction

This chapter introduces the topic of our work, stating the motivation behind it, along with
the research questions and fundamental objectives that guided its development. It also
details the approach we have adopted to address the identified challenges. Additionally,
this chapter presents the structure of the document.

1.1. Motivation

Introductory programming courses present intrinsically different challenges compared
to those faced by proficient programmers. For many students, these courses serve as
their first exposure to programming concepts, which generally involve multiple layers of
abstraction [4] making seemingly simple problems appear quite demanding for individuals
with less experience.

As is widely understood in the academic community, dropout rates for courses of this
nature are notoriously high when compared to other undergraduate courses [19].

One of the main barriers faced by students lies in the often daunting task of interpreting
error messages generated by their code [7,11], sometimes seen as enigmatic, providing
little to no help to the untrained. Furthermore, traditional debuggers seem intimidating
to beginners, as they pose a significant skill barrier to students unfamiliar with standard
debugging procedures. This is particularly true for the default debuggers that come with
the most popular Integrated Development Environments (IDEs), which generally rely on
breakpoints and a step-by-step approach.

Another hurdle arises from the confusion associated with tasks outside the sphere of
coding, such as setting up the programming environment. This is yet another cryptic
step standing in the way of students early in their learning path, recurrently resulting in
configuration problems. Given the limited number of hours per week of direct contact
between students and teachers, time wasted on solving these issues may prove significant.

Over the past decades, numerous initiatives have focused on creating pedagogical
debuggers that prioritise usability and simplify complex concepts, usually delivered in the
form of an external tool meant for being used as part of another IDE. The concept of a
unified debugger and code editor is not novel in and of itself, as its the benefits have been
pointed out before [1]. Nevertheless, as far as we are aware, such an approach has never
been implemented within the context of an inspection-based debugger.

We believe that encouraging users to explore the execution details of their implemented
methods can aid their development as programmers. Additionally, this system may also
serve as a tool for teachers to better identify bugs in their students’ code.

1



1.2. Research Questions

The primary goal of this dissertation is to investigate the feasibility of implementing a
pedagogical programming environment centred on the notion of code inspections. We also
wish to explore the impact of such features on the target user base, i.e., students at the
introductory programming level. To this end, we aim to examine the following research
questions:

RQ1 How could variable tracing be effectively implemented in a pedagogical environ-
ment?

RQ2 What impact do variable tracing features have on debugging tasks of introductory
programming exercises?

1.3. Objectives and Approach

In the interest of tackling the issues presented above, we developed a debugging system
that is fully integrated with a standalone environment for Java programming. Compared
to traditional IDEs, one of the major advantages of using a standalone application is the
lack of configuration steps regarding the environment itself (e.g., path variables, directory
management, etc.).

We aimed to lift many of the usual troubles that come with debugging, such as the
often inconvenient mode switch from the code editing area to a separate debugging view.
By combining the two modes, the transition between writing code and fixing potential
bugs is consistent and harmonious. Users should feel that the inspections are constantly
available and ready to be toggled on from a single button click.

Regarding the debugging approach itself, the goal was to present a holistic behavioural
analysis of the inspected methods, rather than focusing on user-selected locations (e.g.,
using breakpoints). The debugger was developed with the aim of serving as more than
a tool for detecting the source of issues, rather acting as a mechanism to thoroughly
understand every aspect of a program, such as tracing the history of variable assignments
to evaluating an expression at any point in the code, and more.

In addition, the incorporation of a structure for writing unit tests was intended to
encourage the adoption of Test-Driven Development (TDD) practices during the initial
stages of learning. TDD has been shown to be effective in multiple contexts [1], although
there are some concerns regarding its applicability in beginner practitioners [3]. We
contend that our interface offers an accessible approach to this technique and, given the
nature of the exercises posed to first-year students – generally simple arithmetic and
logic problems – unit testing is particularly useful for validating the correctness of their
solutions.

This project was developed as part of a broader Kotlin application, building upon an
existing standalone coding environment. Although the application’s framework was already
established, our primary contributions included implementing the argument parsing logic
2



for handling input parameters within multiple contexts in the environment, the debugging
system, and and the unit test structure.

1.4. Document Structure

Chapter 2 presents our literature review on programming education challenges, pedagogical
debugging, and existing tools related to our work. Following, in Chapter 3, we give an
overview of the user experience with the environment, describing its layout and core
functionalities. Chapter 4 then explores key implementation details of the application, and
the essential technologies used to develop its features. In Chapter 5, we cover a usability
study conducted with programming instructors to assess the effectiveness of our proposed
tool. Finally, Chapter 6 presents our conclusions and outlines directions for future work to
enhance the prototype’s capability.

3





CHAPTER 2

Background

In this chapter, we explore the background for the presented work, examining the existing
literature on the challenges of learning and teaching programming, the topic of pedagogical
debugging, and also include a section on a Kotlin library that was crucial to this work.
Additionally, we present an overview of existing tools aimed at achieving similar goals to
ours, highlighting the key characteristics of the reviewed debuggers.

2.1. Literature Review

It is broadly recognised that introductory programming courses present notable difficulties
to students [8,19]. As pointed out by Jenkins (2002) [8], programming is not merely
a single skill or a simple set of skills, but rather a hierarchy of skills. Considering this
view, it is logical to approach teaching by gradually increasing the level of complexity and
focusing on mastering the fundamentals in the initial learning stages.

Lahtinen et al. (2005) [11] analysed the results of a survey conducted on 559 students
and 34 teachers regarding “difficulties experienced and perceived when learning and
teaching programming”. The questionnaire received responses from six universities, with
the students having some programming experience either in Java or C++. First and
foremost, the paper points out that the often large dimension and heterogeneity of student
groups make it difficult to design beneficial instructions for everyone, recurrently leading
to high dropout rates on courses of this nature. Regarding the survey’s results, it was
discovered that both the group of students and the group of teachers believed that finding
bugs in a program was one of the “most difficult issues in programming”.

One of the key skills of experienced programmers is the ability to mentally trace the
history of specific variables in a program, or even the program in its entirety. Beginners’
tracing skills have been shown to be often quite poor, as it is an ability that develops with
experience. Vainio et al. (2007) [18] attempted to find out the reasons for this adversity.
The article defines tracing as “mental execution”, as in, a simulation of the program’s
execution steps. The study found that some students struggled with non-trivial variable
assignments, i.e., “those that are results of some computation and whose values cannot
be seen in the program text”. In the tool presented in this document, we address these
situations by allowing users to see the values being assigned to variables and tracing their
history throughout the execution.

The concept of variable roles has also impacted our research from the beginning.
Identifying the purpose of each variable has been repeatedly shown to improve students’
mental grasp of the concepts they are confronted with in programming exercises [2,9].

5



Certain program behaviours can be represented by roles that illustrate variable functions
that are widely found in academic exercises. During the development of this prototype, we
were mindful of the potential advantages of incorporating variable roles into the debugging
experience.

There have been numerous success stories in using visualisation tools for introductory
programming courses. Yadin (2011) [19] described a study which resulted in a reduction
of the percentage of failing students by 77.4% in an introductory course, over a period
of four years. Even after shifting from Java to Python, focusing more on algorithms
and imperative programming as opposed to teaching in the light of the object-oriented
paradigm, it was not until the students started using the GvR visualisation tool1 that the
failing rates showed a dramatic drop.

Likewise, a study conducted in our facilities by Santos (2011) [16] evidenced the
benefits of the usage of the Aguia/J tool for Java. To attend the final exam in this course,
students must succeed in the lab class evaluation. Pilot groups using the tool reached the
exam in larger proportions than the control groups, as well as being more successful in the
exam itself.

2.2. The Strudel Library

The backbone of this project lies in the Strudel library2 for Kotlin, which comprises an
architecture for modelling structured programming – a programming paradigm based on
the idea that a program should have a hierarchical structure and extensively use control
flow mechanisms (e.g., if/else), loops (for/while), and reusable modules –, allowing for
precise observation of execution events of a programming model.

To employ these functionalities, one can load a Java source code file into an instance
of a Strudel virtual machine, retrieving a module from which a procedure may be executed.
Figure 2.1 is a code snippet that illustrates this mechanism.

Several aspects of the execution can then be examined, particularly by tracking
variables, loop iterations and error messages. As will be expanded on in section 4.3, in the
context of our project, we collected this information and handled it accordingly to present
the code inspections.

Another major feature of this library is its ability to detect variable roles. Although we
do not explicitly refer to these roles as done in the reviewed literature, the code inspections
are presented with slight differences that highlight the behaviour of the variables (e.g.,
iterators, accumulators, etc.). Such differences are explained in section 3.4.1.

Strudel supports a limited set of Java instructions, covering the basic keywords and data
structures generally recommended to be taught to students at an early stage. Consequently,
there are some constraints on how a program can be developed using our tool. However,
we believe these limitations are justified, given that it was designed to be particularly
useful to beginners, by providing mechanisms to help understand the fundamentals of

1https://gvr.sourceforge.net/
2https://github.com/andre-santos-pt/strudel

6



// Java file to be loaded
val file = File("Test.java")

// Loading the Java file into a Strudel module
val module = Java2Strudel ().load(file)

// Retrieving the method (procedure) to be executed
val method = module.getProcedure ("foo")

// Creating the Strudel virtual machine
val vm = IVirtualMachine.create ()

// Execute the method
val result = vm.execute(method)

Figure 2.1. Code snippet illustrating how a Java procedure can be executed
using the Strudel library.

programming. It is meant to serve as a controlled environment where novice programmers
can build confidence in their knowledge and skills before progressing to conventional, less
beginner-friendly IDEs.

2.3. Visualisation Tools

This project builds on previous efforts in the development of pedagogical program visuali-
sation tools. In this section, we review some of the most notable resources in this realm,
focusing on specific aspects that we sought to explore in our project.

It is relevant to note that this prototype was developed with the prospect of being
a potential successor in the line of programming tools that have been used by first-year
students at our facilities.

2.3.1. PandionJ

PandionJ [17] was, in many ways, a precursor to the tool we present in this document.
First and foremost, it has been used at our facilities by students enrolled in the introductory
programming course for several years. Its use highlighted several areas of improvement,
inspiring us to develop an even more comprehensive and user-friendly environment. Many
of the functionalities we explored were first implemented in PandionJ, most notably the
focus on variable roles to visually display variables illustrating their characteristics.

It was built as an Eclipse3 plugin that integrates with its debugger infrastructure.
This is one of the main differences between PandionJ and our tool, as we wanted to
distance ourselves from a third-party IDE, for the reasons mentioned in the above chapters.
PandionJ works together with the breakpoint debugging feature in Eclipse, providing
information about variables’ history and a look-ahead into their future state. This
information is inferred through static analysis of the source code, deriving relationships
between code elements and their behaviour.

3https://www.eclipse.org/

7



The debugging process is achieved via a view consisting of graphical renders of program
variables. At a given suspended state of the program, users can trace the current value of
a variable and, depending on their role, gather information on their past and future values.

Figure 2.2 is a screenshot of the PandionJ tool which exemplifies its tracing features,
representing variables differently according to their role. For instance, “sum” is recognized
as an accumulating variable (gatherer), illustrated by the sum expression in parenthesis
“(0 + 3 + 5)”.

Figure 2.2. A screenshot of the PandionJ tool illustrating a method for
summing the values contained within a given interval of array indices. Figure
1 in [17].

2.3.2. Aguia/J

Before PandionJ, students at our facilities used Aguia/J [16] in the introductory course,
which is an experimentation and visualisation tool tailored towards learning object-oriented
concepts in Java.

The debugging approach of Aguia/J consists of an interactive view where users can
experiment with creating objects and updating their properties, without having to stop
the execution (Figure 2.3).

Users can see the effects of making changes to the source code via a visual representation
of the declared classes and objects. Cues such as greyed-out boxes for private attributes and
checkboxes for booleans constitute illustrations of programming concepts and complement
the pedagogical experience.

2.3.3. TOD

TOD (Trace-Oriented Debugger) [13] is an Eclipse plugin that allows users to navigate
through the execution of a program. It is described as an “omniscient debugger”, in
the sense that the tool records the entire execution trace of a program and lets users
freely explore it, without the need to re-run it multiple times to pinpoint the source of a
bug. While the implementations differ abundantly, this philosophy closely aligns with our
approach.
8



Figure 2.3. A screenshot of the Aguia/J tool. Java source code (on the
left) is visually represented in the GUI (on the right). Figure 2 in [16].

TOD provides a feature to jump directly to events that assign current variable values,
allowing users to look-back into the causes of faulty behaviour. Users can also bookmark
events and objects to access them quickly, which can be useful in large programs.

Apart from these standout features, the debugging process follows the traditional
approach of stepping backward and forward in time through “web browser-like buttons”.
Figure 2.4 exemplifies such a navigation.

2.3.4. Memview

Memview [6] is a visual debugging tool, created as an extension to the DrJava [14] IDE4.
Essentially, it is an interactive display of computer memory, divided into three panes: one
for the call stack, another for static objects allocated in the heap and a last one for regular
heap objects. Figure 2.5 is a screenshot of the tool in action.

The debugger is meant to help students understand Java concepts, especially object-
oriented programming. It aims to teach students key ideas, such as memory addresses,
references, the heap, etc.

Although the tool’s focus significantly differs from ours, it is worth mentioning that a
user experiment conducted in an introductory programming course using it yielded notable
success. Empirical analysis suggested that the tool was indeed able to provide a helpful
visual depiction of the memory model, resulting in a better understanding of the concepts
at play.

2.3.5. JIVE

JIVE (Java Interactive Visualization Environment) [5] is a pedagogical tool designed to
aid the understanding of Java programs through dynamic visualisation, presenting visual
representations of object structures and their states, as well as the call history of a program
via automatically generated diagrams, as can be seen in Figure 2.65.

Contrasting with traditional step-by-step debugging approaches, JIVE offers a declara-
tive method based on a set of queries over the program’s history. For instance, users can

4https://drjava.sourceforge.net/
5Retrieved from https://cse.buffalo.edu/jive/.

9



Figure 2.4. Navigation history in TOD. Extracted Figure 3.a from Pothier
and Tanter (2009) [13].

utilise these queries to obtain information about an object at a given execution state or
retrieve all values assigned to a variable throughout its lifetime.

Though powerful, JIVE cannot be considered a beginner-friendly tool, as most of its
features require a certain level of experience and an understanding of the framework itself.

2.3.6. BlueJ

BlueJ [10] is an educational IDE intended for teaching object-oriented programming in
Java. It is built upon a standard Java Software Development Kit (SDK), thus using a
10



Figure 2.5. Debugging a program with Memview. Extracted Figure 3
from Gries et al. (2006) [6].

Figure 2.6. Interactive visualization in JIVE.

11



Figure 2.7. Interactive visualization in BlueJ.

standard compiler and virtual machine, but presenting a custom User Interface (UI) which
offers visualisation features.

The approach is based on a window containing a UML class diagram of the project
structure. From this diagram, users can instantiate objects and execute any public methods
from that class. An object’s properties can be inspected at any time through the object’s,
including its static and instance fields.

BlueJ also features a built-in debugger which supports step-by-step execution and
breakpoint-based debugging, as shown in Figure 2.76. The seamless integration of the
debugger in the IDE encourages students to focus on learning without being overwhelmed
by complex tools.

2.3.7. Jeliot 3

Jeliot 3 [12] is a program visualisation and animation tool tailored to Java and designed
to aid beginner students to learn procedural and object-oriented programming. The
key idea is to engage students in building their own programs while also examining a
visual representation of the program’s execution, helping them develop a mental model of
programming concepts and associating them with concrete implementations.

6Retrieved from https://teaching.csse.uwa.edu.au/units/CITS1001/handouts/
BlueJDebuggerTutorial.pdf,

12



The tool has evolved from previous versions, Jeliot I and Jeliot 2000, focusing in-
creasingly more on novices and fixing shortcomings found in empirical evaluations of
these installments. Jeliot 3 extends the features of Jeliot 2000 to allow visualisation of
object-oriented concepts.

Figure 2.87 is a screenshot of the user interface of Jeliot 3. The visualisation area is
organised in four sections, namely a method frame area, an expression evaluation area, a
constants area, and an instance area.

Figure 2.8. Jeliot 3 GUI.

2.3.8. PlanAni

PlanAni [15] is a program visualisation system based on variable roles. It creates animations
tailored to the roles of the variables being illustrated (Figure 2.9). For instance, stepper
variables are depicted by footprints showing its current, previous and potential future
states, along with an arrow pointing in the direction to which the values are evolving.
Likewise, fixed-value variables are represented by a stone, conveying the idea that it will
not change during the execution.

An experiment was conducted with three groups: one group was instructed using
traditional methods, another using variable roles as a concept to complement the course,
and a final one using variable roles along with the animator. The teachers found that

7Retrieved from https://epl.di.uminho.pt/~gepl/GEPL_DS/PEP/teste/JeliotPEP/userguide.pdf.

13



the visualisation system made programming concepts easier to understand and entailed
livelier discussions. PlanAni users demonstrated a stronger grasp of the program’s overall
behaviour and the contribution of each variable.

Figure 2.9. PlanAni GUI.

2.3.9. Overview

The previous subsections reveal the existence of various tools that have been developed
with a focus on pedagogical visualisation features. Multiple approaches have been tested
in view of fostering the learning path of beginner programmers, ranging from debuggers to
diagram generators and more.

Our key takeaways from researching this topic are that a great portion of such tools rely
on external IDEs, thus requiring configuration before they can be utilised. Furthermore,
many traditional approaches may not be as beginner friendly as their description might
suggest. One of the main aspects we noticed when analysing these tools is the often
crowded, confusing, and archaic-looking user interfaces, which undoubtedly hinders the
experience users have with them. In designing our prototype, we focused on addressing
these issues by simplifying the user interface, aiming to reduce the entry barrier and offer
a cleaner, more intuitive experience.
14



Moreover, we noted the success cases of using variable roles as a means to complement
the learning process of programming concepts. By incorporating variable roles within
our prototype, we aimed to create an environment where students could more easily
identify the function of each variable throughout a program, particularly those exhibiting
behaviours that recurrently occur across different programs.

15





CHAPTER 3

The Environment

This chapter explores RQ1, providing an overview of the user experience with the developed
environment and explaining the content layout of the application and its core functionalities,
such as running methods, unit testing and code inspection.

3.1. Layout

The application’s layout consists of a code editor on the left, a table for writing unit
tests on the right and a toolbar at the top (Figure 3.1). The toolbar includes, in order,
a button for opening a Java file, followed by buttons for running a method, opening the
settings menu, and toggling code inspections. The following sections cover the main user
experience aspects of every notable feature of the prototype.

3.2. Running a Method

To run a method, users should place their cursor inside the method’s body and then press
the green “play” button in the toolbar.

Depending on if the selected method takes parameters, a window will pop up, prompting
users to write the method’s arguments, as seen in Figure 3.1, where the method sequence
was invoked. If the introduced arguments are valid, the method will be executed upon
pressing “Submit”. Otherwise, the text boxes where the invalid arguments were passed will

Figure 3.1. Layout of the application.

17



be marked in red and the method will not execute. For methods that take no parameters,
this step is skipped.

The application supports four primitive types – integer, double, char and boolean
– as well as one-dimensional arrays of each mentioned type.

In the interest of simplifying the user experience, we opted not to follow the Java
syntax for declaring arrays, which involves using the new keyword and explicitly stating
the type of the array (e.g., new int[] 1, 2, 3, in the case of an integer array). Instead,
in the application, array arguments should be passed as shown in Figure 3.2.

Figure 3.2. Syntax for passing array arguments.

After the method executes, the result will be shown on top of its declaration via a
tooltip (Figure 3.3). Users may then wish to inspect the method’s behaviour, which can
be done by pressing the inspections button - represented by a yellow lamp - which should
now be enabled. Being one of the key features of this prototype, the code inspections will
be thoroughly explained in section 3.4.

Figure 3.3. Visualisation of method execution results.

3.3. Unit Test Table

As previously mentioned, we aimed for our application to encourage early-stage learners
to experiment with test-driven development, leading to the inclusion of a unit test table.

3.3.1. Table Layout

The table, shown on the right side in Figure 3.1, consists of five columns – “Method Call”,
for typing the unit test; “Expected Result”, for inputting the expected return value of
the method; “Result”, for showing the actual return value; “Side effects”, for inputting
the expected final value of a method’s variable(s); and “Message”, for displaying potential
execution error messages. The “Result” and “Message” columns are read-only, while the
others may be edited.

Additionally, there are two buttons that interact with the table — “Run tests”, on top,
for running the test battery; and “Add test”, below, which allows the next line on the table
to be edited.
18



3.3.2. Running Tests

Figure 3.4 demonstrates a use case for the test table. In this example, the method findMax
is intended to find the maximum value in a given integer array, and factorial should
calculate the factorial of an integer input. The table contains three tests for each method.
As indicated by the colour of the values in the “Result” column — green for correct and
red for incorrect – the final test, factorial(4), failed, as the method did not return the
expected result. This suggests the presence of a bug which lead it to compute an incorrect
value. Furthermore, the first call of the factorial method, in line 4, has a typing error,
triggering the display of an error message.

Figure 3.4. Usage example of the test table for the methods findMax and
factorial.

To investigate further, users can select the faulty execution by clicking on its cor-
responding table row and pressing the inspection button in the application’s toolbar,
triggering code inspections to appear in the editor. Users may also examine other exe-
cutions, whether unsuccessful or not, by selecting different rows in the table, alternating
between various test results, and allowing them to analyse each one individually.

This process illustrates the seamless integration between the editor, the unit test table
and the code inspections.

3.3.3. Side Effects

Unit tests are typically targeted towards methods that return some value. However, void
methods could also be tested by examining the impact on other variables inside of the
method, rather than the return value. We included a “Side Effects” column that allows
users to evaluate the expected values of any variable after the method’s execution.

To test for side effects, users should input tests using the following notation: varName1
= value1; varName2 = value2; ... varNameN = valueN. As long as the variables
exist within the method, they can be tested in the same way the return value can.

19



Figure 3.5 exemplifies this feature in the case of a sorting algorithm (“bubble sort”),
where the final value of the input array parameter (int[] arr) is checked, despite the
method having a void return type. The cell’s text is displayed in green when the test is
successful, or red when it is not.

Figure 3.5. Usage example of the “Side Effects” column.

3.3.4. Error Messages

Bearing in mind the subjacent philosophy of this project of simplifying otherwise com-
plicated programming activities, we aimed to display helpful error messages wherever
justified, and that also applies to the context of the unit test table.

Parsing errors often result from users mistyping a method call or a parameter value,
and the problem may not always be clear for a novice. Instead of merely stating that there
is a problem, we focused on providing personalised explanations on why something might
have gone wrong. Users may find the following error messages in the “Message” column.

• “Invalid method call”;
• “Method not found”;
• “Number of arguments do not match number of method parameters”;
• “Invalid argument type(s)”;
• “Invalid side effect”;
• “Side effect variable not found”.

3.4. Code Inspections

In a Java method, numerous aspects can be inspected, each requiring different approaches
according to their characteristics, in order to provide the most helpful analysis to users. We
explore these particularities by experimenting with how such concepts can be illustrated
in a suggestive manner, namely variable and expression tracing as well as runtime error
handling.

As previously stated, in a Strudel model every variable is assigned a role based on its
behaviour throughout the program’s execution. Table 3.1 explains every contemplated
variable role within the scope of this application.

In the context of this section, the term “literal” is used in relation to an expression
written explicitly in the code, rather than being computed from other values (e.g., 5 is a
literal expression, whereas sum + i is not). This distinction is relevant for deciding where
to display inspections.

To explore this feature, users should press the inspection button after either executing
a single method directly from the code editor or running a battery of tests from the test
20



Table 3.1. Variable roles and their descriptions.

Role Description
Fixed Value Holds a constant value.
Stepper Value history is sequential.
Gatherer Holds a value obtained by accumulating several

values.
Most Wanted Holder Holds the most desirable value encountered so far

during a sequence of comparisons.
None Does not fit into any of the above descriptions.

table and then selecting the execution to be analysed. Only one method can be inspected
at a given time.

The following subsections discuss every inspection-worthy situation covered by the
debugger and explain the decisions behind certain design features.

3.4.1. Variable Tracing

Apart from when a fixed value (constant) variable is assigned a literal expression – in
which case, no further inspection is needed, as the variable’s behaviour is trivial – users
should expect to find code inspections in the form of tooltips that reveal the history
of every variable in a program. These tooltips are revealed by clicking on the name of
the variable to be inspected, within the statement where it was declared, and are shown
directly beneath it.

Although fixed value variables are, by definition, assigned only once (and, therefore,
their value history consists of a single value), when assigned a non-literal value, as illustrated
in Figure 3.6, the debugger also sets a tooltip showing the actual value being assigned.
Otherwise, no tooltip is shown, as its content would be redundant.

Figure 3.6. Inspection of a constant variable. int size is a constant,
however its assignment value is not literal.

In the context of non-constant variables, their tracing history is also presented according
to their role. For variables with no specific roles (see role “None” in Table 3.1), their value

21



history is displayed as shown in Figure 3.7. Every other case is explained in the next
subsection.

Figure 3.7. Tracing the history of values of a variable with no specific role
– int reversed.

It is worth noting that, in the interest of maintaining the usability of the tooltips,
we set a limit of 20 values shown for variables with an extensive history. We determined
that this would provide a comprehensive enough representation of the behaviour of these
variables.

Regarding role specific tracing, we reasoned that variable roles evoke distinct tracing
representations to aid in understanding the program as a whole. The different tooltip
styles were designed to visually convey a variable’s behaviour without explicitly labelling
its specific role. Stepper variables are most commonly used in loops, where they function
as iterators. As illustrated by Figure 3.8, the tooltip associated with these variables reveals
their starting and ending values, separated by two dots (“..”), followed by their step size
when it is larger than 1. Gatherer variables are stem from an accumulation expression,
and for that reason, their tooltips reveal the explicitly typed-out expression that originated
the final value. Figure 3.9 exemplifies this case with a variable that accumulates the
calculation of a factorial number. Most Wanted Holder variables obtain their final value
after a sequence of comparisons, landing on the most desirable encountered value. This
behaviour can occur in problems such as finding the largest element in an array. Therefore,
for tracing variables of this nature, the tooltips are represented by a strikethrough list
of values up until the last one, which is written in plain text, illustrating the process of
elimination preceding the arrival at the final value. Figure 3.10 exemplifies this tooltip
style.

To further assist users in comprehending the behaviour of a program, the tracing
of variables within a loop can be performed collectively in a table format. Although
this information is available in the individual tooltips of each variable, it can be more
intuitive for some users to examine the history of these variables side by side, each row
corresponding to a loop iteration. The table (shown in Figure 3.11) includes all variables
22



Figure 3.8. Tracing the value history of a stepper variable – int i.

Figure 3.9. Tracing the value history of a gatherer variable – int result.

Figure 3.10. Tracing the value history of a most-wanted-holder variable –
int max.

within the loop’s scope. Each row displays their values immediately before the iteration
begins.

Users can access this tooltip by clicking on the loop keyword - “for” or ”while”, depending
on the chosen loop structure. Nested loops can also be inspected in the same manner, as
illustrated by Figure 3.12.

23



Figure 3.11. Inspecting a loop table.

Figure 3.12. Inspecting a nested loop table.

Similar to the limit on the number of values shown in a regular variable trace, we set
a limit of 20 lines for the loop tables, in addition to the line corresponding to the last loop
iteration.

3.4.2. Expression Evaluation

Similar to the variable tracing feature, users may also access tooltips that display the
history of expression evaluations. By clicking on any non-literal expression, they can
inspect variable assignments, comparisons, and return statements.

Referring back to the example in Figure 3.6, the assignment expression may be
inspected, revealing the explicit calculation being performed to reach the value to be
assigned. Figure 3.13 portrays this tooltip.
24



Figure 3.13. Multiple part assignment expression – to - from + 1.

For variable assignment expressions of this nature that occur inside loops, the tooltip
reveals their evaluation history (Figure 3.14), showing how each part of the expression
evolved throughout the loop iterations.

Figure 3.14. History of the assignment expression evaluation for seq[i].

Likewise, conditions may also be inspected either outside or inside loops (Figure 3.15).

(a) Condition outside loop. (b) Condition inside loop.

Figure 3.15. Inspecting conditions.

Finally, non-literal return expressions contain tooltips that vary depending on whether
the expression is composed of multiple parts or just one (Figure 3.16).

Expression histories are also limited to show only the first 20 evaluations, guaranteeing
that the user space is never clustered with large inspection blocks.

3.4.3. Errors

Whenever a runtime error occurs, the faulty section of the code is highlighted in the editor,
accompanied by a tooltip explaining the error. This includes null pointer exceptions, array
accessing issues, etc.

The images below illustrate some examples of such tooltips. Figure 3.17 demonstrates
the error message shown when creating an array of negative size, and Figure 3.18 exhibits
a situation in which an array is being accessed through an out of bounds index.

This approach is arguably more intuitive and beginner friendly than the traditional
console-based approaches, where the location of the code that caused the error is shown in
text form, as opposed to being directly displayed in the editor.

25



(a) Multiple part return expression.

(b) Simple return expression.

Figure 3.16. Inspecting return expressions.

Figure 3.17. Error message obtained from attempting to create an array
of negative size.

The features presented in this chapter capture the core objectives we set for the
development of our prototype. Using this application, users are able to thoroughly inspect
the behaviour of their code, enabling them to understand each action performed within a
method, which not only supports the debugging task but can also enhance comprehension
of the concepts involved.

26



Figure 3.18. Error message obtained from an illegal array access.

27





CHAPTER 4

Implementation

This chapter covers the main implementation aspects of the application, as well as the key
technologies used to achieve its features.

4.1. User Interface

The UI of the application was developed using SWT (Standard Widget Toolkit)1, which
is a graphical widget toolkit for Java that provides a set of native tools for creating
platform-independent GUIs. Though it was designed for Java, SWT can also be used in a
Kotlin application because Kotlin is fully interoperable with Java, enabling seamless use
of Java libraries such as this.

One of the priorities regarding the user experience with the application was to display
most of the information within the main window in a clear and concise manner. The
exception to this principle is the window that prompts users to insert the arguments of a
method, which we considered to be most effectively presented as a pop-up window.

4.2. Argument Parsing

In the context of this application, users’ input parameters require parsing in two occasions:
when prompted to insert arguments in the pop-up window upon calling a method, and
when writing a test in the unit test table. Both cases are dealt with in a similar way,
and their handling relies on the JavaParser library2 , which provides an Application
Programming Interface (API) for analysing Java source code.

We begin by collecting the list of parameters of the method in question and the list of
input arguments. Then, for each parameter, we check for its type using the Strudel API,
and, as long as it is valid (i.e., it is one of the types supported by the application), we
attempt to parse the corresponding input argument as the specified type using JavaParser.
For example, in the case of a method that takes an integer parameter, users’ input argument
is parsed as an integer literal expression. An analogous process happens for double, char
and boolean variable types. In the case of arrays, we use JavaParser to determine the
type of the input array and its values. Finally, each value is parsed as the inferred type,
failing if any parsing operation is unsuccessful.

As mentioned in the above chapter, our environment requires array inputs to be passed
in a format that may seem unusual to a more experienced programmer. To ensure parsing
consistency, we perform specific manipulations on the input array arguments to make them
compatible with JavaParser. This manipulation occurs as soon as the method is called.
1https://www.eclipse.org/swt/
2http://javaparser.org

29



We use a regular expression to detect array creation patterns and transform them into
valid array expressions with the correct prefixes (e.g., the input [1, 2, 3] is converted to
new int[] 1, 2, 3). These adjusted input arguments are then processed according to
the described parsing procedure.

4.3. Data Collection

The information displayed in the code tooltips is collected during the execution of each
method via a listener provided by the Strudel API. As mentioned in Section 2.2, when
users run a method in our tool, its execution is simulated within a Strudel virtual machine.
We implemented the listener to monitor specific behaviours relevant to the debugging task.
It is activated at key points in an execution, such as when a variable is assigned a value, or
a loop performs an iteration. Each of these actions is handled by a distinct method within
the listener. Figure 4.1 illustrates how such methods are invoked during the execution
process. It is important to note that, for simplicity’s sake, the image omits multiple other
invocations which would also be triggered during the execution of this sample code.

Figure 4.1. The listener monitors the execution and invokes methods to
handle each action.

Since the execution is simulated, we can access detailed information about any aspect
of its process through Strudel objects that represent the characteristics of each program
element. For instance, in the returnCall method, we can retrieve the structure of the
return statement, along with its value, and process this information to present it accordingly
in a tooltip.

4.3.1. The Process

The data collection process itself unfolds in three main stages. First, multiple data struc-
tures are initialised within the listener to track the program elements of an execution. These
30



structures are responsible for tasks such as mapping code statements to the corresponding
text to be displayed in the tooltips and mapping loop objects to lists representing variable
tracings. Then, as the execution proceeds, these structures are incrementally populated as
the listener methods are triggered by various events. Finally, after the method’s execution
ends, the collected data is organised in the form of an object to be accessed within the
debugging view. Figure 4.2 is a UML diagram representing the structure of the content
stored in this object, referred to as “Execution Data”. Certain details that entail more
complex implementations have been omitted for simplification. This data type contains
the location in the IDE of the corresponding method (procLocation), the return value
obtained from the execution (result), and data structures storing information on variables,
loops and expressions that may be inspected (variableInspections, loopTraces and
expressionTraces). Also shown in the diagram are two data types which relate to the
creation of the ExecutionData object. ExpressionValue supports the data collection
regarding expression tracing, representing an association between an expression and its
evaluation at a given moment in the code. Likewise, VariableTrace assists on storing
information concerning variable tracing, representing a variable’s history of values.

Figure 4.2. UML diagrams representing the data types ExecutionData,
ExpressionValue and VariableTrace

These data types were built on top of existing structures provided by Strudel. For
instance, Statement, used in the variableInspections map, is an interface encompassing
objects that can represent any syntactic unit or instruction that performs a specific action,
including assignments, return statements and control flow statements. On the other hand,
Loop, used in the loopTraces field pertains to loop blocks. Strudel’s hierarchical approach
allows a break down of each element within a method, supplying the means for handling
the information needed for our debugging purposes.

31



The list below comprises every listener method implemented in this project, which
populate the components of an ExecutionData object, along with a brief description of
its behaviour. While Strudel provides the structure for handling multiple other events, we
found it unnecessary to implement them within the scope of the tool’s debugger.

• procedureCall initialises data structures for collecting information in later meth-
ods.

• variableAssignment traces variable assignment values.
• arrayElementAssignment traces array element assignment values.
• loopIteration collects information on loop variables before beginning an itera-

tion.
• loopEnd collects information on loop variables after the last iteration.
• expressionEvaluation traces expression evaluations.
• returnCall collects information on the return statement.
• executionError collects information on any potential execution error.
• procedureEnd processes all information from the method and stores it in an
ExecutionData object.

The following section covers key concepts that play a major role in the implementation
of these listener event methods.

4.3.2. Listener Events

In Section 3.4.1, it is explained how variable roles influence the display style of certain
code inspections. This categorisation first occurs in the data collection stage. One listener
event method where variable roles are taken in consideration is the “variableAssignment”
method, represented in pseudocode in Figure 4.3. The control structure of this method
demonstrates the core logic underlying the debugger’s operation. It is worth noting that
this illustration does not cover every intricacy regarding the method’s logic, and this also
applies to other events depicted in this section.

In relation to how a variable’s behaviour can be represented, we focus on aspects
that can influence the way users may interpret the code inspections. For instance, fixed-
value variables require minimal processing, as their assigned values can be directly stored
as the corresponding tooltip’s content. However, a fixed-value variable inside a loop
may be different across iterations. We account for those cases with the condition if
(!a.parent.isInLoop). This is one of the multiple utility methods provided by the
Strudel API. If the condition is true then we can immediately store the tooltip inside the
variableInspections map. If, however, the variable is indeed inside a loop, we must
treat it as a regular variable in a process akin to what is shown in the else statement of
the when structure.

A similar consideration was made for stepper variables, although in this case we
considered to be best not to display tooltips when such variables occur inside loops (e.g.,
an index variable inside a nested loop), as their representation would not be trivial. In any
32



fun variableAssignment(a: VariableAssignment , value: Value) {
when (a.role) {

is FixedValue -> {
if (!a.parent.isInLoop) {

variableInspections.put(a, value)
}
else {

addVariableTrace(a, value)
statements.add(a)

}
}
is Stepper -> {

if (!a.parent.isInLoop) {
statements.add(a)

}
}
else -> {

addVariableTrace(a, value)
statements.add(a)

}
}

}

Figure 4.3. The variableAssignment method (pseudocode).

other case, stepper variables are treated in a slightly different manner than the remaining
roles. Since only their first and final values are included in the tooltip, considering that
intermediate values are self implied, the need for storing every assigned value during the
execution, via the method addVariableTrace, is eliminated. Therefore, we simply store
the statement in which the assignment takes place (statements.add(a)) and handle it
later in the procedureEnd method.

In order to exemplify this procedure, we use the sumElements method, depicted in
Figure 4.1, as an illustration of how a variable assignment call is handled in a practical
scenario, in addition to other event methods which would be triggered during the execution.
For this example’s sake, we assume that the method was called with the following input
argument: [1, 2, 3]. In the first line, “int sum = 0;”, the value 0 is assigned to the integer
variable sum. This action triggers the variableAssignment listener method, which accepts
two parameters; the assignment expression, a and the value being assigned, value. First,
we check the variable’s role to determine how this instance will be handled. Given that this
variable’s final value is obtained by an accumulation of previous values, Strudel categorises
it as a “gatherer” variable, which directs the method to proceed using the else clause.
From here, we call the method addVariableTrace, passing the parameters needed to
create and store an object of VariableTrace, representing the content of this variable at
this point in the code. From this event, the format of the collected object will resemble
the following instance: VariableTrace(Statement("int sum=0;", 0)). The statement
encapsulating this assignment is also passed to an auxiliary structure statements which
helps matching each program element to its corresponding tooltip, after which the method

33



ends. All of this information will later be consulted after the execution ends, to prepare
the tooltip that will be displayed in the debugger, in a style that is appropriate for a
“gatherer” variable.

As we follow this example’s execution, the loop would then iterate over the elements
of the input array. In each iteration, several listener methods are triggered as a result of
the behaviour exhibited in the code. After declaring and assigning the integer variable i,
setting off the variableAssignment event. A procedure similar to what is described in
the above chapter will take place, with the particularity that this is a “stepper” variable,
prompting slightly different handling, as previously described.

The condition that follows triggers the expressionEvaluation method, illustrated
in Figure 4.4. The distinction between the input parameters e and concreteExpression
pertains to the fact that Strudel provides access to both the raw expression as well
as the evaluated expression at that moment, which we utilise to better manage the
information obtained from this event. Regarding the method’s logic, first we determine if
the expression is literal, in which case no further processing is required, and, assuming it
is not, we collect the respective trace in an ExpressionValue object and store it in the
expressionTraces data structure. In this example, the condition checks if i, which has
the value 0, is smaller than the length of the array (3). The resulting ExpressionValue
object would therefore resemble ExpressionValue("0 < 3", true). Along with the
evaluated expressions obtained during the next iterations, this information can later
be displayed in a tooltip upon inspection, tracing the condition’s multiple evaluations
throughout the execution.

fun expressionEvaluation(
e: Expression ,
value: IValue ,
concreteExpression: Expression

) {
if (e is Literal)

return

expressionTraces.put(
e, List <ExpressionValue(concreteExpression , value)>

)
}

Figure 4.4. The expressionEvaluation method (pseudocode).

Entering the loop iteration itself, the event loopIteration will be called, compiling
all variable assignments that take place during its course and storing their data in the
loopTraces structure, which is basis for the creation of the loop inspection table. The
above procedures repeat for each iteration, populating the various data structures, until
the final iteration, which activates the loopEnd event to complete the process.
34



Upon reaching the return statement, the listener event returnCall is triggered, storing
information regarding the evaluation of the return expression. In this case, if we sum the
input array’s elements, we obtain the value 6 (1 + 2 + 3).

Finally, after the execution has terminated, and assuming no runtime errors oc-
curred, the calling of the procedureEnd event organises all collected data through an
ExecutionData object containing the information to be displayed in the tooltips. If users
wish to execute multiple other tests of the same method using the unit test table, they are
able to inspect each one individually and seamlessly alternate between inspections, due to
each being associated to a separate ExecutionData instance. The debugging view simply
interprets the content of each instance and highlights the code accordingly.

Though not extensively, this section shows the general logic behind the data collection
process which supplies the debugging view with tooltips for each program element worthy
of being inspected. While other aspects could have been explored, the discussed listener
events are the ones we deem best to represent this procedure.

35





CHAPTER 5

Usability Study with Novice Programmers

To explore RQ2, we conducted a preliminary usability study with 6 novice programmers,
in order to evaluate the effectiveness of the prototype.

In order to assess the prototype’s usefulness, we sought feedback from individuals with
matching characteristics to the potential users of the application - crucially, subjects with
little programming knowledge or experience. We intended to validate the application’s
viability and gather constructive criticism regarding its main features, most notably the
code inspections.

The following sections describe the testing process, including our method and the
obtained results.

5.1. Method

The individuals who volunteered to participate in the study presented mostly similar
backgrounds, generally coming from finance and economics related degrees, with the
exception of one subject who has a bachelor’s degree in data science. Every participant had
previously taken at least one programming course using Python, and none had experience
in Java. As such, before formally starting a session, we dedicated a few minutes providing
an overview of the environment’s user interface and addressing any questions about the
upcoming procedures. This included short exercises to bring the participants into a
programming mindset, such as simple questions on loops and arrays, to review possibly
forgotten concepts and illustrating how they materialised in the Java language.

Each session consisted of four tasks of increasing difficulty centred around fixing bugs
in four faulty Java methods. Participants were instructed to perform half of the tasks
using our application and the other half using the IntelliJ1 IDE, which is currently one of
the most popular coding environments for Java. The four methods involved in the sessions,
which can be found in Appendix A, presented the following issues:

(1) The method factorial miscalculated the factorial of a number.
(2) The method isPalindrome incorrectly checked if a word was a palindrome or

not.
(3) The method sequence threw an “array index out-of-bounds” exception when

attempting to create an array consisting of every integer number between two
given parameters.

(4) The method moveZerosToEnd threw an “array index out-of-bounds” exception
when attempting to move the zeros of an integer array to the end.

1https://www.jetbrains.com/idea/

37



The tasks were presented to every participant in the same order. However, half of the
group used the prototype to solve tasks 1 and 3, while the other half used it for tasks
2 and 4. The exercises were designed to simulate common mistakes made by beginner
programmers, such as off-by-one errors (e.g., intending to iterate over all elements in an
array, but missing the last one), incorrect arithmetic logic and array accessing issues. Each
method’s intended behaviour and implementation was carefully explained to the subjects
before moving on to solving the exercises.

We measured the completion time for each task and used this data to calculate the
average time spent across both platforms. Using this approach, we could then compare
the subjects’ average performance on the two environments. A positive outcome would be
reflected in shorter average task completion times when using the prototype compared to
a conventional IDE.

Additionally, we observed and documented any indications of uncertainty or confusion
expressed by participants to evaluate potential usability issues. Although usability may
not be numerically measurable, we attempted to gain insights into the subjects’ experience
with the prototype by noting relevant remarks and feedback during the experiment.

5.2. Results

Table 5.1 presents every subject’s completion times for all tasks. Values in bold correspond
to instances where the prototype was used, while values in plain text represent tasks
completed with the conventional tool. Below the individual task completion times are the
average times and standard deviation in each environment, followed by the time difference
percentage. A negative percentage indicates that the subjects completed the tasks faster,
on average, using the prototype. Positive results reflect the opposite scenario.

Table 5.1. Test results.

Subject/Task factorial isPalindrome sequence moveZerosToEnd
Subject 1 0:20 min 0:35 min 0:58 min 1:29 min
Subject 2 1:50 min 1:13 min 5:35 min 4:21 min
Subject 3 2:57 min 2:09 min 5:05 min 3:34 min
Subject 4 1:27 min 1:28 min 3:04 min 4:36 min
Subject 5 1:37 min 2:25 min 6:33 min 5:12 min
Subject 6 2:46 min 1:46 min 4:50 min 3:09 min
Average time (IntelliJ) 1:38 min 1:29 min 4:12 min 4:02 min
Std Deviation (IntelliJ) 1:18 min 0:16 min 2:54 min 0:47 min
Average time (prototype) 2:01 min 1:43 min 3:03 min 3:25 min
Std Deviation (prototype) 0:40 min 0:59 min 1:18 min 1:52 min
Time difference (%) +23.5% +15.7% -27.4% -15.3%

Although the number of participants is relatively small, this study showed interesting
trends that gave us valuable insight into potential use cases for the prototype.

It is worth noting the time discrepancy between some of the subjects can be attributed
to the varying degrees of comfort the individuals had with programming. Although their
38



academic experience was largely similar, some subjects generally enjoyed the programming
courses they took during their degrees more than others. These individuals were generally
more comfortable with basic concepts even if years had passed since they took the courses,
leading to overall faster times.

Regarding the time difference between environments, it is clear that the prototype did
not entail better results in tasks 1 and 2. On the other hand, in tasks 3 and 4 we find the
exact opposite. Looking into the reasons behind these observations, one could note that
the first two tasks revolved around simple arithmetic problems and basic programming
structures. In reference to the “factorial” task, one participant commented after the session
that as soon as he ran the method with some input N and saw that it had computed
the result for an input N − 1, it was very clear to them what the problem was. They
immediately realised that the loop had performed one iteration less than what it should
have. Perhaps the simplicity of these problems may not justify resorting to a debugging
environment. The same cannot be said for the last two tasks, as they concerned more
complex structures and errors. A method that throws an exception typically intrigues
beginner more than an incorrect result. In tasks 3 and 4, some participants spent much of
their time first trying to understand what exactly the issue was, and only then attempting
to fix it. The code inspections and error messages shown in the prototype seem to have
helped some of the subjects, however, this claim would require a larger and therefore more
robust study to be accurately verified.

Overall, the study presented in this chapter places the focus of future tests in assessing
student’s performances in situations where the behaviour of a program may not be trivial,
such as more complex algorithms, akin to those typically taught in a course on programming
algorithms and data structures.

39





CHAPTER 6

Conclusions

The work presented in this dissertation stemmed from the observation of existing peda-
gogical programming visualisation tools and their shortcomings as beginner friendly tools
that assist students’ development of coding skills. We proposed a prototype which aims to
tackle common issues manifested by students in the context of introductory programming
courses, most notably, tracing the history of variables’ values throughout the execution of
a program. The proposed Research Questions RQ1 and RQ2 guided the development of
the prototype in its entirety, serving as validation mechanisms for the design choices of
the application.

Regarding Research Question RQ1, we consider the prototype to be successful in
presenting variable and expression tracing features. Our proposed environment demon-
strates a valid approach for illustrating such concepts, emphasising those that are tipically
more problematic to beginner students. For instance, features such as loop inspections
complement the tool in providing the means for a thorough analysis of a program execution,
particularly in scenarios that rely on fundamental data and control structures, commonly
found in the curriculum of introductory courses. Additionally, role specific inspections
suggest the behaviour of certain variables whose tasks in the context of a program can
often be reproduced in different exercises, without explicitly referring to such variables by
a role name. The expression tracing features can further assist users in understanding a
program’s information flow, through inspections that reveal the evaluation of conditions
at different points in the code, or the parts that compose complex variable assignment
expressions.

When it comes to Research Question RQ2, the conducted study on subjects that
are inexperienced in programming offers valuable insights on the potential experience
encountered in a real world scenario. Our findings reveal that the tracing features had a
positive impact in the subjects’ performance in the two most complex tasks, encouraging
us to believe that the proposed debugger could benefit students in an introductory
programming class context. Given the participants’ limited coding experience, the debugger
was helpful in pointing to the direction of the solution.

6.1. Limitations and Future Work

The limitations of this dissertation can be categorised into two main topics:

• Shortcomings of the prototype;
• Scale and limitations of the usability study.

41



Regarding the first category, the prototype encompasses many of the core concepts faced
by students in introductory programming courses. However, it lacks coverage of some
aspects which are commonly found in the curriculum of courses of this nature. For instance,
we were not able to implement support for multi-dimensional arrays, a feature which
typically provides challenging problems to inexperienced students. Additionally, Strudel’s
limited support for Java types restricts users from experimenting with collections. Also,
the application allows for a single class to be explored at a time, due to the application’s
single file setup. Although the prototype is not tailored to object-oriented programming,
we hope to expand its features in future iterations to better accommodate these concepts,
providing a more comprehensive environment for students.

In relation to the usability study, we believe that additional research is recommended
to solidify the evidence we gathered from our experiment. While the results are promising
and suggest that the prototype can be useful in diverse situations, further studies with a
larger participant pool and a broader range of tasks are needed to establish the efficacy of
such an environment in real world scenarios.

In conclusion, while this dissertation leaves room for further exploration, we consider the
presented product to represent a meaningful contribution towards pedagogical debugging
research. It serves both as a proof of concept for the Strudel library’s capabilities of
facilitating the creation of behavioural inspection based debugging environments, and as a
potentially valuable tool for novice students, aiding in their programming learning path.

42



References

[1] J Buchan, L Li, and S. G. Macdonell. Causal factors, benefits and challenges of test-driven development:
Practitioner perceptions. 18th Asia-Pacific Software Engineering Conference, 2011.

[2] P Byckling and J Sajaniemi. Roles of variables and programming skills improvement. ACM SIGCSE
Bulletin, 38:413–417, 2006.

[3] C Desai, D Janzen, and K Savage. A survey of evidence for test-driven development in academia.
ACM SIGCSE Bulletin, 40:97–101, 2008.

[4] J Edwards. Example centric programming. ACM SIGPLAN Notices, 39:84–91, 2004.
[5] P Gestwicki and B Jayaraman. Methodology and architecture of jive. SoftVis ’05: Proceedings of the

2005 ACM Symposium on Software Visualization, pages 95–104, 2005.
[6] P Gries, V Mnih, J Taylor, G Wilson, and L Zamparo. Memview: A pedagogically-motivated visual

debugger. Proceedings Frontiers in Education 35th Annual Conference, 2006.
[7] B Hartmann, D MacDougall, J Brandt, and S. R. Klemmer. What would other programmers do?

suggesting solutions to error messages. CHI ’10: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2:1019–1028, 2010.

[8] T Jenkins. On the difficulty of learning to program. 3rd Annual LTSN-ICS Conference, Loughborough
University, pages 53–58, 2002.

[9] M Kuittinen and J Sajaniemi. Teaching roles of variables in elementary programming courses. ITiCSE
’04: Proceedings of the 9th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, pages 57–61, 2004.

[10] M Kölling, B Quig, A Patterson, and J Rosenberg. The bluej system and its pedagogy. International
Journal of Phytoremediation, 13:249–268, 2003.

[11] E Lahtinen, K Ala-Mutka, and H.-M. Järvinen. A study of the difficulties of novice programmers.
ACM SIGCSE Bulletin, 37:14–18, 06 2005.

[12] A Moreno, N Myller, E Sutinen, and M Ben-Ari. Visualizing programs with jeliot 3. AVI ’04:
Proceedings of the Working Conference on Advanced Visual Interfaces, pages 373–376, 2004.

[13] G Pothier and É Tanter. Back to the future: Omniscient debugging. IEEE Software, 26:78–85, 2009.
[14] Eric Allen Robert, Robert Cartwright, and Brian Stoler. DrJava: A lightweight pedagogic environment

for Java. In SIGCSE Bulletin and Proceedings, pages 137–141. ACM Press, 2002.
[15] J Sajaniemi and M Kuittinen. Program animation based on the roles of variables. SoftVis ’03:

Proceedings of the 2003 ACM symposium on Software visualization, pages 7–16, 2003.
[16] A. L. Santos. Aguia/j: a tool for interactive experimentation of objects. ITiCSE ’11: Proceedings of

the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education,
pages 43–47, 2011.

[17] A. L. Santos and H. S. Sousa. Pandionj: A pedagogical debugger featuring illustrations of variable
tracing and look-ahead. ACM International Conference Proceeding Series, pages 195–196, 2017.

[18] V Vainio and J Sajaniemi. Factors in novice programmers’ poor tracing skills. ACM SIGCSE Bulletin,
39:236–240, 2007.

[19] A Yadin. Reducing the dropout rate in an introductory programming course. ACM Inroads, 2:71–76,
2011.

43





APPENDIX A

Usability Testing Task Code

int factorial(int n) {
if (n == 0) {

return 1;
}
int result = 1;

// correct:
// (int i = 2; i <= n; i = i + 1)

for (int i = 2; i < n; i = i + 1) {
result = result * i;

}
return result;

}

Figure A.1. Factorial method implemented in Java.

boolean isPalindrome(int number) {
int original = number;
int reversed = 0;
while (number != 0) {

int digit = number % 10;

// correct:
// reversed = reversed * 10 + digit;

reversed = reversed + digit * 10;
number = number / 10;

}
return original == reversed;

}

Figure A.2. Method in Java to check whether a given integer is palin-
dromic.

45



int[] moveZerosToEnd(int[] nums) {
int insertPos = 0;
for (int i = 0; i < nums.length; i++) {

if (nums[i] != 0) {
nums[insertPos] = nums[i];
insertPos ++;

}
}
while (insertPos < nums.length) {

// correct:
// insertPos ++;
// nums[insertPos] = 0;

nums[insertPos] = 0;
insertPos ++;

}
return nums;

}

Figure A.3. Method in Java to move all integers equal to 0 in an array to
the end.

int[] sequence(int from , int to) {
int size = to - from + 1;
int[] seq = new int[size];
int i = 0;
while (i < size) {

// correct:
// seq[i] = from + i + 1;

seq[i + 1] = from + i + 1;
i++;

}
return seq;

}

Figure A.4. Method in Java to fill an array with an integer sequence.

46


