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ABSTRACT Image segmentation is an essential initial stage in several computer vision applications.
However, unsupervised image segmentation is still a challenging task in some cases such as when objects
with a similar visual appearance overlap. Unlike 2D images, 4D Light Fields (LFs) convey both spatial and
angular scene information facilitating depth/disparity estimation, which can be further used to guide the
segmentation. Existing 4D LF segmentation methods that target object level (i.e., mid-level and high-level)
segmentation are typically semi-supervised or supervised with ground truth labels and mostly support only
densely sampled 4D LFs. This paper proposes a novel unsupervised mid-level 4D LF Segmentation method
using Graph Neural Networks (LFSGNN), which segments all LF views consistently. To achieve that, the 4D
LF is represented as a hypergraph, whose hypernodes are obtained based on hyperpixel over-segmentation.
Then, a graph neural network is used to extract deep features from the LF and assign segmentation labels to
all hypernodes. Afterwards, the network parameters are updated iteratively to achieve better object separation
using backpropagation. The proposed segmentation method supports both densely and sparsely sampled 4D
LFs. Experimental results on synthetic and real 4D LF datasets show that the proposed method outperforms
benchmark methods both in terms of segmentation spatial accuracy and angular consistency.

INDEX TERMS Light field, unsupervised segmentation, deep learning, angular consistency, graph neural
network.

I. INTRODUCTION
Light field (LF) imaging has attracted increasing attention
from researchers due to the rich information it includes and
its potential for immersive applications [1], [2]. LFs contain
information about both the intensity and direction of light
rays and can be represented as an array of views captured
from different perspectives. To represent that array of views,
a 4D function I (x, y, u, v) can be used, where (x, y) and (u, v)
are, respectively, the spatial and angular coordinates of each
view. By fixing one angular and one spatial coordinate, an
Epipolar Plane Image (EPI) (i.e., the unique 2D spatio-angular
LF slice typically containing a regular structure with several
slanted lines [1]) can be obtained, which corresponds to the

depth/disparity cues, as presented in Fig. 1. Depth/disparity
cues in 4D LFs can help improve different computer vision
tasks, such as in scene segmentation, by using these cues as a
discriminative feature, notably, when visual information alone
is not sufficient.

Image segmentation is a fundamental task that aims at di-
viding image data into perceptual and homogenous regions
according to specific criteria. By segmenting an image, we can
isolate and identify individual components or objects, which
is essential for several applications, such as image compres-
sion, object detection, autonomous driving, medical imaging
and scene understanding [3]. Image segmentation, in 2D im-
ages, has been widely investigated with different solutions

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 333

https://orcid.org/0000-0003-2952-9680
https://orcid.org/0000-0002-9197-2627
https://orcid.org/0000-0003-3982-5723
https://orcid.org/0000-0001-9738-639X
mailto:maryam.hamad@lx.it.pt
https://doi.org/10.1109/OJSP.2025.3545356


HAMAD ET AL.: UNSUPERVISED ANGULARLY CONSISTENT 4D LIGHT FIELD SEGMENTATION USING HYPERPIXELS

FIGURE 1. In 4D LFs, each LF view (i.e., a slice of 4D LF in a particular
angular plane (u, v)) captures the scene from a different view perspective
as in (a). This results in shifted light rays across views as can be seen in
the EPIs with green and red borders, shown below and to the left of the
central view in (b).

including traditional methods, e.g., clustering and graph-cut
optimization techniques [3], or deep learning-based methods
[3]. Most of the deep learning-based 2D image segmentation
methods are supervised, relying on Ground Truth (GT) la-
bel images. Since generating pixel-wise annotations for large
datasets can be labor-intensive and costly, the development of
fully unsupervised methods or the fine-tuning of pre-trained
foundation models that have been trained on large datasets to
extract deep features for image segmentation tasks became
a growing research direction with promising performance
[3], [4].

Although 2D image segmentation is an active research
area, 4D LF segmentation remains relatively unexplored, with
additional challenges and performance requirements to be
considered. While segmentation accuracy is important in 2D
images, segmentation angular consistency in 4D LFs is also
essential. More precisely, when segmenting 4D LFs, the cor-
responding pixels across all LF views must have the same
segmentation label. Otherwise, the sudden label changes when
navigating through the views can lead to unwanted flickering.
Coupled with the huge amount of data involved, and the lack
of 4D LF segmentation datasets for training and evaluation,
this makes 4D LF segmentation a more complex task than
conventional 2D image segmentation.

Existing 4D LF segmentation methods can be catego-
rized into three main categories according to the level of
the semantic meaning of the obtained segments (as detailed
in Section II): i) Low-level unsupervised over-segmentation
methods, where similar pixels are grouped into perceptually
meaningful atomic regions, without the need for label an-
notations or user scribbles, e.g., [5], [6], [7], [8], [9], [10];
ii) Mid-level semi-supervised segmentation, where the se-
mantic labels of the segmented objects are not included,
e.g., [11], [12], [13], [14], [15]; and iii) High-level super-
vised semantic segmentation methods, e.g., [16], [17], [18],
where semantic labels are also predicted for each pixel. This
paper focuses on achieving mid-level multi-label segmenta-
tion in a fully unsupervised manner using a deep-learning
approach.

Low-level and mid-level 4D LF segmentation methods
typically rely on classical or basic machine learning

techniques. On the other hand, high-level segmentation meth-
ods adopt deep learning techniques for training. Most deep
learning-based 4D LF segmentation methods are applied only
to the central view without considering other objects in the
side views. However, when using sparse LFs, such as in im-
mersive applications, other LF views, where disocclusions and
additional objects may exist, must be considered. Moreover,
the available deep neural networks for high-level seman-
tic segmentation are often supervised, and, thus, inevitably
demand pixel-wise GT segmentation labels for the training
[16], [17], [19], which are challenging to obtain for all LF
views, especially for real world LF datasets. Nevertheless,
the use of deep learning has shown promising results in
supervised 4D LF semantic segmentation and also in weakly-
supervised and unsupervised 2D image segmentation [20].
Therefore, fully unsupervised 4D LF segmentation methods
using deep learning are becoming increasingly appealing.
The reason is that it may help in extracting relevant fea-
tures from the LF and reduce the effort of manually defining
precise features, which can be quite challenging. Another
possible approach is to adapt pre-trained 2D foundation mod-
els, e.g., [21], for 4D LF data for extracting deep features
and exploiting them for segmentation tasks. Pre-trained 2D
foundation models capture rich semantic information from
large-scale data, thus, by exploiting the pre-trained knowl-
edge, zero-shot or few-shot image segmentation can be
achieved. However, an adaptation is needed when applied for
4D LF data to consider ensuring angular consistency con-
straints. Applying unsupervised mid-level segmentation can
overcome the GT availability limitation by learning deep fea-
tures from the input itself and enabling segmentation based
on intrinsic features. Moreover, pseudo-segmentation labels
for segmentation are often generated in mid-level unsuper-
vised segmentation, starting with many classes, and then
the pixel labels and feature representations are jointly op-
timized by updating the network parameters using gradient
descent.

To sum up, this paper aims to overcome the main limitations
in most existing (mid/high-level) 4D LF segmentation meth-
ods, namely: i) Relying on the user scribbles or supervision; ii)
Only supporting densely sampled 4D LFs; iii) Only applying
segmentation to the central view; and iv) Not adequately ex-
ploiting LF view correlation or ensuring angular consistency
across LF views. Accordingly, the main contributions of this
paper are:
� Proposal of a novel unsupervised angularly con-

sistent 4D LF segmentation method for dense and
sparse LFs – In this paper, 4D LFs are segmented
into (mid-level) objects without any prior supervision
or user scribbles. To the best of the authors’ knowl-
edge, this is the first (mid-level) 4D LF segmentation
technique that exploits deep features to segment ob-
jects without supervision for both dense and sparse
LFs. Additionally, the segmentation is applied simulta-
neously to all LF views that compose a 4D LF, ensuring
angular consistency throughout. This is achieved by ini-
tially over-segmenting 4D LFs into hyperpixels (where
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corresponding pixels across LF views are grouped ac-
cording to their similarity in terms of color/texture,
position and depth/disparity into the same hyperpixel)
using the method proposed by the authors in Hamad et al.
[10] to provide a compact LF representation.

� Use of Graph Neural Networks (GNNs) for 4D LF
segmentation – In this paper, to efficiently deal with the
large amount of 4D LF data, a novel hypergraph rep-
resentation based on 4D LF over-segmentation is used.
To exploit the advantage of deep learning techniques,
a GNN is used on the graph-structured 4D LF. While
GNNs have shown promising results in node classifi-
cation and 2D image segmentation, to the best of the
authors’ knowledge, this is the first time a GNN has been
applied to unsupervised 4D LF segmentation.

� Proposal of a set of complementary metrics for eval-
uating segmentation angular consistency – Although
both spatial accuracy and angular consistency should
be considered when evaluating 4D LF segmentation
methods, existing 4D LF mid/high-level segmentation
methods are often only evaluated in terms of spatial
accuracy. Therefore, this paper proposes a set of com-
plementary metrics that together enable evaluating the
segmentation angular consistency, to be used in addition
to spatial accuracy evaluation metrics. These metrics can
be used for both dense and sparse LFs.

The remainder of the paper is organized as follows.
Section II briefly reviews the related work on 4D LF segmen-
tation. Section III describes the proposed unsupervised 4D
LF segmentation method. Section IV presents the proposed
segmentation angular consistency metrics. Section V includes
experimental results to evaluate the proposed method. Finally,
Section VI concludes the paper with final remarks and direc-
tions for future work.

II. RELATED WORK
In the past decade, several proposals have been made for 4D
LF segmentation, which can be categorized into three main
categories depending on the level of semantic meaning of the
obtained segments, as briefly reviewed in this section:

Low-level unsupervised over-segmentation methods, e.g.,
[5], [6], [7], [8], [9], [10], mainly group pixels into atomic re-
gions, which share similar characteristics, e.g., color/texture,
position and depth/disparity, without the need for label anno-
tations or user scribbles. These regions are often used as a
pre-processing step for subsequent tasks. Available low-level
4D LF over-segmentation methods can be classified as either
clustering-based or graph-based, depending on the approach
used to divide 4D LFs into homogeneous regions. In the
case of clustering-based methods, the K-means clustering al-
gorithm is often used. K-means is usually applied to all 4D
LF views with different approaches, such as starting K-means
clustering in the central view and applying label propagation
into all other LF views, as in [6], [7], or applying K-means
clustering for the entire 4D LF as in the hyperpixels method

[10]. In the case of graph-based methods, the 4D LF is repre-
sented by a weighted undirected 4D graph where each pixel
is considered as a graph node, as proposed by Li et al. [8].
Afterwards, LF over-segmentation is achieved by maximiz-
ing the graph entropy in the 4D LF domain. While 4D LF
over-segmentation can be achieved using graph techniques,
applying graph optimization on a huge number of pixels re-
quires extensive computational resources.

Mid-level semi-supervised segmentation methods group
the pixels into objects without including semantic labels, e.g.,
[11], [14], [15]. In this case, user scribbles are usually inserted
in the central view and the entire LF views are segmented
accordingly [11], [12], [13], [14], [15]. For mid-level 4D LF
segmentation, a common approach is to represent the 4D LF
as a graph and apply classical graph-cut optimization assisted
by the user scribbles (a.k.a. semi-supervised or scribble-
supervised segmentation). However, representing each light
ray as a graph node leads to a huge number of nodes, and
thus can increase the processing complexity [12]. To reduce
the number of graph nodes, corresponding pixels across LF
views that represent the same 3D point (a.k.a. a ray bundle)
are represented by a graph node [13]. To further reduce the
graph size, the 4D LF can be represented by a hypergraph
by exploiting the spatio-angular correlation across views [14],
[15]. To achieve that, low-level 4D LF over-segmentation is
first applied. Then, a hypergraph is created where 4D seg-
ments (i.e., corresponding pixels in all views that locally share
similar criteria and represent the same 3D region) are repre-
sented by a hypernode. Although these methods reduce the
graph size significantly, the over-segmentation methods they
use to create hypergraphs are only suitable for dense LFs but
not adequate for sparse LFs with large occlusions. Mid-level
unsupervised segmentation methods can also be found in the
literature, e.g., [22], [23], for specific applications such as
transparent object segmentation and soft color segmentation,
which are out of the scope of this paper.

High-level supervised semantic segmentation methods,
e.g., [16], [17], [18], also predict semantic labels for each
pixel. However, due to the lack of available LF datasets with
GT segmentation labels for training deep neural network mod-
els, this has been a challenging research field in the past.
New datasets for LF semantic segmentation have been pro-
posed recently to support this research direction [17], [19],
enabling the use of deep learning for this task [19], [17],
[16], [18], [24]. To achieve supervised semantic segmentation,
LF datasets with label annotations are required for training
and evaluation. Therefore, a dataset with 400 real world LFs
annotated for three foreground objects was created by Jia et al.
[19] to train a Convolutional Neural Networks (CNN) based
model. Later, Shen et al. [17] proposed a new dense 4D LF
dataset for urban scenes (UrbanLF) annotated for 14 semantic
classes. After the UrbanLF dataset was published, various 4D
LF supervised semantic segmentation methods were proposed
for urban scenes, e.g., [16], [18], [24]. Existing methods in this
category can segment only specific objects (e.g., cars, buses
and people). Additionally, they rely on supervision using GT

VOLUME 6, 2025 335



HAMAD ET AL.: UNSUPERVISED ANGULARLY CONSISTENT 4D LIGHT FIELD SEGMENTATION USING HYPERPIXELS

FIGURE 2. Main steps of the proposed 4D LF segmentation method. Given a 4D LF, the corresponding disparity maps for all views are initially estimated
(Step1), next, the 4D LF is over-segmented into hyperpixels (Step2); after that, a hypergraph is generated, where each hyperpixel is represented as a
hypernode (Step3); finally, a GNN optimization is performed in an unsupervised manner to obtain the 4D segmentation labels (Step4).

segmentation labels of densely sampled LFs. As the exploita-
tion of weakly-supervised approaches to achieve high-level
semantic segmentation shows promising results in 2D images
[20], adapting these approaches for 4D LF could reduce the
reliance on expensive and time-consuming fully annotated
data.

III. PROPOSED 4D LIGHT FIELD SEGMENTATION
METHOD
This paper proposes an unsupervised and angularly consis-
tent mid-level 4D LF segmentation method for both dense
and sparse static LFs. Given a 4D LF, the proposed method
consists of four main steps, as summarized in Fig. 2. Each step
is detailed in the following subsections. It is worth noting that
the first two steps are considered pre-processing steps using
existing methods, and the third and fourth steps include the
contributions of this paper:

1) Disparity Estimation – Angularly consistent disparity
maps are estimated for all LF views using an efficient
disparity propagation method [25].

2) 4D LF Over-segmentation – The 4D LF is over-
segmented into hyperpixels, which are consistent over
the entire LF [10].

3) Hypergraph Generation – Once the hyperpixels are
obtained, the 4D LF is represented as an undirected
hypergraph, where each 4D hyperpixel is represented by
a hypernode and two neighboring hyperpixels are con-
nected by a hyperedge. Each hypernode is represented
by a feature vector.

4) GNN Optimization – Finally, using the hypergraph as
input, a GNN model is initialized and iteratively op-
timized, generating this way an unsupervised 4D LF
segmentation, i.e., assigning a label for each hyperpixel,
without any annotation effort or using user scribbles for
supervision.

In this paper, we consider 4D LFs, however, the proposed
method can be adapted and applied to other imaging modal-
ities that can be represented by a graph (e.g., point clouds)
and the GNN model may be adapted as well for other LF
applications, such as LF inpainting and color editing.

A. DISPARITY ESTIMATION
As shown in Fig. 2 (Step 1), initially, disparity maps are
estimated for all 4D LF views (with respect to its adjacent
right view). Disparity information is inversely related to object
depth and represents the difference in position of the same
3D point between two views. Therefore, it is a rich feature to
guide the segmentation in terms of reducing edge ambiguity,
especially when objects have similar colors or texture but dif-
ferent depths. Integrating disparity with other features during
the segmentation helps deep learning models to learn spatial
structures, leading to better performance, namely in terms of
segmentation accuracy and angular consistency. The accuracy
of the used disparity maps can affect the subsequent steps
in terms of accuracy and angular consistency. Therefore, in
this paper, to ensure disparity map angular consistency (i.e.,
corresponding pixels across views that represent the same 3D
point must have the same disparity value), the disparity map of
the central view is computed first using the method proposed
by Shi et al. [26]. After that, the disparity of all other LF views
is consistently propagated using the proposed disparity prop-
agation method in [25]. For this step, any disparity estimation
method that generates angularly consistent disparity maps for
all views can be used.

B. 4D LF OVER-SEGMENTATION
As shown in Fig. 2 (Step 2), given the input 4D LF and
the estimated disparity maps for all LF views, 4D LF over-
segmentation is applied as a pre-processing step using the
proposed method in Hamad et al. [10] to generate “hyperpix-
els”. This step is useful for the proposed LFSGNN method
since it handles the spatial shifts across LF views, due to
the viewing angle, by grouping corresponding and similar
pixels into hyperpixels in both dense and sparse LFs. As
mentioned above, 4D LF over-segmentation into hyperpixels
enables generating a more compact graph representation and
reduces the number of nodes significantly (e.g., compared to
using each pixel/light ray as a graph node). Moreover, using
regular square segments of an image (a.k.a batches) to repre-
sent graph nodes as proposed in [4] may result in non-smooth
borders; instead, it is more robust to use homogenous regions
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that adhere well to object boundaries and ensure angular con-
sistency across all LF views. Since applying traditional 2D
over-segmentation to each LF view independently will not
ensure angular consistency, 4D hyperpixel over-segmentation
is adopted in this paper [10].

The 4D hyperpixel over-segmentation method is used since
it outperforms other existing 4D LF over-segmentation meth-
ods in terms of spatial accuracy and angular consistency
[10]. Moreover, it enables a flexible and adaptive over-
segmentation over the entire 4D space for both dense and
sparse LFs. It is shown in [10] that using accurate disparity
maps improves the 4D hyperpixel over-segmentation and en-
ables better adherence to the object boundaries, subsequently,
improving the final mid-level segmentation, as explained in
Section V. The default hyperpixel size in [10] (i.e., 20) is used
when applying 4D LF over-segmentation.

Each hyperpixel is represented by different features includ-
ing color, texture, and disparity of the original 4D LF. Both
RGB and CIELAB color spaces are used to represent the color
feature since it has been shown that there is an advantage
in combining those two color spaces [27]. With respect to
the CIELAB color space, in this paper, only the chromatic
components are used (i.e., a and b channels) to reduce the
impact of variations in illumination. Moreover, a texture fea-
ture is computed using the Local Binary Pattern (LBP) texture
descriptor [28] over the grayscale version of the original RGB
4D LF.1 The LBP computes the local variation of pixels
with high discriminative power and robustness to illumination
changes, being a widely adopted effective approach in many
computer vision applications. The LBP adopted in this paper
uses up to 256 unique patterns and the texture descriptor of
each hyperpixel is the pixel histogram over these 256 bins.
Moreover, for the RGB, CIELAB and disparity features, the
arithmetic mean values computed for each hyperpixel are used
as hyperpixel features. Thus, this results in a 262-dimension
feature vector, h = [R̄, Ḡ, B̄, ā, b̄, D̄, (LBPhist )×256 ], for each
hyperpixel. Given the differences in feature ranges, all fea-
tures are normalized to [0, 1]. Normalizing these features will
be useful later for the GNN optimization step, ensuring stable
learning and proper optimization.

C. HYPERGRAPH GENERATION
As shown in Fig. 2 (Step 3), the hyperpixels that were com-
puted in the previous step are used to generate a hypergraph.
Each hyperpixel is represented as a hypernode of a hyper-
graph denoted by G = (v, ε), where v represents the set of
hypernodes and ε represents the set of undirected and un-
weighted hyperedges that represent the adjacent relationship
between the nearest neighboring hyperpixels. Every hyper-
node is, therefore, represented by a 262-dimension feature
vector as explained in the previous step. In this paper, all
hyperpixels that share a common boundary are considered
neighbors, as illustrated in Fig. 3.

1[Online]. Available: https://docs.opencv.org/3.4/de/d25/imgproc_color_
conversions.html

FIGURE 3. Example of a single hyperpixel neighbors (only a 2D slice is
shown): a) Part of the original LF; b) Corresponding hyperpixels
boundaries; c) Set of neighbors that share common boundaries with a
given hyperpixel. This is illustrated for a single hyperpixel but applies to all
hyperpixels.

The hypergraph, hypernode and hyperedge concepts are
used in this paper since a hyperpixel typically has a 2D slice
in some or all LF views. Hence, each slice can be considered
as a classical graph node. However, since all hyperpixel slices
represent the same hyperpixel, using the hypernode concept
enables a more compact 4D LF representation. The hyper-
graph generation is flexible to any input resolution and the
number of hypernodes may differ from one LF to another ac-
cording to the input resolution and hyperpixel size. Therefore,
there is no explicit adjustment needed to handle different 4D
LF datasets. The hypergraph generated in this step is used as
input to the GNN model, as detailed in the next step.

D. GNN OPTIMIZATION
The main goal of the proposed method is to classify
all pixels in a 4D LF into an arbitrary number of
classes c (Cmin ≤ c ≤ Cmax), where Cmin is the minimum
number of classes/labels and Cmax is the initial maximum
number of classes/labels, as detailed in Section V-B. To do so,
the proposed method uses a GNN to achieve an unsupervised
4D LF segmentation by merging the initial hyperpixels and
labeling the 4D LF with c unique labels based on the LF
content.

1) GRAPH NEURAL NETWORK
A GNN is a neural network designed to process graph-
structured data. The key idea behind GNNs is to enable each
node to aggregate information from its neighbors through
edges. Therefore, GNNs can capture complex dependencies
within the graph data at different levels of abstraction. Each
layer of a GNN typically comprises two primary operations:
message passing and aggregation. In the message passing op-
eration, node information is gathered and exchanged between
neighboring nodes. In the aggregation operation, all the in-
formation gathered from the previous operation is fused for
each node into one message to update its current state. GNNs
have shown appealing performance in various applications,
including node classification (e.g., in social networks and
multi-label image segmentation). In this paper, the inductive
and scalable Graph Sampling and Aggregation (GraphSAGE)
framework is adopted which is widely used for node classifi-
cation [29]. The key idea of GraphSAGE is to generate a node
embedding (i.e., a low-dimensional vector representation of

VOLUME 6, 2025 337

https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html


HAMAD ET AL.: UNSUPERVISED ANGULARLY CONSISTENT 4D LIGHT FIELD SEGMENTATION USING HYPERPIXELS

nodes in a graph) by learning an aggregation function from
the representation of its neighbor nodes. The reason for us-
ing GraphSAGE lies in its ability to effectively capture local
structural information of graph nodes and its scalability to
process large-scale graph data and handle high-dimensional
feature spaces [29]. Moreover, it enables sampling only a
subset of neighboring nodes (which can be randomly selected
or by using other advanced methods) to conduct propagation
instead of using all the neighborhood information. This can
help in reducing the computational complexity and makes the
model less likely to overfit to specific structures in the training
data. In GraphSAGE, the message passing operation can be
considered a generalization of the traditional CNN on regular
grids, where the convolution operation is replaced by the ag-
gregator function. The mean aggregator (a.k.a. convolutional
aggregator) is used in this paper, which processes each node
in the graph as formulated in (1):

hk
v = W1hk−1

v + W2

∑

u∈N (v)

hk−1
u

|N (v)| , (1)

where hk
v is the current state of node v, hk−1

v and hk−1
u are

the previous states of node v and u, respectively, N (v) is
the set of neighbors of node v (|N (v)| represents the number
of its neighbors), and W1and W2 are matrices of the network
parameters that need to be optimized. The main objective
during training is to optimize W1 and W2 to make the node rep-
resentations as informative and predictive as possible, based
on their local graph structure. Optimizing W1 and W2 leads to
minimizing the final loss through backpropagation.

2) PROPOSED GNN MODEL ARCHITECTURE
The high-level architecture of the proposed model is shown
in Fig. 2 (Step 4) and contains M consecutive components,
each of which contains a GraphSAGE operator, a hyperbolic
tangent activation (tanh) function, and a batch normalization
function. The batch size corresponds to one full LF hyper-
graph. The input of the proposed model is one matrix with
the features of all hypernodes and the adjacency list (i.e., a
list of neighbors for each hyperpixel). The size of the hidden
channels of all GraphSAGE operators, as well as the output
channels, is set to s. Therefore, s-dimensional feature maps
are computed from the hypergraph G. The value of s is set in
this paper to the same value as Cmax. Afterwards, the Soft-
Max operator is applied to the model output to obtain the
probability distribution over predicted output classes. Since
GT segmentation labels are not used in the proposed method,
pseudo-segmentation labels are obtained using the argmax
operator to find the dimension with maximum probability. The
maximum probability value for each hypernode is selected
and, when applying argmax for all hypernodes, the pseudo-
segmentation labels are obtained. These pseudo- segmentation
labels are used as target labels in the loss function as shown in
Fig. 2. The loss is then computed between the model output
and the pseudo-segmentation labels that are obtained in each
epoch. For the loss function, L, the cross-entropy loss is used

since it is effective and widely used in multi-label classifica-
tion.

L (q, i) = −
Cmax∑

c=1

log
exp (qc)

∑Cmax
j=1 exp

(
q j

) , (2)

where qc represents the probability of the pseudo- segmenta-
tion label, c, and q j denotes the probability of the jth class and
i, j ∈ {1, 2, . . .Cmax}. The unsupervised 4D LF segmentation
is achieved by applying both forward and backward passes
with respect to a loss function to optimize model parameters.
In the forward pass, the segmentation labels are predicted
using fixed network parameters. However, in the backward
pass, the network parameters are trained with fixed-label pre-
dictions as in [30]. The error signal is finally backpropagated
to update the learnable parameters, which are initialized by
default with Kaiming He initialization [31]. The model is
iteratively trained until the maximum number of epochs or
the minimum number of labels, Cmin, is reached. Finally, the
predicted labels for the hypernodes are then mapped back
to represent the 4D segmentation map. This is achieved by
assigning the predicted label of the corresponding hypernode
to all pixels in 4D space that belong to the corresponding
hyperpixel.

IV. SEGMENTATION ANGULAR CONSISTENCY METRICS
Different from conventional 2D image segmentation where
only the segmentation accuracy is important, in 4D LF seg-
mentation angular consistency must also be considered.

To evaluate the segmentation angular consistency, we used
the Labels per Pixel (LP) metric that was proposed to evaluate
angular consistency for LF over-segmentation [7]. Initially,
LP = 1 for all pixels in the central view (i.e., one unique label
in the central view). To compute the LP metric, all LF views
are warped into the central view using GT disparity maps.
Afterwards, for each pixel position, the number of labels that
have different values than the label in the central view is
counted and then added to the initial LP value. Then, the LP
value for all pixels in the central view is computed (higher
value indicates worse angular consistency). However, the LP
metric is adequate for dense LFs only, since when warping the
views, all pixels in off-central views that are not seen in the
central view due to the viewing angle are discarded. Hence, it
is not adequate for sparse LFs with a large disparity range.

Therefore, inspired by the LP metric, we propose a set
of complementary metrics to evaluate the 4D LF segmen-
tation angular consistency for both dense and sparse LFs:
i) Segmentation Angular Consistency (SAC); ii) Percentage
of Inconsistent Pixels (IP); and iii) Average Local LP for
Inconsistent Pixels (LLPIP). Each metric is explained below.
All the proposed metrics rely on computing LP in a local
window. To achieve that, LF views are warped into a locally
central view within a local window of views (i.e., 3 × 3 views)
and then the LP is computed locally, termed Local LP (LLP)
in this paper. To consider all local windows in a 4D LF, this
process is repeated by sliding the window one angular position
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FIGURE 4. Visualization of the LLP for two LFs central views, where white
pixels indicate pixel positions with LLP>1, using different window sizes.

each time and computing the LLP for each window. To en-
sure accurate warping and adequately consider occlusions, we
project a pixel from each view into the window’s central view
only if both have the same GT segmentation label. Moreover,
as proposed in [7], when pixel overlapping occurs during the
warping (i.e., projecting pixels of different objects from the
off-central view into the same pixel position in the target view
due to an occlusion), the foreground pixel is considered (i.e.,
the one with highest disparity). After warping all views of
the window into the window’s central view, the LLP metric is
computed for each local window and the average LLP, LLP,
is calculated for all windows in the LF.

After computing the LLP, the SAC metric is computed as
formulated in (3). In a local window, N , represents the total
number of views, which also corresponds to the maximum
possible LLP value:

SAC = N − LLP

N − 1
. (3)

This metric measures the segmentation angular consistency
of light rays, where a higher value indicates better angular
consistency. For example, if all views in a local window of
N = 3 × 3 have the same segmentation labels for correspond-
ing light rays, i.e., LLP = 1, then the SAC will have its highest
value, i.e., SAC = 1, regardless of the N value; on the other
hand, if each LF view has a different label for the same light
ray (worst case scenario), then LLP = N and SAC = 0, which
implies no angular consistency.

As a complement to the SAC metric, IP and LLPIP are
computed in this paper to highlight the percentage of incon-
sistent pixels across LF views (i.e., pixels where LLP > 1)
and the average LLP in those inconsistent pixels, respectively.
As can be seen in Fig. 4, larger window sizes show more
inconsistent pixels, especially in sparse LFs. The influence
of using different window sizes on the proposed metrics is
presented in Section V-E.

V. EXPERIMENTAL RESULTS
In this section, the proposed 4D LF Segmentation method us-
ing a GNN, from here on simply called LFSGNN, is evaluated
both quantitively and qualitatively. Different 4D LF datasets

are used in our experiments, including dense and sparse, syn-
thetic, and real world LF datasets. Moreover, to evaluate the
segmentation results in terms of spatial accuracy and angular
consistency, different metrics that rely on the availability of
the GT segmentation labels and disparity maps are considered.
Since the real LF dataset does not have GT segmentation
labels or disparity maps, only visual results are presented in
this paper for this dataset. Regarding the segmentation angular
consistency, in this paper, only the central view and central
EPIs are shown to illustrate the angular consistency. However,
to be able to observe the angular consistency across all LF
views, we highly encourage the reader to observe the dynamic
results, where LF views are scanned in serpentine order and
presented as videos, in the supplemental materials available
online for all test LFs.2

A. 4D LF DATASETS
The proposed unsupervised 4D LF segmentation method does
not target a specific domain (e.g., urban scenes or medical
images). Therefore, any 4D LF dataset can be used to evalu-
ate the proposed method. However, to quantitatively evaluate
the segmentation accuracy and consistency, the GT dispar-
ity maps and GT segmentation labels for all LF views are
needed. Therefore, the synthetic HCI [32] and IT-4DLF [33]
datasets are used since they provide the GT disparity maps
and segmentation labels for all views of the dense and sparse
LFs, respectively. Moreover, to validate our results on real
world LFs, the MMSPG dataset captured with a Lytro Illum
camera [33] is used, considering the central 9 × 9 views to
eliminate the vignetting effects (i.e., saturation or darkening
at the edges of a lenslet image compared to the center). It is
worth noting that the 4D LF datasets designed for supervised
semantic segmentation, summarized in [17] are not adequate
for evaluating the proposed method. The reason is that multi-
ple objects with different visual appearances may be classified
to the same semantic label (e.g., blue and red cars have the
same semantic label), which is not the case envisaged in the
proposed method. A summary of the used LF datasets can be
found in Table 1.

B. IMPLEMENTATION DETAILS
Firstly, the proposed method does not require splitting datasets
for training and testing since it is unsupervised, and the
learning parameters are optimized for each LF independently.
Moreover, since hypergraphs are used to represent LFs, hy-
pergraph generation is flexible to different input resolutions.
In this paper, all experiments were run on a desktop computer
with a 64-bit Ubuntu operating system, AMD Epyc 7282 16-
core CPU, NVIDIA GeForce RTX 3090 and 256 GB RAM.
Our network is implemented using Pytorch (2.1.1) and the net-
work is optimized using a Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate of 0.05. Momentum and
weight decay are set to 0.9 and 0.01, respectively. The learning
rate scheduler decays the learning rate by multiplying it by

2[Online]. Available: https://github.com/MaryamHamad/LFSGNN
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TABLE 1. Light Field Datasets Used in the Experimental Results

0.95 every 50 epochs. The maximum number of epochs is set
to 1000. The number of M components of the network is set
to 2. The maximum number of classes, Cmax, is set to 128
as a large number to start the segmentation process, and the
minimum number of labels, Cmin, is set to 5 as a reasonable
number of objects in the test datasets.

C. BENCHMARK METHODS
As there are currently no available methods that target fully
unsupervised 4D LF mid-level segmentation, we compare our
results with state-of-the-art unsupervised 2D image segmen-
tation methods applied on 4D LF content without changing
their model architectures. The first method is proposed by
Kim et al. [30], which is fully unsupervised and adopts a
conventional 2D CNN to extract deep features. Afterwards,
segmentation labels are assigned according to the response
vector using an argmax function. Then the segmentation la-
bels are used as pseudo-segmentation labels to compute the
final loss. Finally, image segmentation is achieved by itera-
tively minimizing the loss function until a maximum number
of epochs or the minimum number of labels is reached. The
second method is proposed by Aflalo et al. [4], in which
deep features are extracted from an available pre-trained vi-
sion transformer. The used transformer divides an image into
square patches (patch size is constant as detailed in [4]) where
each patch represents extracted features. Those patches are
then used to represent an image as a graph, where each patch
represents a graph node. The created graph is then input to a
lightweight GNN model with one graph convolutional layer
to apply unsupervised segmentation for 2D images. Although
this method exploits an existing pre-trained model to extract
the features, the idea of representing an image as a graph
based on local regions in the image and applying the GNN
technique makes it directly related to the proposed method.

Both above-mentioned methods are designed for 2D im-
ages. To use them on 4D LF data, they are applied to each
LF view independently. However, to promote view consistent
segmentation, for each method, the same initial values for all
training parameters are used for each LF view and the random
values generated using a fixed seed to ensure reproducibil-
ity for each LF view. This ensures similar behavior for feature

extraction according to the used initialization of the training
parameters. Moreover, the benchmark methods were executed
using their available Pytorch implementation and, for a fair
comparison, the minimum number of segmentation labels is
set to 5 for all methods.

This paper did not make comparisons with the high-level
supervised 4D LF segmentation methods since they rely on
segmenting objects according to their semantic labels, which
is not the case considered in the proposed method.

D. EVALUATION METRICS
The segmented 4D LFs are evaluated, in this paper, in terms
of spatial accuracy and angular consistency considering all
views. As explained in Section V, the LP and SAC metrics
are used to evaluate the non-local and local angular consis-
tency, respectively, for both dense and sparse LFs. To evaluate
the segmentation accuracy, the mean Intersection over Union
(mIoU) metric is used, which is a common metric widely
used to evaluate mid-level segmentation accuracy. The mIoU
metric measures the amount of overlap between the GT and
predicted segmentation labels. Since the proposed method is
unsupervised, the predicted segmentation labels are not neces-
sarily the same as the GT segmentation labels in terms of their
values or number (this is valid for all benchmark methods).
Therefore, to calculate the mIoU metric, for each label in the
GT label images, the largest overlapping between that label
and all the predicted labels in the corresponding location is
considered, as described in [30].

E. INFLUENCE OF DISPARITY MAPS QUALITY ON THE
PROPOSED METHOD
To highlight the importance of the disparity map quality on
the segmentation accuracy and angular consistency, the pro-
posed method is tested by using estimated and GT disparity
maps (for both the proposed method and the hyperpixels over-
segmentation on which it relies).

To evaluate the angular consistency, the proposed SAC, IP
and LLPIP metrics are computed considering different val-
ues of N (i.e., 3 × 3, 5 × 5, 7 × 7 and 9 × 9) to explore the
window size influence. As presented in Table 2, the proposed
metrics are influenced by the window size for both dense and
sparse LFs due to the maximum possible number of labels in
a window of views and the discarding of occluded or non-
existent (due to the viewing angle) pixels in the central view
when computing the LLP. Additionally, knowing that ideally,
the GT segmentation labels have LLP = 1.0 and SAC = 1.0
for a given N helps in identifying how close the angular
consistency of the predicted labels is to the GT labels. In
all upcoming experiments (if N value is not specified), the
metrics are computed for N = 3 × 3; to reduce discarding
pixels that are occluded or non-existent in the window central
view, especially for sparse LFs.

As has been demonstrated in [10], more accurate dis-
parity maps can positively affect the hyperpixels angular
consistency. Since the proposed method relies heavily on the
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TABLE 2. Light Field Segmentation Angular Consistency Metrics With Different Window Sizes Using Estimated Disparity Maps

TABLE 3. Light Field Segmentation Angular Consistency Metrics With Different Window Sizes Using GT Disparity Maps

TABLE 4. Quantitative Results Using Estimated and GT Disparity Maps

hyperpixels, the quality of the used disparity maps also influ-
ences the segmentation performance in terms of accuracy and
angular consistency as shown in Tables 2, 3, 4 and Fig. 5. As
can be noticed from Tables 2, 3 and 6 the proposed method
in most cases achieves higher angular consistency when using
more accurate disparity maps (e.g., GT disparity maps in this
experiment), which indicates that most of the pixels in the
central view of a given window have the same label across
all views of that window. For sparse LFs, such as the Room
LF (which contains large occlusions), the accuracy of the used
disparity map significantly affects the segmentation angular
consistency, as shown in Tables 2 and 3 (in this paper, bold
style indicates better performance for all tables). Notice that
in some cases (as in StillLife in Table 2), the angular consis-
tency metrics show better performance when using estimated

FIGURE 5. Examples of the influence of disparity map quality on the
proposed method. The estimated disparity maps have smoother borders
between objects and hence can merge different objects easier and faster
especially when the Cmin is less than the number of objects in the scene.

disparity maps. The reason for this is the smooth disparity
values in estimated disparity maps can merge objects easier
and faster (i.e., ends up segmentation with a fewer number
of labels) compared to using sharp GT disparity maps, thus
reducing the unique labels and warping error when computing
the segmentation angular consistency metrics. Moreover, for
the same reason, the LLPIP is higher when using GT disparity
maps in most LFs.

F. ABLATION STUDY
Before comparing our results to the benchmark methods, an
ablation study to investigate different configurations of the
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TABLE 5. Quantitative Results With and Without Using the Texture Feature During the Hypergraph Generation and GNN Optimization Steps

FIGURE 6. Examples of the influence of using the texture feature during
the hypergraph generation and GNN optimization steps.

proposed method is presented. Initially, to study the influence
of using the texture feature, the proposed method is tested with
and without using the LBP texture descriptor in hypergraph
generation and during the GNN optimization. As shown in
Fig. 6, by incorporating texture features, the learning process
in most LFs converged faster to Cmin value, in contrast to when
the texture feature was not used (converges slower, did not
approach the Cmin value and stopped based on the number of
epochs). This can be noticed in Fig. 6 where the segmented
LF has more labels than Cmin when the texture feature was
not used. Hence, it was stopped due to the epoch criteria
being reached first. The rationale behind that is that the texture
feature helps the model to learn a meaningful representation
of the LF, and the evaluation metrics reflect that numerically,
as in Table 5. The reason for Kitchen and Room achieving
better accuracy when the texture feature is omitted is that the
final segmented LF has more unique labels compared to when
using the texture, which means considering most objects in
the LF.

Hence, it can benefit the evaluation metrics (especially
when the number of objects in the LF is larger than the

minimum number of labels parameter) without necessarily
improving the visual results. As can be seen in Table 5, there
are no significant differences in segmentation angular con-
sistency metrics in most LFs. The reason for this is that the
segmentation angular consistency relies on the disparity es-
timation and 4D LF over-segmentation steps, and those steps
do not rely on the texture feature. Hence, when using the same
disparity maps, LFs are represented based on hyperpixels
where the consistency is ensured similarly. The reason for the
slight difference in the angular consistency metrics is typically
due to the reached number of unique labels in the final seg-
mented LFs (this can be noticed in Fig. 6 where segmented
LFs without using the texture feature have more unique la-
bels). Moreover, the rounding error in pixel projection when
computing those metrics can also affect their results. To study
the influence of the used number of components, M, in the
proposed model (where the texture feature is included), dif-
ferent values of M are used and the results are reported in
Table 6 which shows better performance in terms of angular
consistency metrics when using larger M values without nec-
essarily improving the segmentation accuracy (mIoU). This is
typically because of a limitation in GNNs when increasing the
GraphSAGE layers, the model over-smoothens the predicted
segments, which leads to the merging of unrelated objects
(resulting in a smaller number of labels). Accordingly, when
the M value increases different objects are merged as shown
in Fig. 7. Thus, the possibility of error occurrence in pixel
projection when computing the angular consistency metrics
is decreased. To avoid the over-smoothing effect, the value
of M = 2 is adopted to lead to a reasonable balance between
segmentation accuracy and angular consistency.

G. COMPARISON WITH THE BENCHMARK METHODS
Our results are compared with the benchmark methods on
different LF datasets as shown in Figs. 8, 9 and Table 7. The
proposed method and the benchmark methods are based on
unsupervised learning; hence the values of the predicted labels
differ from the GT segmentation labels. Therefore, to facilitate
the visual comparisons, the labels of GT segmentation maps in
the synthetic LFs are mapped to the labels of each method as
shown in Fig. 9. The real world LF dataset does not have GT
segmentation labels. Hence, the colors of the predicted labels
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TABLE 6. Quantitative Results Using a Different Number of Network Model Components (M)

FIGURE 7. Examples of using the proposed method with a different number of components, M. In some LFs, such as Room, a higher value of M can result
in over-smoothing and different objects can be merged which negatively affects the segmentation accuracy.

FIGURE 8. Examples of unsupervised 4D LF segmentations on real world LFs for different methods. For each LF, the central view and the central
horizontal/vertical EPIs are presented to show the segmentation angular consistency across LF views. The minimum number of labels is set to 5. Our
results ensure angular consistency as can be seen in the presented EPIs (composed of mostly regular slanted lines) and adhere to object boundaries
according to the reached number of labels (e.g., the swan head).
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FIGURE 9. Examples of unsupervised 4D LF segmentation on synthetic LFs for different methods. For each LF, the central view and the central horizontal
and vertical EPIs are presented to show the segmentation angular consistency across LF views. The minimum number of labels is set to 5. Depending on
the reached number of labels in each LF view and the actual number of objects in each LF, benchmark methods in some 4D LFs achieve better visual
accuracy in terms of adhering to the object boundaries. This happens especially in sparse LFs (e.g., Kitchen and Room) where the estimated disparity
maps used for LFSGNN are not accurate for all pixels. However, for accurate disparity maps, such as in the dense LFs (e.g., Papillon, Buddha, StillLife and
Horses), LFSGNN achieves better separation between objects that share similar color or texture but vary in their depth (e.g., leaves in Papillon and the left
pillar in Buddha). The angular consistency is better in both sparse and dense LFs compared to the benchmark methods, as can be seen in the central EPIs
(composed of mostly regular slanted lines).
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TABLE 7. Quantitative Results Using Our Results and Benchmark Methods

across the used methods are not related to each other, as can
be seen in Fig. 8.

In Table 7, the proposed segmentation method outperforms
the benchmarks in terms of accuracy and consistency in most
LFs. To visually notice the segmentation angular consistency,
the central horizontal and vertical EPIs are presented for all
methods. The segmentation angular consistency of all LF
views can be more clearly noticed in the dynamic results in
the supplemental material. Kim et al. [30] and Aflalo et al. [4]
methods suffer from discontinuity in the predicted segments,
where sparse pixels with wrong labels can be noticed in Fig. 9.

Although the same initial values are used for the training
parameters in each of the benchmark methods to consider the
same segmentation behavior for all LF views, the evaluation
metrics still indicate inconsistent results with high values of
LP. This highlights the importance of explicitly considering
the angular correlation in 4D LFs and the effectiveness of
the used hypergraph representation (which allows applying
segmentation to the entire 4D LF simultaneously). As can be
noticed in Table 7, benchmark results of mIoU in some LFs
(e.g., in Kitchen) are the same or better than the proposed
method but significantly worse in terms of angular consistency
metrics. This is because the mIoU metric considers the largest
overlapping between the GT segmentation label and all the
predicted labels in LF views (as described earlier in this pa-
per).

However, the angular consistency metrics are significantly
affected by the inconsistency across LF views, which are es-
sentially noticeable at the boundaries of objects. Moreover, for
some LFs, the benchmark methods terminate before reaching
the minimum number of labels, Cmin, since they have different
architectures and differ in the used features.

Thus, they can end up with more unique labels than our
method which may positively affect the used accuracy metric
if the content of LF has more objects than the Cmin value.
Finally, using hyperpixels as the starting point allows exploit-
ing the entire LF data during the segmentation and ensures
segmentation angular consistency. Moreover, the proposed
method is trained in an unsupervised manner which makes
it suitable for different applications. One possible direction

TABLE 8. Average Running Time in Seconds Per View

for improving the performance of the proposed method is to
fine-tune the used features for domain-specific tasks (e.g., LF
medical imaging). A major limitation of the proposed method
is that it does not inherently determine the number of objects
in an LF. Hence, a technique that adequately estimates the
minimum number of labels based on the LF content would be
extremely useful to further improve the segmentation results.
Moreover, optimizing the implementation of the included
steps can reduce the required computational time.

To compare the computational complexity between the pro-
posed method and the benchmark methods, all methods were
run on the same computer and the GPU is being used under
similar conditions for all methods. The running times are
reported in Table 8. The breakdown running time of all the
steps of the proposed LFSGNN method is divided by the
number of views to obtain running time per view for each
step and reported in Table 8. The summation of all steps of
the proposed method is also computed. In Table 8, although
both our proposed method and Kim et al. [30] method iterate
for 1000 epochs, our proposed method reduces the running
time compared to Kim et al. [30] significantly. The method
proposed by Aflalo et al. [4] iterates only for 10 epochs
since it relies on an available pre-trained vision transformer
to extract the deep features before performing image segmen-
tation, thus it has the lowest running time in Table 8. Training
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their lightweight model beyond 10 epochs was also tried (i.e.,
up to 1000) but the performance did not show significant
improvements. In fact, this shows one advantage, in terms
of computational complexity, of extracting the deep features
from pre-trained foundation models and then applying fine-
tuning for a few iterations while performing a specific task as
image segmentation. Considering the number of epochs, our
proposed method has shown improvement in both segmenta-
tion accuracy, angular consistency and a significant reduction
in the computational complexity.

VI. CONCLUSION
In this paper, a novel unsupervised angularly consistent 4D LF
segmentation method is proposed for both dense and sparse
LFs. Initially, the 4D LF is represented as a hypergraph based
on 4D hyperpixel over-segmentation. Afterwards, a GNN
model is designed to extract deep features of the hypergraph
and to group the hypernodes into objects by applying mes-
sage passing and aggregation iteratively until convergence is
reached. Different from existing 4D LF segmentation meth-
ods, the proposed method is fully unsupervised, represents
4D LFs robustly and efficiently, exploits the power of deep
learning of graph-structured data and supports both dense
and sparse 4D LFs. Experimental results show outperforming
segmentation performance for most dense and sparse 4D LFs
in terms of segmentation accuracy, angular consistency, and
computational complexity.

For future work, the proposed LFSGNN method can be
adapted for other imaging modalities, such as point clouds and
multi-view images. Additionally, the inclusion of pre-trained
foundation models in the 4D LF segmentation task can be
also an interesting direction for future work. Moreover, the
resulting 4D LF segmentation can be used for other appli-
cations such as in augmented reality where a segmented 4D
object can be inserted in other 4D LFs. Finally, extending the
proposed LFSGNN method to LF videos by considering the
temporal dimension is also an interesting research direction
that requires further investigation.
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