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Resumo 
A imagiologia de campo de luz (LF) é uma modalidade de imagem imersiva que tem atraído 

cada vez mais atenção nas últimas décadas, devido à sua capacidade de captar a intensidade e 

a informação sobre a direção da luz de uma cena numa matriz de quatro dimensões (4D), 

conhecida como LF 4D. A vasta informação incluída nos LF 4D permite ao espetador explorar 

a cena a partir de diferentes perspectivas, melhorando assim a perceção da profundidade e o 

realismo. No entanto, a promessa de uma experiência imersiva traz consigo desafios que 

precisam de ser investigados, nomeadamente em termos de processamento e edição.  

Um exemplo desses desafios é o processamento e a edição eficientes de LFs 4D, 

explorando as correlações espácio-angulares e assegurando simultaneamente a precisão 

espacial e a consistência angular. Assim, esta Tese aborda este desafio através de vários 

métodos que, em conjunto, formam um pipeline para processar/editar eficientemente LFs 4D. 

Em primeiro lugar, esta Tese propõe um método eficiente de propagação de disparidades que 

permite calcular mapas de disparidades angularmente consistentes para todas as vistas de LF. 

Posteriormente, esta Tese propõe novos métodos de sobre-segmentação que se baseiam em 

mapas de disparidade como uma caraterística adicional de orientação para agrupar pixéis 

correspondentes em vistas LF em segmentos espácio-angulares. Os LFs 4D sobre-segmentados 

são então utilizados como uma representação intermédia que permite a segmentação dos LFs e 

facilita a propagação da transferência neuronal de estilo. 

Nesta Tese, foi demonstrado que a representação de LFs 4D com base na sobre-

segmentação permite a utilização de técnicas clássicas de corte de grafos e de redes neuronais 

de grafos para obter uma segmentação de LF 4D eficiente. Os métodos propostos mostraram 

um desempenho superior em vários aspectos, como a precisão espacial e a consistência angular. 

 

Palavras-Chave: Campo de luz, modalidades de imagiologia imersiva, estimativa de 

disparidade, sobre-segmentação, segmentação de objectos, transferência neuronal de estilo, 

consistência angular, consistência de vista 
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Abstract 
Light Field (LF) imaging is an immersive imaging modality that has attracted increasing 

attention in recent decades, due to its ability of capturing both light intensity and direction 

information of a scene in a Four-Dimensional (4D) array, known as the 4D LF. The rich 

information included in 4D LFs enables the viewer to explore the scene from different 

perspectives, hence, enhancing depth perception and realism. However, the promise of an 

immersive experience comes with challenges that need to be investigated, notably in terms of 

processing and editing.  

One example of those challenges is to efficiently process/edit 4D LFs by exploiting the 

spatio-angular correlations while ensuring spatial accuracy and angular consistency. Therefore, 

this Thesis tackles this challenge through several methods that together form a pipeline to 

efficiently process/edit 4D LFs. At first, this Thesis proposes an efficient disparity propagation 

method that enables computing angularly consistent disparity maps for all LF views. 

Afterwards, this Thesis proposes novel over-segmentation methods that rely on disparity maps 

as an additional guiding feature to group corresponding pixels across LF views into spatio-

angular segments. The over-segmented 4D LFs are then used as an intermediate representation 

that enables LF segmentation and facilitates neural style transfer propagation. 

In this Thesis, it has been shown that representing 4D LFs based on over-segmentation 

allows the usage of classical graph cut and graph neural networks to achieve efficient 4D LF 

segmentation. The proposed processing and editing LF methods have shown outperforming 

performance in several aspects, such as spatial accuracy and angular consistency. 

  

 

Keywords: Light field, immersive imaging modalities, disparity estimation, over-

segmentation, object segmentation, neural style transfer, angular consistency, view-

consistency 
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Chapter 1  

Introduction 

This chapter introduces the reader to the main context and motivation for this Thesis. 

Additionally, it presents the Thesis objectives and briefly explains its contributions. Finally, 

this chapter outlines the Thesis structure and clarifies the connection between the various 

chapters. 

 

1.1 Context and motivation 

During the COVID-191 lockdown, people had to stay isolated at home to avoid transmitting 

the virus which revealed the challenges of experiencing our life remotely and sometimes 

virtually. To cope with the challenging lockdown period, various solutions that exploited 

technology have developed, such as telemedicine platforms, virtual conferences, remote 

communication at work or school, and virtual tours. However, most of those solutions were 

Two-Dimensional (2D) in nature, yet many applications in our daily life still require beyond 

the traditional 2D content in terms of immersion and realistic experience. For example, a 

surgeon aiming to perform an operation remotely may need a realistic model of the patient’s 

organs, and a therapist who seeks to help a person overcome anxiety or phobia virtually may 

need to simulate real world scenarios in a safe environment. Therefore, immersive imaging that 

simulates how we are used to observe the surrounding world in Three-Dimensional (3D) space 

is demanded. The word “immersive”, which originates from the Latin “immersus”, can be 

defined, in the context of imaging technologies, as “seeming to surround the audience, player, 

etc., so that they feel completely involved in something” [1]. 

In the past decades, with the advances in computational power, capturing/display hardware 

and available transmission bandwidth, imaging modalities that enhance the sense of presence 

and enable more realistic experiences for end users have appeared [2]. Moreover, immersive 

imaging technologies have evolved in research and industrial production to support those 

imaging modalities. Particularly in the era of extended reality, the production of matured 

 
1 COVID-19: stands for "Coronavirus Disease 2019", which was first detected in December 2019, in Wuhan, 
China, and it quickly spread worldwide, resulting in a global pandemic. 
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hardware devices has increased, including Head-Mounted Displays (HMDs), such as Meta 

Quest 3 from Facebook [3], HoloLens from Microsoft [4], Vive Flow from HTC [5], and 

powerful displays, such as the recent Sony’s spatial reality display [6]. 

Immersive imaging modalities provide the viewer with higher Degrees of Freedom (DoF) 

(i.e., the number of movements or orientations that a viewer can experience around the scene 

within a 3D space) than traditional 2D imaging. It is worth noting that the traditional 2D images 

provide the viewer with zero DoF since the viewer can only see one view of the scene and 

cannot move the head or body to change the viewing point. The higher DoF achievable in the 

different immersive imaging modalities is a result of capturing more information about the 

scene, such as capturing different viewing points, considering high spatial resolution, or 

including geometric information to obtain depth perception. 

Before reviewing existing immersive imaging modalities and specifying the one this Thesis 

focuses on, it is helpful to understand and differentiate the levels of DoF available in immersive 

imaging modalities. The different DoF available in immersive imaging can be divided into four 

main levels [2], as shown in Figure 1.1 and listed below: 

• 3DoF – In this level, the viewer has three DoF and is limited to a rotation movement 

around three axes, typically changing yaw, roll, or pitch angles. Therefore, the viewer 

can change the viewpoint of the virtual environment without being able to freely walk 

within the virtual space. 

• 3DoF+ – In this level, the viewer can change not only the viewpoint by changing yaw, 

roll, or pitch angles as in 3DoF but can also spatially move his/her head in a limited 

area along the x, y and z axes. 

• Windowed 6DoF – In this level, the viewer can observe the scene by watching it 

 

 

                 3DoF         3DoF+ Windowed 6DoF    6DoF 

Figure 1.1: Examples of different DoF, where higher DoF offer a more realistic and 
immersive experience 
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 through a window in 6DoF with constrained rotation in pitch and yaw angles and 

constrained forward movements along the y axis. 

• 6DoF – In this level, the viewer can freely rotate around the pitch, yaw and roll axes, 

as well as freely move along the x, y and z axes. 6DoF means that the viewer can look 

around and move within the virtual environment in all directions. Basically, this is the 

one that mimics better how we experience a real 3D scene. 

Immersive imaging modalities can be roughly understood as different ways of sampling 

light in 3D space. The interpretation of light and its nature has evolved over the centuries [7]. 

Back to the ancient Greeks, when Plato proposed that light consisted of rays emitted by the 

eyes that enabled the viewer to sense the color, size and shape of the surrounding objects. This 

theory prevailed for almost 1000 years until Ibn al-Haytham (Latinized as Alhazen and known 

as the father of optics) conclusively proved it to be wrong [7]. In the 11th century, Alhazen 

proposed that the light rays originate from the objects and travel to the eyes, and he also 

explained that the perception of an image occurs in the brain [7]. After hundreds of years, in 

the 20th century, Adelson and Bergen [8] described the set of light rays traveling in every 

position in 3D space (", $, %), through every direction (', (), over any wavelength range ), 

and at any time *, and formulated this description by the fundamental “plenoptic function” – 

the root word of plenoptic came from the Latin plenus (full) + opticus (vision). The plenoptic 

function, which is a Seven-Dimensional (7D) function, is presented in (1.1) and illustrated in 

Figure 1.2: 

+(", $, %, ', (, ), *)	 (1.1) 

 
Sampling this plenoptic function may lead to a huge amount of data to be stored and processed. 

Therefore, in practice, it is not being directly sampled in computer vision and computer 

graphics applications, but rather a dimensionality reduction is first required. 

In this section, different immersive imaging modalities will be briefly reviewed and 

ordered based on the DoF they provide. The following immersive imaging modalities 

 
Figure 1.2: Illustration of the 7D plenoptic function that describes the light rays in 3D 
space 
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approximate the plenoptic function and vary in the DoF they provide and their capturing 

systems [2], [9]. Moreover, the entire or a subset of their content may be displayed using 

common displaying devices, and they can also be involved in similar practical applications. 

The immersive imaging modalities that will be reviewed in this section include Light Field 

(LF) imaging, omnidirectional imaging, holography and volumetric imaging. Among those 

modalities, this Thesis especially focuses on the light field imaging modality (as will be 

explained later in this Thesis) for which our contributions are made. 

 

1.1.1 Light Field (LF) imaging  

In the case of the LF imaging modality [10], the same scene is captured from different viewing 

points (as will be detailed later in this Thesis). LFs approximate the plenoptic function in (1.1) 

and record both the spatial and angular information of light rays in static LFs (a.k.a. still LF 

images), additionally, temporal information in the case of dynamic LFs (a.k.a. LF videos which 

can be a sequence of a still scene or a scene with motion). Thus, LF imaging modality provides 

end users with 3DoF to 6DoF depending on the optical design of the imaging system (i.e., the 

number of acquisition cameras/lenses and their arrangement). Due to the availability of 

multiple viewpoints of the scene, motion parallax (i.e., a visual perception effect in which the 

relative distances of objects to the observer can be determined based on their movement relative 

to the observer’s viewpoint) can be provided when displaying LF content which enhances the 

immersive experience. Moreover, its rich recorded information can be exploited to advance 

several image processing and computer vision tasks, such as refocusing the scene and depth 

estimation [11]. a shows an example of LF refocusing where the flowers scene can be refocused 

after being captured using a Lytro LF camera [12]. Moreover, in b, the depth map of a scene is 

obtained from the captured LFs using a Raytrix LF camera [13]. A comprehensive review of 

LF imaging and its applications can be found in [10], [11], [14]. 

 
 

  
(a) (b) 

Figure 1.3: Examples of LF post-capture processing capabilities: a) Refocusing the scene 
after being captured [12]; b) Depth map estimation [13] 



 

 5 

1.1.2 Omnidirectional (360°) imaging 

In the case of omnidirectional imaging modality (a.k.a. 360°, panoramic and spherical), the 

surrounding environment of the capturing device (e.g., single or multiple conventional 

cameras, or 360º cameras) is captured in a 360° (horizontal) × 180° (vertical) Field of View 

(FoV) (i.e., the observable area of the captured scene) as illustrated in Figure 1.4a. 

Omnidirectional imaging approximates the plenoptic function in (1.1), where the whole scene 

is captured from all possible viewpoints over time [15], [16]. Omnidirectional imaging is often 

defined on the spherical domain, mapped to a 2D image or a multi-planar representation [15]. 

The variety of 360º cameras in the consumer market as shown in Figure 1.4, such as Samsung 

Gear 360 [17] and Insta 360 [18] increases the useability of the omnidirectional modality and 

advances its potential applications. The omnidirectional imaging provides end users with 3DoF 

(typically changing yaw, roll, or pitch angles) and enables the viewer to look around the scene 

from a single point of view and feel physically at the scene location. The omnidirectional 

modality is mainly used for creating realistic content for Virtual Reality (VR) and Augmented 

Reality (AR) applications to be used in different fields, such as entertainment and virtual 

tourism [19]. A recent tutorial that addresses omnidirectional foundations, challenges and 

applications can be found in [15]. Additionally, a comprehensive survey about 360º video 

streaming can be found in [19]. 

 
 

1.1.3 Holography 

In the case of the holography modality, the 3D hologram can be captured by splitting a coherent 

light beam (e.g., laser) into two beams as shown in Figure 1.5a [9]. The first one is redirected 

toward the object(s) and scattered to the recording medium, and the second one is redirected 

 

  

(a) (b) (c) 
Figure 1.4: The omnidirectional modality captures the surrounding scene and enables 
3DoF. Examples of  360º cameras: b) Samsung Gear 360 [17]; c) Insta 360 [18] 
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toward the recording medium. Both beams interfere on the recording medium, resulting in a 

recorded interference pattern. The same coherent light beam is used to reconstruct the 

hologram, as shown in Figure 1.5b [9]. The holography word is derived from the Greek “holo” 

word which means “whole”, and “graphy” which means writing. Thus, “holography” means 

writing the complete image. The theory of holography was developed by Dennis Gabor in 1947 

[20], and he was given the Nobel Prize in Physics for this invention in 1971. Holography can 

provide the viewer with 6DoF and approximates the plenoptic function in (1.1) by recording 

not only the light intensity from an object but also the phase of light waves. Some available 3D 

displays in the consumer market are advertised as being holographic, but are actually not, such 

as the Hololens 2 [21] and the Leia transparent display [22]. Applications of holograms include 

but are not limited to, the medical field and education, e.g., to enable students to experience 

realistic content through 3D holograms. A review of holography in medical fields and future 

classrooms can be found in [23], [24]. 

 
 

1.1.4 Volumetric imaging 

In the case of the volumetric imaging modality, multiple accurately synchronized cameras can 

be placed around the scene/object to capture it from different angles. In volumetric imaging, 

object geometry (e.g., depth information) is also recorded using, for example, depth sensors, 

such as a Light Detection and Ranging (LiDAR) sensor. Volumetric data are typically a 3D set 

of samples that represent the value of some property at a 3D location (", $, %). The volumetric 

data can include binary values (i.e., to represent the background and the object) or multivalued 

(i.e., to represent some measurable properties, such as color and density). Volumetric imaging 

    
 

 

(a) (b)  

Figure 1.5: Illustration of holography capturing and reconstruction [9]: a) Capturing 3D 
holograms using coherent light source; b) Reconstructing captured holograms 



 

 7 

approximates the plenoptic function in (1.1) and provides the user with 6DoF since the captured 

scene/object can be seen from any position at any viewing angle and at any time (in volumetric 

videos) [2]. The volumetric content is usually represented by point clouds (i.e., a collection of 

points in 3D space for which 3D coordinates and additional attributes, e.g., light intensity, are 

defined). Additionally, the volumetric content can be represented by converting the point 

clouds into texture meshes (i.e., a collection of polygons or triangles that represent 3D objects). 

To capture volumetric content, dedicated studios specifically designed for this task are 

usually needed, such as the Microsoft capturing studio [25] shown in Figure 1.6. However, 

with Artificial Intelligence (AI) technology advances, recent applications enable users to 

generate volumetric data even on smartphones (e.g., after capturing the object from the 

smartphone's camera from different angles). An example of this application is MagiScan [26], 

a mobile application powered by AI and supported by Nvidia Omniverse [27] (i.e., a platform 

for creating and operating metaverse applications), where the synthetic content can be 

generated on-premises or in the cloud. Additionally, the recent growing trend of using neural 

networks to synthesize new views from only some reference views captured from different 

viewpoints enables the rendering of volumetric content. An example of this trend is the Neural 

Radiance Field (NeRF), proposed by Mildenhall et al. [28], [29], [30]. The volumetric imaging 

modality can be exploited in different applications, such as medical imaging, training 

simulation, and marketing. In-depth volumetric content surveys can be found in [31], [16].  

It is worth mentioning that some modalities can be computed from other modalities [32], 

[33], [34], e.g., the volumetric data can be computed from LFs with some limitations, e.g., in 

terms of noise (e.g., due to inaccurate estimation of depth values) and missing data (e.g., due 

to occlusions) [32], [33]. To achieve that, depth maps can be estimated from LFs, and by using 

the camera parameters, the attributes of each pixel, such as position and color, can be 

represented in point clouds. 

 

    
(a) (b) 

Figure 1.6: Examples of capturing volumetric content: a) Microsoft volumetric capturing 
studio [25]; b) MagiScan AI-powered mobile application for creating 3D models [26] 
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1.2  Light field overview 

The apparent similarity between the above-presented immersive imaging modalities is the 

ability to capture richer scene/object information compared to traditional 2D content. In this 

context, LF imaging modality captures rich visual and geometric information including light 

ray intensities and directions; thus, it enables depth estimation and improves the immersive 

experience in various interesting applications (as will be detailed later in this Thesis). However, 

due to the high dimensionality of LFs, several challenges arise in terms of processing and 

editing. One major challenge is to achieve efficient LF processing/editing while maintaining 

consistency across all LF views. Consequently, this Thesis addresses this challenge and 

specifically considers achieving efficient and angularly consistent LF processing and editing. 

Before presenting the objectives of this Thesis and its original contributions, an extended 

description of LF imaging modality, including LF definition, acquisition, representation, 

displaying, potential applications, and its challenges and limitations will be presented in the 

following sub-sections. This should give the reader a good general background knowledge 

about LFs, which will make it easier to understand the following chapters. 

 

1.2.1 History and description 

Back in 1936, the LF concept was first introduced by Gershun [35] to describe the radiance 

distribution over space and directions. In 1991, Adelson and Bergen [8] further matured the 

work of Gershun and introduced the 7D plenoptic function, as explained earlier in this Thesis. 

In 1996, Levoy and Hanrahan [36], formulated a simplified mathematical representation of the 

7D plenoptic function to represent LFs using only four dimensions. The following assumptions 

were considered to achieve the dimension reduction of the plenoptic function in (1.1) from a 

7D, as shown in Figure 1.7, into a Four-Dimensional (4D) LF function, namely: 

• Fixed time – By assuming the scene is static, then the * dimension is constant and the 

plenoptic function can be reduced into +(", $, %, ', (, )). 
• Free space – By assuming the air to be transparent and that light rays are transmitted 

in free space, then the radiance along a ray through empty space remains constant. The 

plenoptic function can then be represented by its values on an arbitrarily selected 

surface surrounding the scene, e.g., a cube for its computational simplicity. Doing so, 

at every point in space outside of the surface, one can trace back a light ray to its surface 
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to obtain the corresponding ray intensity value [36]. Hence, considering one side of the 

cube surrounding the scene, the plenoptic function can be reduced into +(", $, ', (, )). 
• Trichromatic human vision system – The human eye's retina includes three types of 

specialized cells (called cones) that are responsible for color vision. These three types 

of cones are sensitive to different wavelengths of light. More precisely, short-

wavelength cones, medium-wavelength cones, and long-wavelength cones are more 

sensitive to blue light, green light and red light, respectively. Therefore, assuming the 

) dimension is fixed, for each color component the plenoptic function can be reduced 

into +(", $, ', () [36]. 

These assumptions led to what is called the 4D LF function [36] that can be parametrized 

in two-plane parametrization (a.k.a. the lumigraph representation [37]), as shown in Figure 

1.7b. The two-plane parametrization describes the coordinates of a light ray by knowing its 

intersection with the two parallel planes to specify its spatial position coordinates and the angle 

of the light ray in free space.  Although any surface in the second assumption can be used, the 

flat faces of the cube offer a proper way of representing ray coordinates and it matches the 

geometry of the imaging system in practice [36]. Different symbols are used to describe the 4D 

LF function in the literature. However, in this Thesis, the following LF representation, shown 

in (1.2), is adopted: 

45(", $, 6, 7),	 (1.2) 

where (", $) are the spatial position coordinates and (6, 7) coordinates indirectly specify the 

light propagation angle which will be called here as the angular location coordinates. 

 
 

 

 
(a) (b) 

 
Figure 1.7: Different representations of light rays: a) The 7D plenoptic function; b) The 
two-plane 4D LF function (a.k.a. lumigraph representation) by assuming static scene, light 
ray transmission in free space and considering trichromatic human vision system 

(a) (b)
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4D LF imaging captures the same scene from different perspectives. 4D LF can be viewed 

as a 2D array of 2D arrays as illustrated in Figure 1.8a. Several approaches to capture 4D LFs 

exist (as will be detailed below). As an example, considering an array of 2D cameras with 

parallel optical axis capturing the same scene from different viewpoints, different views with 

spatial shifts are generated (a.k.a. Sub-Aperture Images (SAIs)), as illustrated in Figure 1.8a. 

When stacking one row or one column of those views, an image with slanted lines which is 

known as the Epipolar Plane Image (EPI) (i.e., the unique 2D slice of the LF after fixing one 

spatial dimension and one angular dimension [38]) is created, as illustrated in Figure 1.8b. 

Notice that the slopes of the slanted lines in the EPIs are inversely proportional to the depth 

information, e.g., objects near the camera have a larger slope in the EPI and a smaller depth 

value and vice versa [38]. 

 
 
1.2.2 Light field acquisition 

After explaining the principal concept of 4D LFs and its formulation, it is time to briefly review 

the different approaches to capture LFs and the advantages and drawbacks of each approach. 

It is essential to note that in 2D cameras, different light rays emitted from different angles are 

integrated into a single pixel in the sensor, resulting in a loss of angular information (i.e., the 

direction of light rays). On the other hand, both the spatial and angular information of light rays 

are recorded in 4D LF imaging. Several LF capturing systems are proposed in the literature 

and can be grouped, based on the used cameras, into two main categories: i) Conventional 

camera systems; and ii) Plenoptic LF camera systems. Notice that these two categories are for 

LF acquisition using real cameras but not computer-generated 4D LF (i.e., synthetic LF 

imaging). Both categories are presented below with their advantages and drawbacks. 

 

  
(a) (b) 

Figure 1.8: Example of 4D LF views and the central horizontal and vertical EPIs: a) Sub-
aperture images; b) The central horizontal and vertical EPIs obtained from LF views 
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1.2.2.1 LF capturing using conventional camera systems 

In this category, LFs are captured using either a single or multiple traditional 2D cameras. In 

the first case, a single conventional camera is used to capture different viewpoint images of the 

same scene at different time instants. For example, the Stanford computer-controlled gantry 

[39] shown in Figure 1.9a, where the green arrows indicate the translation and rotation along 

and around the axes, respectively. Another example is the Stanford Lego gantry in Figure 1.9b, 

which simplified the LF capturing process by using Lego Mindstorm motors [39]. While the 

single camera approach is less expensive than using multiple cameras, it can only capture static 

LFs (since the gantry captures the viewpoint images at different instants of time). 

 

 
In the second case, an array of cameras can be used to capture both static and dynamic LFs. 

The arrangements of the cameras can be regular or arbitrary. Designing a camera array can be 

challenging, and several technical issues may have to be dealt with, such as multiple camera 

synchronization and color calibrations. Examples of the existing available camera arrays in the 

literature are shown in Figure 1.10, namely the Stanford [40], Technicolor [41], Saarland 

University [42] camera arrays and Google capturing rig [43]. Recently, Google combined a 

mechanical gantry with an array of 16 GoPro Hero 4 cameras to capture LFs for VR 

applications [44]. 

Both single and multiple camera approaches are flexible regarding the used camera 

baseline, which can be adjusted according to the target application. Moreover, the spatial 

resolution (i.e., the number of pixels visible from each viewing point) and the angular 

resolution (i.e., the number of viewing points) of the captured LF depend on the sensor 

  
(a) (b) 

Figure 1.9: Examples of LF capturing using camera gantries: a) The Stanford computer-
controlled gantry [39]; b) The Stanford Lego gantry [39] 

 (a) (b)  (a) (b)
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resolution, the number of viewing points and camera parameters. More precisely, in the case 

of LFs captured with conventional camera systems, the spatial resolution is directly related to 

the resolution of the used camera(s) and the angular resolution is directly related to the number 

of cameras or the number of unique viewing points. 

 

 
Since camera arrays are typically bulky and expensive, they are unsuitable for many 

commercial uses. However, the potential of the multiple camera approach is evident in the 

latest smartphones with more affordable and portable camera array designs. Several camera 

array designs are small, thin, and cheap, providing small camera baselines and can be 

embedded in other devices and smartphones, as shown in Figure 1.11. For example, the high 

performance ultra-thin monolithic camera array proposed by Venkataraman et al. [45] captures 

static and dynamic LFs. Another example is the capturing system in recent smartphones, such 

as the Apple 15 Pro2, Samsung S23 Ultra3 and Huawei Mate 50 Pro4. 

 

 
 

 
2 https://www.apple.com/pt/iphone-15-pro/ 
3 https://www.samsung.com/pt/smartphones/galaxy-s23-ultra/ 
4 https://consumer.huawei.com/en/phones/mate50-pro/ 

 
Figure 1.10: Examples of LF capturing using camera arrays: a) Stanford multi-camera 
array [40]; b) Technicolor camera array [41]; c) Saarland camera array [42]; d) Google 
camera array [43]; e) Google 16 GoPro rotating array of cameras [44] 

(a) (c)(b) (d) (e)

  
(a) (b) 

Figure 1.11: Examples of small camera arrays that can be embedded into portable devices: 
a) Pelican imaging camera array [45]; b) Smartphones with multiple cameras 
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1.2.2.2 LF capturing using plenoptic LF camera systems 

In the previous category, LFs are captured either by single or multiple cameras at different time 

instants. To capture LF simultaneously using one camera, a MicroLens Array (MLA) (a.k.a. 

lenslet array) can be placed between the main lens of a conventional 2D camera and its sensor. 

This makes it possible to capture both the scene spatial and angular information, as shown in 

Figure 1.12. The inspiration for the various approaches in this category started with the 

prototype proposed by Gabriel Lippmann in 1908 to capture LFs (his approach to capture LFs 

was called “integral photography”) [46]. His prototype mimics the compound eye of insects by 

using multiple tiny lenses in front of photosensitive material to record the light intensity and 

direction [46]. However, his prototype remained experimental due to limitations in the quality 

of optics manufacturing. 

After several decades of advances in optics manufacturing, LF capturing has become 

possible and plenoptic cameras emerged. Adelson and Wang were inspired by the lenses of the 

Lippmann prototype [47], and they proposed a novel optical system prototype called the 

“plenoptic camera”. In their prototype, a pinhole array or MLA was used and placed between 

the main lens and the camera sensor [47]. Later, inspired by the Adelson and Wang plenoptic 

camera prototype, Ng et al. [48], improved their design and presented a hand-held camera to 

capture 4D LFs that uses a MLA. Moreover, they developed software to enable refocusing after 

scene capturing. 

 

 

  
(a) (b) 

Figure 1.12: Examples of plenoptic LF cameras: a) Plenoptic 1.0 (unfocused) Lytro 
cameras [49]; b) Plenoptic 2.0 (focused) Raytrix R11 camera [50] 

Image Plane Image Plane
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Later, LF plenoptic cameras started to be launched in the consumer market. In 2006, Ng 

started the Lytro company, which developed and sold two different LF plenoptic cameras for 

the consumer market, i.e., Lytro first generation (the blue one in Figure 1.12a) and Lytro Illum 

(the black one in Figure 1.12a). The Lytro plenoptic cameras were developed and supported 

until the Lytro closed its doors in 2018 [49]. Other commercial plenoptic LF cameras available 

in the market are produced by the Raytrix company, which started in 2010 with several designs 

and capabilities, such as Raytrix R11 [50], as shown in Figure 1.12b. The Raytrix cameras are 

more suited for industrial applications. The Lytro and Raytrix cameras correspond to two 

different types of setups used to capture LFs: 

• Plenoptic 1.0 (a.k.a. unfocused, standard or traditional) camera setup – In the 

Plenoptic 1.0 camera setup [49], [51], the distance between the MLA and the sensor 

equals the focal length of the MLA, as shown in Figure 1.12a. Therefore, the main lens 

focuses the light onto the MLA, and the MLA directs the light rays into different regions 

of the sensor. Consequently, the microlenses are focused at infinity. Hence, each pixel 

of a micro-image (i.e., an image in the sensor created by a microlens) corresponds to a 

different viewing point. 

• Plenoptic 2.0 (a.k.a. focused) camera setup – In the Plenoptic 2.0 camera setup [52], 

[53], the main lens focuses the light onto the image plane where the MLA is focused, 

and the MLA focuses the light rays on the sensor. In this camera setup, the focus of the 

main lens can be on a plane in front of the MLA, such as in Figure 1.12b or behind it. 

This corresponds to Keplerian and Galilean optical configurations which lead to real 

and inverted main lens images, respectively [54]. It is also worth mentioning that the 

MLA in Plenoptic 2.0 can include microlenses with different focal lengths (a.k.a. multi-

focus plenoptic camera), which can provide deeper depth-of-field (i.e., the range of 

distance within a scene where the objects in an image appear in acceptably sharp focus) 

[55], [56]. 

Notice that according to the distance between two or more cameras/lenses/microlenses 

(a.k.a. baseline), dense or sparse 4D LFs are generated. In the case of dense 4D LFs, the camera 

baseline is relatively narrow; hence, most of the objects in the captured LFs mainly exist in all 

views. In contrast, in the case of sparse 4D LFs, the camera baseline is relatively wide; hence, 

the objects in the captured LFs may not exist in all LF views. In both designs of plenoptic LF 

cameras, the baseline between microlenses is very small, encouraging the development of 

exciting techniques, such as super-resolution (including spatial, angular or temporal 
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dimensions). It is worth mentioning that plenoptic cameras still have some limitations, such as 

color inconsistency across corresponding pixels and vignetting effect (i.e., reduction of the 

brightness of an image towards the border views compared to the center views). 

Moreover, using one sensor to record spatio-angular information simultaneously leads to 

a spatio-angular resolution trade-off in the captured LFs. In the case of plenoptic LF camera 

systems, since only one sensor records light ray intensities that come from various microlenses, 

specifying the spatial and angular resolutions can be more complex and may depend on other 

parameters, such as microlens focal length.  

While plenoptic LF cameras are specifically designed for LF capturing, a prototype from 

a German startup company was created to enable a standard camera to shoot LFs and capture 

depth information. The proposal was called K|Lense One [57], and it was considered the first 

LF lens. It included a mirror system inside the lens that worked as a light splitter to split the 

light rays into nine slightly different perspectives of the scene. Indeed, the idea would open 

new doors for LF applications; unfortunately, the K|Lens One project was canceled in early 

2022 [58]. 

 

1.2.2.3 Computer-generated LFs 

Besides the two main categories of capturing real world LFs, LFs can also be computer-

generated (i.e., synthetic creations) by simulating realistic environments. 

The first example of synthetic LF generation is by using simulated camera arrays in 3D 

software applications, such as Blender [59]. Additionally, several Blender add-ons are also 

available for LFs to facilitate creating camera array setups and generate disparity/depth maps 

and segmentation label images for all LF views, such as the LF add-on from HCI [60] (see 

Figure 1.13). The created synthetic datasets try to mimic real world scenes, and the applications 

used to create the synthetic datasets usually provide complete control over various parameters, 

such as lighting, camera baseline, focal length and camera resolution. Moreover, synthetic LF 

generation enables obtaining the Ground Truth (GT) depth maps or label images for 

segmentation. Synthetic LF datasets offer significant benefits in various applications, 

especially in deep learning based applications. Deep learning based applications may require a 

substantial number of labeled images or depth maps to train models. Interested readers can find 

a table with different LF datasets summarized by Sheng et al. [61], including real world and 

synthetic LFs for various LF applications. 
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The second example uses deep learning techniques and the recently proposed NeRF 

technology [28] for synthesizing new LF views from only a few reference real world or 

synthetic LF views [10]. The techniques in this approach rely on learning the features and 

patterns from a given dataset that has views captured from different angles. Afterwards, the 

trained model can infer the appearance and spatio-angular information of novel viewpoints. 

With the advances in NeRF technology, we can anticipate portable devices for capturing LFs 

to emerge. Currently, mobile phones and drones are already being used to capture LFs, without 

the need for complex camera rigs, the NeRF technology is exploited to reconstruct 3D objects 

from the captured LFs [62]–[64]. 

 
In summary, different approaches for LF acquisition are reviewed namely, by using 

conventional camera systems, plenoptic camera systems and by synthesizing LFs using 

synthetic camera systems. According to the acquisition approach, LFs can be represented in 

different raw representations which vary in their properties and applications as will be 

described in the following sub-section. 

 

1.2.3 Light field representations 

After acquiring LFs using any imaging system mentioned above, the acquired data can be 

accessed through one of the following raw representation formats, as illustrated in Figure 1.14: 

• Sub-aperture image representation (a.k.a. Multiview representation) – When an 

LF is acquired by an array of cameras or camera gantry, the raw representation format 

is called SAI representation. In the SAI representation, the 4D LF is organized as a 2D 

array of 2D views where each view represents one unique viewing perspective of the 

scene, as shown in Figure 1.14a. 

  
(a) (b) 

Figure 1.13: Examples of synthetic LF generation: a) A screenshot of a 3D application by 
which LFs are generated [60]; b) One view of the generated LF by synthetic cameras and 
its ground truth depth map [60] 
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• Lenslet representation – When an LF is acquired using plenoptic lenslet cameras, the 

LF content is represented by an array of micro-images (a.k.a. microlens images or 

macro-pixel images). A micro-image comprises a low-resolution portion of the scene. 

Depending on the used plenoptic camera setup and the microlens properties, such as 

the size, shape, and spacing of the microlenses, the micro-image characteristics differ 

accordingly. Each micro-image includes information about the intensity and direction 

of light rays arriving at the camera from various angles. As can be noticed in Figure 

1.14b, the lenslet representation contains a local mosaic pattern introduced by micro-

images. The lenslet representation can be adopted to extract the spatio-angular 

information in some deep-learning based LF processing applications, as proposed in 

[65]. Generally, to better visualize LF content captured by plenoptic cameras, from 

different viewpoints, SAIs can be extracted from the lenslet representation. The process 

to do this, depends on the used plenoptic camera setup. 

 
To sum up, 4D LFs typically have two raw representations depending on the acquisition 

approach. Converting from one representation to another is possible (due to 4D indexing), as 

shown in Figure 1.14. In some cases, this conversion can be reversible or not, depending on 

the camera setup and the used algorithm for conversion. For example, in the focused and multi-

focus plenoptic cameras, extracting SAIs from the raw lenslet representation is more 

challenging since it depends on the accuracy of the estimated disparity map and the patch size 

(i.e., number of pixels extracted from each micro-image) instead of a single pixel in the case 

of unfocused plenoptic cameras [66]. Depending on the target LF application, other 

intermediate and more adequate representations can be adopted, such as extracting the EPIs 

from LF views, organizing LF views in any scanning topology (e.g., raster or zig-zag) to form 

Pseudo Video Sequence (PVS), or applying LF over-segmentation to obtain a more compact 

 
 

(a) (b) 
Figure 1.14: Examples of 4D LF raw representation formats: a) SAI representation; b) 
Lenslet representation 
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representation by grouping similar pixels across LF views into larger segments, as will be 

detailed later in Chapter 3 and Chapter 4. 

 

1.2.4 Light field displays 

As LF content inherently includes different viewpoints of the same scene, it is possible to 

display LF content across a diverse range of display technologies by generating display-

compatible versions from the same LF content. LF content can be displayed using numerous 

available technologies, such as: 

• 2D conventional displays – When displaying LF content on 2D displays, only one LF 

view is displayed at a moment with the ability to change focus planes and viewing 

perspectives. 

• Stereoscopic displays – When displaying LF content using stereoscopic displays, a 

pair of views is displayed (one for each eye), while wearable glasses are required to 

create a sense of depth perception. Notice that there are also two-view autostereoscopic 

displays that allow the viewing of 3D content with naked eyes. 

• Multiview autostereoscopic displays – In this case, multiple LF views are displayed 

simultaneously without the viewer needing to wear any special glasses. Each eye will 

see a different view depending on its current position. As such, the multiview 

autostereoscopic displays provide the user with horizontal motion parallax (i.e., the user 

can move horizontally and see different stereo viewpoints of the scene). However, the 

number of views is relatively low. Some advanced displays in this category incorporate 

a head/eye tracking system to adjust the displayed views according to the viewer's 

position. 

While the mentioned approaches make it possible to display LF content, displays that 

provide a more natural viewing experience and more accurate depth perception, simultaneously 

for one or multiple users, are required. Recently, several displays have become available in the 

consumer market with compelling capabilities and they deliver what has been expected in terms 

of depth perception, parallax, engagement, and immersion [67], [68]. Among the available 

display technologies that can be used for LF content, LF displays and HMDs will be described 

below in more detail with examples for each approach: 

• LF displays (a.k.a. super-multiview displays) – LF displays not only provide the 

depth perception of the scene but also the natural full motion parallax. LF displays 
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enhance the immersive experience with naked eyes. The integral imaging approach to 

display LFs uses the reverse path of LFs captured by plenoptic LF cameras with MLAs 

since it also contains an MLA in its design [69], [70]. An example of this approach is 

the prototype of the FOVI3D display [71], [72], shown in Figure 1.15a. Additionally, 

the Spatial Reality display from Sony (shown in Figure 1.15b) contains a micro optical 

lens that is positioned precisely over the liquid crystal display and can separate the 

images that are seen by both eyes, allowing for stereoscopic viewing without the need 

for glasses. The Spatial Reality display responds to head movement with 6DoF in head 

motion [6], and it received the Best of Innovation award at the Consumer Electronics 

Show event in 2021. Other existing displays that provide full motion parallax without 

necessarily using an MLA in their design can be considered as LF displays. These 

displays often exploit a combination of optical devices, such as lenticular lenses and 

parallax barriers to allow different images to be seen from different viewing angles; 

thus achieving the 3D perception [73]. The exact technology used can vary depending 

on the specific implementation and manufacturer. For example, Looking Glass 

displays, presented in Figure 1.15c, have been a pioneer in LF displays for years and 

have different designs that allow one or a group of people to view 3D simultaneously 

[73]. 

 
• Head-mounted displays – With the growing interest in extended reality applications, 

various HMDs are available with diverse designs [3]–[5]. HMDs allow personal 

viewing of 3D content by visualizing the 3D content in front of the user’s eyes. HMDs 

typically integrate small screens or lenses that display separate images to each eye, 

resulting in stereoscopic vision and providing a sense of depth. Moreover, most HMDs 

include sensors that track the user’s head movement (e.g., rotation). Hence, they enable 

AR/VR applications to respond to the user’s action in real time and provide a full 

parallax experience. Figure 1.16 shows examples of HMDs including: i) HoloLens 

from Microsoft [4]; ii) Vive flow from HTC [5]; iii) Meta Quest 3 from Facebook [3]; 

   
(a) (b) (c) 

Figure 1.15: Examples of LF displays: a) FOVI3D LF display [71], [72]; b) Sony 
Spatial Reality display [6]; c) Looking Glass displays [73] 
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and iv) Vision Pro from Apple [74]. Moreover, unlike the previous HMD examples, 

Figure 1.16 shows thin, lightweight LF HMDs examples, such as the Creal LF HMD 

from CREAL that enables genuine focus at any distance of the scene [75] and Magic 

Leap 2 with built-in eye tracker [76]. Moreover, other prototypes were proposed that 

exploit the MLA principle, such as the Near-Eye LF display from NVIDIA [77], and 

Lenslet VR display [78]. 

As displaying devices keep advancing, we can expect a new era of displays in which LF 

content seamlessly integrates with the real world, creating captivating immersive experiences 

like never before. 

 
 

1.2.5 Light field applications 

Thanks to the rich information that is included in LFs, LF imaging enables a range of powerful 

applications and, thus, has the potential to revolutionize various areas. LF usage can be 

beneficial for many practical applications in various areas, such as: 

• In computer vision – The usage of LFs has shown a superior performance when 

compared to traditional 2D images in several computer vision tasks including: 
§ Depth/disparity estimation – Thanks to the multiple viewpoints and the EPI 

structure of LFs, such rich information enables estimating per-pixel depth/disparity 

maps from LFs accurately. This can be achieved by exploiting the angular 

correlation and detecting occlusions across LF views. In the literature, several 

methods were proposed for LF depth/disparity estimation as in [10], [11], [14], [79]. 

 
Figure 1.16: Examples of various designs for HMDs: a) HoloLens from Microsoft [4]; b) 
Vive flow from HTC [5]; c) Meta Quest 3 from Facebook [3]; d) Vision Pro from Apple 
[74]; e) Creal LF HMD from CREAL [75]; f) Magic Leap 2 from Magic Leap [76]; g) 
Near-Eye LF display from NVIDIA [77]; h) Lenslet VR display [78] 
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§ Object segmentation – 2D image segmentation is a challenging task, notably when 

color/texture information is not enough to separate overlapped objects that share the 

same color/texture but are located at different depth planes. Using LFs can help 

overcome this challenge and improve segmentation accuracy by exploiting the 

spatio-angular information and robustly detecting the occlusions across LF views 

[10], [11], [14]. More details about LF segmentation and available methods in the 

literature are presented in Chapter 5 and Chapter 6. 

§ Scene understanding – LFs can enhance scene understanding by providing the 

spatio-angular information of light rays. As an example, in smart cities where 

autonomous vehicles are operated, the ability to detect and recognize surrounding 

objects is crucial for overall safety and reliability. Using the rich information of LFs 

has shown improved performance compared to traditional 2D images in detecting 

cars, pedestrians, traffic signs and other objects in urban scenes [61]. Although 

available LF datasets for training deep learning models are relatively scarce, when 

compared to the 2D urban scenes datasets, the potential of using LFs to improve 

urban scenes understanding and autonomous driving is a growing work direction 

[61], [80]–[82]. 

§ Resolution enhancement – Depending on the used LF acquisition device, a trade-

off between spatial, angular or temporal (in the case of dynamic LFs) resolution 

may arise [14], [83]. To overcome this drawback, different methods in the literature 

proposed ways to enhance the recorded LF resolution by leveraging the additional 

information available in other LF views. Examples of such applications are LF 

angular super-resolution, a.k.a. LF view synthesis (i.e., the process of creating novel 

views from a given small set of reference views) and LF spatial/temporal super-

resolution (i.e., the process of enhancing image details, sharpness, clarity and frame 

rate in the case of dynamic LFs) [83]–[85]. 

• In movie production – After capturing the same scene from different viewpoints, LFs 

enable post-capture refocusing (i.e., the ability to adjust the focus plane of the scene 

after it has been captured) [86], [42]. Such an advantage benefits movie production and 

allows for greater flexibility in post-production. Moreover, as described before, LFs 

enable estimating accurate depth information. Therefore, the objects in a scene can be 

segmented and extracted with the assistance of their depth information instead of using 

chroma-keying techniques (i.e., based on green screens in the background in the case 

of indoor scenarios). After extracting objects from the scene, one can edit the color, 
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change the background/lighting or perform other editing tasks. By exploiting LFs in 

movie production, more immersive content can be produced, and a sense of presence 

can be achieved which improves the user experience while watching a movie. 

Therefore, LF content and emerging displays together have the potential to 

revolutionize the cinema experience where viewers sitting in different locations could 

see a slightly different viewpoint similar to how we see objects in real life. An example 

of this application is movie production using the Lytro Cinema camera prototype [87] 

as shown in Figure 1.17. Although Lytro company closed its doors due to commercial 

issues in 2018, alternative devices that benefit from the power of LFs in movie 

production still deserve further investigation. 

 
• In video gaming and storytelling – Extended reality applications have gained 

increasing attention in recent years and this increased the pressure on the production of 

mature HMDs. Immersive video gaming and storytelling are two entertainment 

applications, where HMDs offer a compelling and engaging experience and can fully 

or partially disconnect users from the physical world. In this context, capturing LFs of 

real world environments can give the end users a strong sense of realism. Thanks to the 

multiple viewpoints of LFs and the EPI structure, this improves rendering performance 

even for non-Lambertian (e.g., reflecting) regions [88], which is necessary for such 

applications. The realistic LF content can be especially beneficial in museum tours and 

storytelling. Recently, a prototype from Google [44] has been proposed to produce VR 

content that includes LFs captured from real world environments. The Google 

application “Welcome to light fields” is publicly available and enables end users to 

virtually explore numerous places [44], as presented in Figure 1.18. 

  
(a) (b) 

Figure 1.17: Example of LF usage in movie production: a) Lytro Cinema camera 
prototype [87]; b) Example of post-capture refocusing from Lytro Cinema [87] 
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• In medicine and biology – Compared to traditional microscopy, LF microscopy 

captures both the ray intensity and direction, thus enabling single-shot volumetric 

recording. LF microscopy enables depth estimation of the specimen and offers better 

3D reconstruction. For example, Levoy et al. [89] proposed a prototype of LF 

microscopy by adding a microlens array to the traditional microscopy and achieved 

useful perspective views and focal stacks from the captured spatio-angular information. 

Moreover, Longo et al. [90] proposed the first demonstration of a flexible plenoptic 

microscope operating with hard X-rays. A recent review of LF microscopy can be found 

in [91], [92]. Although LF microscopy has unique advantages over the traditional one, 

it still has challenges, e.g., the trade-off between spatial and angular resolution. 

However, rapid technological advances, including hardware devices and software 

algorithms, can typically overcome many of these challenges. Another application in 

medicine could be to use LF content in medical applications e.g., using extended reality 

to help doctors and medical students in their simulations and diagnostics [93]. 

• In security – LF imaging can help in advancing the accuracy of security measures. 

Given the multiple perspectives and the ability to estimate the depth information from 

the recorded content, one can see through occlusions, which is crucial in some security 

scenarios. Moreover, LF content can be exploited in several biometric identifications, 

such as face scanning and recognition assisted by depth information, as shown in Figure 

1.19 [13]. In [94], the results have demonstrated the importance of using additional 

information rendered by LF cameras to enhance the whole performance of biometric 

systems, including face and iris recognition. Additionally, object detection and tracking 

tasks can be improved by exploiting the depth information computed from LFs [95], 

  
(a) (b) 

Figure 1.18: Example of LF usage in VR applications: a) Google’s LF camera rig [44]; 
and b) The “welcome to light fields” application for virtual reality content [44] 
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[96]. Detecting and tracking suspicious objects or individuals in high-security areas is 

essential in security applications. Furthermore, LFs enable post-capture refocusing, 

vital in surveillance scenarios where the region of interest can be refocused even after 

an image has been captured or the initial focus point was on another plane [97]. 

 
• In communications and metaverse – LF content can enrich remote communications 

and the metaverse by exploiting the depth cues and its 3D representation. LF content 

and displays can also revolutionize remote conferencing in communication platforms 

by making the experience more engaging. Displaying captured LFs in personal 

communication scenarios enables the end users to better realize gestures and facial 

expressions, thus making remote communications more effective. Recently, Google 

revealed Project “Starline” and produced a glasses-free LF display, which can be 

considered as a “magic window” that makes the end users feel as if they are physically 

together and enriches real time remote video conferencing, as shown in Figure 1.20 

[98]. As the metaverse has attracted increasing attention recently [99], LF content and 

its advantages to the metaverse are also being investigated [100]. Since LFs can provide 

higher DoF, the sense of presence within the metaverse can be improved making virtual 

environments feel more realistic [100]. Moreover, LF content can be used to generate 

more realistic avatars that better reflect the individual’s appearance.  

Finally, it is worth noting that LF applications are not limited to the presented examples, 

and LF technology can be beneficial for other areas, such as for optical inspection inside 

factories and research plants, as illustrated in [50]. The promise of immersive experience 

enabled by LF imaging modality comes with challenges and limitations that need to be further 

investigated. 

 
Figure 1.19: Example of Raytrix LF camera usage in face recognition using 3D LF 
biometrics [13] 
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1.2.6 Examples of light field challenges and limitations 

LF imaging is promising and can enhance how we are used to capture, visualize, and interact 

with visual content. However, LF imaging still presents numerous challenges and limitations 

that need further research and improvement. Examples of such challenges include: 

• Resolution trade-off – LF capturing devices typically provide high resolution in one 

dimension at the expense of other dimensions (e.g., high angular resolution with low 

spatial resolution as in Plenoptic 1.0 cameras [49]). This limitation is due to the limited 

sensor sizes available. Therefore, efficient super-resolution methods are required to 

enhance the spatial/angular resolution depending on the target application. 

• Massive amounts of data – The massive amounts of involved data need to be 

efficiently coded/compressed to facilitate LF storage and transmission according to 

each user’s requirements. The interested reader is encouraged to read these recent 

reviews and references for efficient solutions for LF coding [101], [102], [103]. 

• Processing and editing computational complexity – Processing and editing LF 

content often require significant computational resources in terms of memory and 

execution time compared to 2D images. Therefore, efficient processing and editing 

methods that exploit correlations across LF views and reduce processing and editing 

complexity are needed. 

• Ensuring angular consistency (a.k.a. view-consistency) in processing and editing – 

In 2D images, processing and editing accuracy is a major performance metric, for 4D 

   
Figure 1.20: The glasses-free LF display from Google’s Starline project [98] 
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LFs preserving angular consistency is also essential. Ensuring processing and editing 

LF angular consistency means maintaining accuracy and coherence across LF views. 

More precisely, corresponding pixels across LF views must have the same features 

since they represent the same point in 3D space and changing the viewpoint should 

occur smoothly and naturally. Inconsistent LF processing and editing may lead to 

incorrect results with artifacts, which can have a negative subjective impact, especially 

when changing the viewpoints. Hence, it affects the end user’s perceptual quality of the 

immersive experience. Therefore, proposing LF processing and editing methods that 

ensure consistency across LF views is crucial. 
Notice that the first two examples are out of this Thesis scope, and this Thesis contributes 

to achieving efficient and angularly consistent 4D LF processing and editing. A detailed 

description of the specific challenges addressed in this Thesis and its major objectives will be 

presented in the following section. 

 

1.3 Thesis objectives and original contributions 

This Thesis seeks to address some of the abovementioned challenges and advance the state-of-

the-art in terms of 4D LF processing and editing. More precisely, this Thesis aims at achieving 
efficient 4D LF processing and editing by exploiting the spatio-angular similarities across 

all LF views, while ensuring angular consistency. In this context, four major research 

objectives were defined to address specific tasks in LF processing and editing, namely: 

1) Proposal of an efficient disparity propagation method that enables computing 
angularly consistent disparity maps for all LF views – One of the powerful 

advantages of LF imaging is the ability to estimate depth/disparity information from 

the rich recorded data. Existing LF disparity estimation methods in the literature can be 

classified according to the used approach as either classical methods, (e.g., relying on 

analyzing the EPI structure, matching corresponding pixels across views, or using 

defocus cues) or learning based methods (e.g., dependent on extracting deep features 

from LFs using various neural network layers [10], [11], [14], [79]). More details about 

LF depth/disparity estimation will be presented in Chapter 2. 

Depth/disparity estimation from LFs is an evolving work direction. However, most 

existing disparity/depth estimation methods either require dense LFs, estimate a 

disparity map only for the central view, or estimate a disparity map for any view in any 

angular location without adequately considering LF angular consistency constraints and 
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large occlusions [79], [104], [105]. Therefore, the first objective of this Thesis is to 

propose an efficient disparity propagation method that enables computing angularly 

consistent disparity maps for all LF views. 

To achieve that, this Thesis proposes a method that exploits off-the-shelf deep 

learning based disparity estimation methods to estimate a disparity map for the central 

view. Afterwards, the method propagates the central view disparity values into all LF 

views progressively in an occlusion-aware manner to preserve the disparity maps 

angular consistency. This way, the computed per-pixel disparity can be used to guide 

LF processing/editing accurately and ensure angular consistency. In this Thesis, all the 

upcoming objectives rely on the availability of disparity maps for all LF views as a 

helpful feature for robust processing and editing. This Thesis objective has resulted in 

the following publication: 

• M. Hamad, C. Conti, P. Nunes and L. D. Soares, “Efficient Propagation Method 

for Angularly Consistent 4D Light Field Disparity Maps,” IEEE Access, vol. 

11, pp. 63463-63474, Jun. 2023, doi: 10.1109/ACCESS.2023.3287920. 

2) Proposal of accurate and angularly consistent LF over-segmentation method for 
dense and sparse LFs – In 2D images, one efficient approach before applying image 

processing or editing is to first apply image over-segmentation (i.e., segment an image 

into locally coherent regions that adhere more accurately to object boundaries by 

grouping similar pixels that share similar criteria) [106]–[108]. The rationale for this 

approach is to use the obtained image over-segmentation as an intermediate data 

representation to reduce the amount of data to be processed, thus simplifying 

subsequent tasks [107]. Similarly, this approach is adopted in this Thesis by applying 

the LF over-segmentation step for 4D LFs and using it as an intermediate representation 

for other processing and editing tasks. Applying 4D LF over-segmentation not only 

reduces the amount of data to be processed but also ensures angular consistency. 

Existing 4D LF over-segmentation methods mostly rely on the K-means clustering 

algorithm to achieve the over-segmentation. Some limitations still exist in the existing 

4D LF over-segmentation methods, such as using fixed clustering weights that may 

lead to non-optimal over-segmentation, assuming dense LFs without adequately 

considering sparse LFs, and not fully exploiting the spatio-angular information. 

Therefore, this Thesis proposes two different clustering based methods that address 

different limitations in the existing 4D LF over-segmentation methods. Both proposed 

methods are automatic, accurately adhere to object boundaries and ensure angular 
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consistency for all corresponding pixels across all LF views. Moreover, both methods 

exploit per-pixel disparity information during the over-segmentation as a valuable 

feature to achieve accurate and angularly consistent segmentation. Yet, those methods 

differ in their objective and the limitations they address. 

The first method considers adaptively adjusting the clustering weights of the 

various features according to the LF content to achieve robust, compact (i.e., regular in 

size) and angular consistent 4D LF over-segmentation, as will be detailed in Chapter 3. 

This method assumes dense 4D LFs and is not suitable for sparse 4D LFs. 

The second method proposes a flexible 4D LF over-segmentation for both dense 

and sparse 4D LFs. Different from the existing clustering based 4D LF over-

segmentation methods that initialize clustering centroids only in the central view, this 

proposed method initializes the cluster centroids in different LF views (not only in the 

central view) to be able to consider all objects, not only those appearing in the central 

view. Moreover, existing methods typically apply K-means clustering in the central 

view and propagate the over-segmentation into all other LF views. However, this 

proposed method applies the K-means clustering in 4D space. To validate the proposed 

method on sparse 4D LFs, a new 4D LF dataset is also generated, the proposed dataset 

can also be used for different LF applications (e.g., in LF segmentation or 

depth/disparity estimation). Moreover, besides the frequently used metrics to evaluate 

4D LF over-segmentation, this Thesis proposes a modified metric to evaluate over-

segmentation angular consistency for both dense and sparse LFs. The work developed 

to reach this objective has led to the following journal publications: 

• M. Hamad, C. Conti, P. Nunes and L. D. Soares, “ALFO: Adaptive Light Field 

Over-Segmentation,” IEEE Access, vol. 9, pp. 131147-131165, Sept. 2021, doi: 

10.1109/ACCESS.2021.3114324. 

• M. Hamad, C. Conti, P. Nunes and L. D. Soares, “Hyperpixels: Flexible 4D 

Over-Segmentation for Dense and Sparse Light Fields,” IEEE Trans. Image 

Process., vol. 32, pp. 3790-3805, Jul. 2023, doi: 10.1109/TIP.2023.3290523. 

This paper was presented as well at the IEEE Inter. Conf. Acoustics, Speech, 

Signal Process. (ICASSP), April 2024, Seoul, Korea, doi: 10.60864/fzyz-h513. 

3) Proposal of efficient and angularly consistent methods for LF segmentation –

While 2D image segmentation is challenging, 4D LF segmentation is even more 

demanding due to the additional angular consistency requirement it should consider.  
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Existing 4D LF segmentation methods can be categorized according to the level of the 

semantic meaning of the obtained segments into low-level segmentation (a.k.a. over-

segmentation), mid-level segmentation (i.e., object level without semantic labels), and 

high-level segmentation (i.e., object level with semantic labels, such as a car, a person, 

etc.), as will be detailed in Chapter 5 and Chapter 6. Most existing 4D LF (mid/high-

level) segmentation methods either: i) Rely on user scribbles or supervision; ii) Do not 

support sparse LFs; iii) Only apply segmentation to the central view; or iv) Do not 

adequately exploit LF view correlation or ensure angular consistency. 

Therefore, this Thesis proposes two different methods for achieving 4D LF mid-

level segmentation. The first method is semi-supervised (assisted by user selection) and 

aims at interactively segmenting the foreground from background objects. This 

proposed method relies on graph technique (i.e., graph cut optimization) as most 

existing 4D LF semi-supervised segmentation. Different from the existing 4D LF semi-

supervised segmentation methods, this method greatly reduces the graph size and 

ensures segmentation angular consistency without the need for an explicit 

depth/disparity map estimation step. To achieve that, this method requires applying LF 

over-segmentation first. Then, it represents a 4D LF as a hypergraph based on LF over-

segmentation and applies classical graph cut optimization to achieve foreground-

background segmentation. This method, as the other existing semi-supervised methods, 

supports only dense LFs. 

The second method is unsupervised (automatic) and aims at segmenting a 4D LF 

into multiple objects without depending on the user’s scribbles or GT label images. The 

proposed method uses deep learning techniques, i.e., a Graph Neural Network (GNN), 

ensures angular consistency and does not require any GT labels to train the model. 

Moreover, it supports both dense and sparse LFs. To evaluate the segmentation angular 

consistency for both dense and sparse LFs, this Thesis proposes a set of complementary 

metrics for evaluating LF segmentation angular consistency. Up until now, it is the first 

4D LF mid-level segmentation method that uses a GNN in an unsupervised manner and 

supports both dense and sparse LFs. This Thesis objective has resulted in the following 

publications: 

• M. Hamad, C. Conti, A. M. de Almeida, P. Nunes and L. D. Soares, “SLFS: 

Semi-supervised Light-field Foreground-background Segmentation,” 2021 

Telecoms Conf. (ConfTELE), Leiria, Portugal, 2021, pp. 1-6, doi: 

10.1109/ConfTELE50222.2021.9435461. 
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• M. Hamad, C. Conti, P. Nunes and L. D. Soares, “Unsupervised Angularly 

Consistent 4D Light Field Segmentation using Hyperpixels and a Graph Neural 

Network”, IEEE Open. J. signal process., accepted for publication, doi: 

10.1109/OJSP.2025.3545356. 

4) Proposal of an efficient method for angularly consistent LF editing – 4D LF editing 

is generally more challenging than traditional 2D image editing. The reason is that any 

edit applied in one view must be consistent and accurate in all other LF views. In this 

Thesis, “Neural Style Transfer” was selected as the target LF editing application. 

Neural style transfer consists of using neural networks to generate a new image from 

two reference images, namely one for the content of the new image and another one for 

the style and colors (usually an art image). Neural style transfer is a trendy editing 

application in computer vision. However, applying existing 2D methods for each LF 

view independently can lead to unnatural artifacts and inconsistent results. 

Therefore, only a few methods addressed neural style transfer for 4D LF to ensure 

editing angular consistency. However, they either: i) Rely on dense LFs; ii) Need to 

train a model for each different style; or iii) Require optimizing angular consistency for 

each LF which can be very time-consuming. This Thesis proposes an angularly 

consistent 4D LF neural style transfer method that is flexible to any style image and 

supports different disparity ranges. This method highlights the advantage of exploiting 

LF over-segmentation since it only applies neural style transfer for reference views and 

then relies on the obtained 4D LF over-segmentation to apply edit propagation to all LF 

views robustly and consistently. This Thesis objective has resulted in the following 

international conference publication: 

• M. Hamad, C. Conti, P. Nunes and L. D. Soares, “View-consistent 4D Light 

Field Style Transfer using Neural Networks and Over-segmentation,” IEEE 

14th Imag., Video, Multidimensional Signal Process. (IVMSP), Nafplio, 

Greece, 2022, pp. 1-5, doi: 10.1109/IVMSP54334.2022.9816312. 

 

1.4 Thesis structure 

This Thesis adopts an article-based structure (a.k.a. composite Thesis) in which a collection of 

research articles is concatenated and accompanied by an extended introduction and conclusion 

that tie them together. More precisely, after this introductory chapter, the proposed publications 



 

 31 

are concatenated and organized in a sequence of chapters, as will be explained in this section. 

Finally, this Thesis concludes with some final remarks about the Thesis achievements and some 

suggested research directions for future work. 

Since this Thesis is article-based, outlining its structure helps the reader to understand the 

connection between the various chapters and the rationale for the Thesis work. Therefore, the 

structure of this Thesis is presented in Figure 1.21, where the arrows between two blocks 

indicate that the result of the source block is used/required by the target block. As presented in 

Figure 1.21, this Thesis includes: 

 
•  Chapter 1 – This corresponds to the current chapter, and it is an extended introduction 

to the Thesis. It provides some context for the Thesis and describes some fundamental 

concepts behind LF imaging. This is followed by the motivation for the developed 

work, as well as the defined objectives and the original contributions. At the end, it 

presents an overview of the structure followed in the Thesis. 

• Chapter 2 – This chapter tackles the first Thesis objective and proposes an efficient 

method to compute disparity maps for all LF views while ensuring the angular 

consistency of those maps. As mentioned above, LF depth/disparity information can 

guide other processing tasks, such as segmentation, and lead to more robust and realistic 

results by improving processing accuracy and angular consistency. Thus, the obtained 

disparity maps will be used/required in the following chapters. 

  

 
Figure 1.21: Thesis structure and the connection between the various chapters, where the 
arrows between two blocks indicate that the result of the source block is used/required by 
the target block 
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• Chapter 3 – This is the first of two chapters that tackle the second Thesis objective and 

proposes a 4D LF over-segmentation method that adaptively weights several features 

to generate segments that adhere to object boundaries and maintain angular consistency. 

The proposed method in this chapter is suitable for densely sampled 4D LFs since it 

assumes that each segment in the central view exists in all other LF views, which is a 

similar assumption as in the existing methods. 

• Chapter 4 – This chapter further extends the work related to the second Thesis 

objective and introduces the “hyperpixel” concept in 4D space. It also proposes a 

flexible 4D LF over-segmentation method that can be used for both dense and sparse 

LFs. The obtained 4D LF over-segmentation of Chapter 3 and Chapter 4 will be 

exploited in the following chapters to facilitate LF segmentation and edit propagation 

tasks. 

• Chapter 5 – This is the first of two chapters that tackle the third Thesis objective and 

proposes a semi-supervised 4D LF foreground-background segmentation method. This 

method is interactive and relies on the user’s scribbles to select any object in the scene 

and apply segmentation to all LF views. While semi-supervised segmentation is 

required in some applications, fully unsupervised segmentation is also encouraged, 

especially with the advances in deep learning techniques. The following chapter 

overcomes the user’s scribbles constraint in 4D LF mid-level segmentation. 

• Chapter 6 – This chapter continues the work related to the third Thesis objective and 

proposes an unsupervised and angularly consistent 4D LF segmentation method using 

a GNN. This method represents the 4D LF as a hypergraph based on 4D LF over-

segmentation and uses a GNN model to perform unsupervised segmentation on 4D 

space. The segmented objects obtained from the proposed methods in Chapter 5 and 

Chapter 6 can be used to apply edits only for specific objects in 4D space or integrated 

with any extended reality applications. 

• Chapter 7 – This chapter tackles the fourth Thesis objective and proposes a method 

that achieves neural style transfer for 4D LFs. The proposed method uses a deep 

learning architecture that applies neural style transfer only to a subset of LF views and 

then propagates the edits into all other LF views consistently. To achieve that, this 

chapter requires the disparity maps for all LF views (Chapter 2) and over-segmented 

4D LFs obtained using Chapter 3 or Chapter 4. 
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• Chapter 8 – This is the final chapter, which concludes this Thesis by discussing the 

achievements and outlining possible directions for future work.
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ABSTRACT Light Field (LF) imaging, since it conveys both spatial and angular scene information, can
facilitate computer vision tasks such as depth/disparity estimation. Although disparity maps can be estimated
for all LF views, most existing methods merely estimate depth/disparity for the central view and do not
adequately deal with other LF views. However, having depth/disparity maps for all LF views can be useful
for enhancing immersive multimedia applications, such as 3D reconstruction and LF editing. To overcome
this limitation, in this paper, an efficient and occlusion-aware disparity propagation method is proposed. The
proposed method generates disparity maps for all LF views given a single disparity map for one reference
view (e.g., the central view). The disparity map for the reference view is propagated first into the four corner
views to ensure angular consistency. Afterwards, an off-the-shelf existing disparity estimation model is used
to fill any remaining holes in the corner views. Finally, disparity maps for the remaining views are recursively
generated through a fast propagation step, which is followed by a final refinement step to regularize the
generated disparity maps. The proposed method not only generates disparity maps for all LF views but also
handles occlusions and ensures angular consistency. Experimental results on synthetic and real LF datasets
with different disparity ranges, using several accuracy and angular consistency metrics, show outperforming
or competitive results compared to the benchmark methods with a significant complexity reduction.

INDEX TERMS Light field disparity estimation, angular consistency, fast disparity propagation, deep
learning.

I. INTRODUCTION
Light Field (LF) imaging has attracted increasing attention
from researchers due to its ability to capture not only
light intensity but also ray directions [1], [2], [3]. 4D
LFs can be represented as an array of views (a.k.a. sub-
aperture images) I (x, y, u, v), where (x, y) are the spatial
coordinates and (u, v) are the angular coordinates of each
view. By fixing one angular and one spatial coordinate,
an Epipolar Plane Image (EPI) (i.e., the unique 2D spatio-
angular LF slice typically containing a regular structure with
several oriented lines [1], [4]) can be obtained, as illustrated
in Fig. 1. By exploiting the rich information captured by

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja .

FIGURE 1. Example of LF representations. a) 4D LF represented as an
array of views; b) Horizontal and vertical EPIs.

LFs and the possible LF representations, new capabilities
are enabled, such as post-capture refocusing and depth
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estimation. Additionally, disparity maps can be estimated
from LFs to represent the displacement of corresponding
pixels in several LF views, which is inversely proportional
to the depth [4]. As humans, depth/disparity information
estimated by our brains is exploited to efficiently process
the surrounding world. Similarly, machines can benefit from
depth/disparity information to enhance the processing of
captured images. Therefore, many interesting applications
for 2D content rely heavily on the use of depth maps (e.g.,
obtained from sensors) as an additional feature, besides
the visual appearance, to apply efficient processing and
editing.

In the case of 4D LF applications, besides achieving accu-
rate editing, ensuring angular consistency is also essential.
This is especially important when navigating between LF
views using virtual reality headsets or LF displays. Therefore,
generating angularly consistent disparity maps for all LF
views has become a task of growing interest to guide several
computer vision applications, such as LF segmentation, view
synthesis, 3D scene reconstruction, and augmented/mixed
reality [3], [5], [6], [7].

Several LF disparity estimation methods have already been
proposed in the literature, e.g., [8], [9], [10], [11], [12], [13],
[14], [15], [16], and [17], as briefly reviewed in Section II.
Most existing LF disparity estimation methods estimate
disparity maps only for the central view. However, having
disparity maps for all LF views can be useful for enhancing
several applications, such as 3D reconstruction and LF
editing. The few methods that consider estimating disparity
for all LF views, e.g., [10], [16], and [17], either are not
adequately considering consistency across LF views, are
computationally complex, or are only suitable for densely
sampled LFs.

In this context, the main contribution of this paper is
an efficient disparity propagation method that generates
angularly consistent disparity maps for all LF views, which
works for both densely and sparsely sampled LFs. The
proposed method exploits the correlations across LF views
and propagates a given disparity map from only one reference
view into all LF views in an occlusion-aware manner, while
also ensuring angular consistency. The proposed propagation
method starts by propagating the reference view disparity
map into the corner views and assigning disparity values to
all their pixels. Afterwards, disparity values are recursively
propagated to the remaining LF views with the guidance
of the reference and corner views in both horizontal and
vertical angular directions. Finally, a last refinement step
is included to smooth the disparity maps. Experiments
using different accuracy, consistency and complexity metrics
show outperforming or competitive results when compared
to the existing methods, while reducing the computational
complexity.

The remainder of this paper is organized as follows.
Section II briefly reviews the related work on 4D LF disparity
estimation, Section III describes the proposed method in
detail and Section IV evaluates its performance through a

series of experimental results. Finally, Section V concludes
the paper with some final remarks and directions for future
work.

II. RELATED WORK
In recent decades, several 4D LF disparity estimation
methods have been proposed. Existing methods can be
classified as either classical or deep learning-based 4D
LF methods depending on the used disparity estimation
approach:

A. CLASSICAL 4D LF DISPARITY ESTIMATION METHODS
Classical 4D LF disparity estimation methods exploit differ-
ent LF representations and analyze the geometry to estimate
disparity information using manually designed features. This
type ofmethods can be further classified into three categories,
according to the used LF representation:

• EPI-based methods: the methods in this category rely
heavily on the EPI regular structure. In the EPI space, a
3D point is represented by a line whose slope is inversely
proportional to its disparity value [1], [4]. Wanner and
Goldluecke [8] analyzed EPIs using structure tensors
to locally estimate disparity values. Zhang et al. [9]
proposed a spinning parallelogram operator for depth
estimation on EPI space. Khan et al. [10] proposed
a disparity estimation method to compute disparity
maps for all LF views by detecting EPI edges and
diffusing them spatially within the central view and
then propagating the central view into all LF views.
EPI-based methods typically achieve high estimation
accuracy, but only for densely sampled LFs.

• Sub-aperture image-based methods: the methods in
this category rely on matching corresponding pixels
between LF views, i.e., stereo matching, using a robust
patch-based block-matching approach. A cost volume
is usually constructed to measure the similarity and
angular consistency between LF views. Jeon et al. [11]
proposed a disparity estimation method by applying
the phase shift theorem. Huang et al. [12] proposed
an empirical Bayesian framework for computing LF
disparity for both dense and sparse LFs. While match-
ing corresponding pixels to estimate disparity maps
is widely used, in dense LFs with a quite narrow
baseline, sub-aperture image matching can lead to
poor accuracy and occlusions can cause impossible
correspondences [2].

• Focal stack-based methods: the methods in this
category produce a focal stack from LFs and rely on
defocus cues to estimate the disparity. They assume
that in-focus points are projected at the same spatial
location in the different views [13], [14], [15]. Lee
and Park [15] proposed a unified model for depth
estimation by combining focus, defocus and matching
corresponding pixels. The methods that rely on LF focal
stack are robust to occlusions and noise. However, they
may suffer from ambiguities due to the used patch and
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aperture sizes, making the approach not as accurate as
most methods in the previous categories.

B. DEEP LEARNING-BASED 4D LF DISPARITY ESTIMATION
METHODS
Deep learning-based 4D LF disparity estimation methods
have been recently proposed to improve the performance
of existing classical methods while greatly reducing the
disparity estimation time. These methods rely on deep
learning techniques and most of them are supervised by
ground truth disparity maps to estimate disparity information.
Heber and Pock [18] proposed the first convolutional neural
network model to learn an end-to-end mapping between a 4D
LF and its corresponding depths. Afterwards, Heber et al.
proposed a U-Net architecture with 3D convolutions to
estimate LF disparity maps for the central EPIs [19]. The
EPI-based fully-convolutional neural Network (EPINet) and
Multi-scale Aggregated Network (MANet) proposed in [20]
and [21] significantly improved the disparity estimation
accuracy for the central view and heavily rely on the EPI
structure in densely sampled LFs. Shi et al. [16] overcame
this limitation by proposing a framework that can be used
for both dense and sparse LFs. While this method can
estimate a disparity map for any LF angular location, angular
consistency across views is not ensured. Jiang et al. [17]
proposed a disparity estimation method starting from the
four corner views. After that, the disparity is propagated into
all other LF views and a 3D reconstruction method is used
to fill the holes (i.e., remaining regions after propagation
without disparity values). Although it can estimate disparity
maps for both dense and sparse LFs, relying on the initial
estimation of corner views can significantly affect the
disparity estimation performance for wide baseline LFs.
Wang et al. [22] proposed a generic mechanism for LF
processing including disparity estimation using domain-
specific convolutions. Recently, Chao et al. [23] proposed
a disparity estimation method called SubFocal that learns
the disparity distribution of dense LFs and estimates a
smooth disparity map for the central view by using cost
volumes at the sub-pixel level. Supervised deep learning-
based methods achieve state-of-the-art results. However,
they require a large number of training LFs with ground
truth disparity maps, which are challenging to obtain in the
real world. Moreover, training deep learning models using
only synthetic LF datasets may not adequately handle the
domain shift between the real world and synthetic datasets.
Therefore, several unsupervised methods are proposed to
handle this challenge, although the performance is slightly
reduced [24].

III. PROPOSED DISPARITY PROPAGATION METHOD
The proposed method comprises three main steps as illus-
trated in Fig. 2. To start, two inputs are required, namely
a 4D LF and an estimated disparity map of one reference
view with respect to its adjacent right view (estimated by
any available method). In this paper, the central view is

selected as a reference view since it is equidistant from
all corner views. Hence, represents a good compromise in
terms of the remaining holes after propagating its disparity
map into all corner views. Therefore, from hereinafter in
this paper, the central view will be considered the reference
view. Notice, however, that the proposed method can use
any disparity estimation method and any angular location
for the reference view, though the results may be affected
accordingly, as explained in Section IV.
To apply the propagation into all LF views, in the first

step, the input reference view disparity map is propagated
into the four corner views in an occlusion-aware manner.
The remaining holes in the corner views after propagation
are filled by estimating their disparity values. Any disparity
estimation method that can estimate disparity for any angular
location for dense and sparse LFs can be used to fill
the holes. In the second step, the disparity maps for the
remaining LF views (i.e., all LF views except the reference
and corner views) are generated via a recursive propaga-
tion in both horizontal and vertical directions separately.
Afterwards, disparity maps from both horizontal and vertical
propagation are fused for each view using their arithmetic
mean.
In the last step, the disparity values of any remaining

holes are computed, and a final edge-preserving refinement
is applied to further regularize the output. The following sub-
sections describe these steps in more detail.

A. DISPARITY PROPAGATION FOR CORNER VIEWS
To ensure angular consistency across LF views, the reference
view disparity map, dref , is initially propagated into the four
corner views (since they typically include most of the scene
information) – in this paper, the central view located in the
angular location (uc, vc), is used as reference view; thus
ref=(uc, vc). The propagation is achieved by assigning the
same disparity value of each pixel in dref to the corresponding
pixel in each corner view, which are computed using dref

itself, as shown in (1):

(
x(u,v) = xref + dref!(u,v)

hor ,

y(u,v) = yref + dref!(u,v)
ver ,

(1)

where xref , yref are the spatial coordinates from which the
propagation is applied; x(u,v), y(u,v) are the corresponding
spatial coordinates of xref , yref in view (u, v); dref!(u,v)

hor ,
dref!(u,v)
ver are the horizontal and vertical disparity values
located in the spatial position

�
xref , yref

�
from the reference

view to view (u, v). To ensure integer positioning, rounding
is applied to the projected coordinates. Assuming a regular
arrangement of cameras with a parallel optical axis and
uniform camera baseline and focal length, as assumed
in [25], and [26], the horizontal and vertical disparities
from the reference view into any other LF view (u, v) is
computed using (2). Equations (1) and (2) hold under the
above assumption. Otherwise, camera parameters must be
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FIGURE 2. Illustration of the proposed disparity propagation method: a) Disparity propagation for corner views; b) Recursive disparity propagation for
all remaining LF views to ensure angular consistency; c) Disparity map refinement for all LF views.

considered.
(
dref!(u,v)
hor = dref ⇥ (u� uc),
dref!(u,v)
ver = dref ⇥ (v� vc) .

(2)

To detect occlusions, a binary occlusion mask is initialized
for each LF view for all pixels, where each pixel is initially
labeled as occluded. After estimating the disparity map of
the reference view and propagating it into other LF views, all
spatial locations that have disparity values are labeled as non-
occluded and the remaining ones keep the initial occluded
label.

To ensure occlusion-aware propagation, the input 4D
LF and corresponding texture variation maps are used.
Therefore, the input 4D LF is converted to the CIELAB color
space. Then, a per-pixel texture variation map is generated
from the L channel by computing the local standard deviation
of a (3 ⇥ 3) neighborhood for all the pixels in each view.
The texture variation maps are used to guide the propagation
when different objects share either the same color or the same
disparity values. Disparity propagation is applied only if the
color and texture difference, D, between pixels in ref view
and corresponding pixels in another view, as in (3), is less
than or equal to a pre-defined threshold, ⌧ , (i.e., D  ⌧ ).
In this paper, ⌧ is set to 0.01 after extensive experiments to
allow for a reasonable difference due to rounding and lighting
differences in each view.

D =
q�

li � lj
�2 +

�
ai � aj

�2 +
�
bi � bj

�2 +
�
ti � tj

�2
, (3)

where l, a, b are normalized color channel values (using
min-max normalization [27]) in CIELAB color space; i, j
represent the original pixel in ref view and corresponding
pixels in (u, v) view, respectively; and t is the normalized
texture value (using min-max normalization) for each pixel.
The above thresholding operation is beneficial in preventing
inaccurate projections into other views if the reference
disparity maps have inaccurate values. Different values of ⌧

are tested to study their effect in Section IV.
During propagation, the occlusion mask is checked for

each spatial location, and when it has already a non-occluded

FIGURE 3. Example of occlusion masks after projecting the disparity map
of the central view into other LF views: a) The central view and its
disparity map; b) Binary occlusion masks of the four corner views after
propagating the central disparity map into each one. White pixels indicate
pixels without disparity values, i.e., occluded/invisible pixels (relatively to
the central view).

label (i.e., another candidate has been propagated into the
same location due to rounding, or inaccurate estimation), the
maximum disparity value between the previous and current
candidates is kept only if D⌧ , otherwise the disparity
value will not be changed. The rationale for keeping the
maximum disparity value comes from the observation that
foreground objects, which are typically not occluded, have
larger disparity values.
The remaining holes in the corner views (white regions

in Fig. 3b), i.e., regions without disparity values, need to be
filled next. Instead of applying a blind filling/inpainting to
those holes, the actual disparity values are truly estimated
from the input 4D LF. Therefore, any existing disparity
estimation method that can compute disparity maps for any
angular location, and not only for the central view, for both
dense and sparse LFs, can be used to fill the remaining holes.
Different disparity estimationmethods are used and evaluated
in Section IV to study their effect on the estimated disparity
maps. After assigning disparity values for all pixels in corner
views, the corner views are used to guide the propagation for
the remaining LF views, as explained in the next step.
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FIGURE 4. Disparity map estimation via propagation: a) Middle views
between any two corner views (blue squares); b) Border and central
crosshair views (yellow and green squares) using a recursive propagation;
c) Internal views, such as purple shaded squares, have two different
propagations from horizontal and vertical directions independently, then
both computed disparity maps are fused to create one disparity map for
each internal view.

B. RECURSIVE DISPARITY PROPAGATION FOR
REMAINING LF VIEWS
In this step, disparity maps of all other LF views are obtained
in three stages as presented in Fig. 4.

First, a disparity map is assigned to each middle view
located halfway between any two corner views (blue squares
in Fig. 4a). To achieve that, the reference view and the nearest
two corner views are propagated into each middle view as
shown in Fig. 4a (considering occlusions as in the previous
step). Those three propagated disparity maps are then fused
by considering their arithmetic mean.

Second, a disparity map is assigned to each remaining
border and crosshair view, i.e., views in the central horizontal
and vertical angular coordinates (yellow and green squares in
Fig. 4b). To achieve that, a recursive propagation from two
reference views located in the same horizontal or vertical
angular dimension into the middle view located halfway
between them is applied, as shown in Fig. 4b, until no more
middle views without disparity values remain. At this point,
the LF is divided into four quadrants and no disparity maps
are still assigned for the internal views of each quadrant.

Third, a disparity map is assigned to the internal views
in each quadrant by applying a recursive horizontal and
vertical propagation independently, as shown in Fig. 4c (the
same way as it has been done in the second stage for
each row or column of internal views). Both disparity maps
generated from horizontal and vertical recursive propagation

TABLE 1. Test datasets used in the experiments.

are then fused for each internal LF view by considering their
arithmetic mean.

C. 4D LF DISPARITY MAPS REFINEMENT
In this step, all LF views already have a disparity map.
However, remaining hole locations, caused by occluded
regions that do not exist in either the reference view or the
corner views, or just caused by rounding the coordinates
to integer indexing, need to be filled. Therefore, the four
nearest left, right, top and bottom spatial neighbors that have
disparity values for each pixel are considered in each view.
The disparity value corresponding to the minimum difference
Dk < ⌧, k = 1, . . . , 4 as in (3), is assigned as the disparity
value of that location. If more than one neighbor has an
equal D value, the minimum disparity value is considered.
The reason for considering the minimum disparity is that
the remaining holes, typically belonging to occluded regions,
cannot be seen in the reference or corner views, are deeper
than frontal objects (i.e., occluding objects), and hence have
lower disparity values. After filling the remaining isolated
pixels and holes, a simple and fast 2D edge-preserving
median filtering using a (5 ⇥ 5) kernel size is applied
spatially for all LF views to refine the estimated disparity
maps.

IV. RESULTS AND EVALUATION
In this section, the proposed method is compared to several
benchmark methods, namely: i) Shi et al. method [16], which
is applied for each LF view independently since it only
estimates one disparity map for any angular location; ii)
Jiang et al. method [17]; and iii) Khan et al. method [10].
Both [10] and [17] create disparity maps for all LF views.
Moreover, several LF datasets with different disparity

ranges are used (see Table 1). Notice that HCI and HCI⇤
datasets are both synthetic dense LF datasets, however,
they are different in the disparity ranges and in the spatial
resolution. The entire (9 ⇥ 9) views for all datasets are
considered. Only synthetic LFs with Ground Truth (GT)
disparities for all LFs are used for the quantitative evaluation.
The EPFL and Stanford LF datasets do not have GT disparity
maps and, hence, the quantitative evaluation is not applied to
them.
To quantitatively evaluate the proposed method, three

different metrics are used, namely: i) Mean Square Error
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FIGURE 5. A visual example of the refinement step using edge-preserving
filtering. a) GT disparity of view (3, 6); b) GT disparity enlargement; c)
Proposed without refinement; d) Proposed with final refinement.

(MSE) [28]; ii) Percentage of Bad Pixels (BP) (i.e., the
percentage of pixels with a disparity error above a certain
threshold; the typically used Bad Pixels error thresholds of
0.01, 0.03 and 0.07 are used) [28]; and iii) View Consistency
Error (i.e., where disparity maps of all LF views are projected
into each angular location; then the variance of all projected
disparity maps is computed for each angular location (81
values) as defined, formulated and implemented in [10]).

As explained in Section III, in the proposed method. a ref-
erence view disparity map is required as input. Additionally,
the holes in corner views after propagating the reference view
disparities need to be filled by estimating their disparities.
Therefore, any existing method that can estimate disparity
maps for any angular location in dense and sparse LFs can
be used (more accurate is favored). In this paper, to achieve
both accuracy and angular consistency for the generated
disparity maps, Chao et al. SubFocal method [23] is adopted
to estimate the input disparity map. The reason for choosing
the SubFocal method is that it ranks first place, as reported
by the authors, among other 99 submitted methods on the
HCI 4D LF benchmark [28] considering different metrics.
However, the SubFocal method can estimate a disparity map
only for the central view and has been trained for dense LFs
with a disparity range of [�4, 4]. Therefore, the remaining
holes after propagation to the corner views are filled by using
the pre-trained model of Shi et al. [16] that fine-tuned the
optical flow estimation network (a.k.a. FlowNet 2.0) [32] for
LF disparity estimation in any angular location. Moreover,
to consider sparse LFs, the model in [23] is retrained in
our experiments by using LFs with a wider disparity range
(i.e., [�20, 20]). To retrain the SubFocal method for sparse
LFs, the Inria synthetic sparse LF dataset in Table 1 was
used for training (the same number of LFs was used for
training, i.e., 16 LFs, as in [23]). The hyperparameters were
kept the same as in [23], except for the disparity sampling
step size which was set to 2.5 instead of 0.5 to reduce the
cost volume complexity. In this paper, the retrained model
is tested for sparse LFs using Lion, and Electro devices test
LFs. In the experiments, different methods are also used to
study the effect of the selected disparity estimation method
on the proposed propagation method (including the use of the
method [16] for both the reference and corner views).
Notice that some results are not available (indicated

n/a in Fig. 7, Fig. 8 and Fig. 10) since the EPI-based
method in [10] does not support LFs with large disparity
ranges. Additionally, the SubFocal method [23] is used to

FIGURE 6. Average CPU time in seconds per view.

estimate the input reference view disparity map for most
datasets. However, disparity maps of the HCI dataset [31] are
estimated using the Shi et al. method [16] since the SubFocal
method [23] generates inaccurate disparity estimations for
this dataset due to the different resolutions and the domain
shift of training and testing, as reported by the authors and
shown later in Fig. 9.
The proposed method is implemented using MATLAB

and all results ran on a desktop computer with a 64-bit
Ubuntu operating system, AMD® Epyc 7282 16-core CPU,
NVIDIA GeForce RTX 3090 and 256 GB RAM.

A. QUANTITATIVE AND QUALITATIVE RESULTS
In this section, the proposed method results are presented
and compared to the benchmark methods using several
datasets with various disparity ranges. Notice that only the
datasets that have ground truth disparity maps are used in
the quantitative results namely, HCI [31], HCI⇤ [28] and
Inria [16] LF datasets.
Initially, the effect of the parameter ⌧ is studied by

using different values and finding the evaluation metrics
accordingly. Therefore, 4 different experiments are con-
ducted where different values of ⌧ are used, i.e., 0.001, 0.01,
0.1 and 1, where 1 refers to the case where the visual
consistency is discarded during the propagation. As can be
seen from Table 2 using different ⌧ values can slightly
affect the accuracy and the CPU time. As illustrated in
Section III, the occlusion-aware propagation step considers
the disparity values of foreground and background regions.
However, to avoid wrong projection for objects that have
similar disparity values but are different in color, the ⌧

value is set to 0.01. This value prevents inaccurate projection
from occurring due to discrete sampling, rounding errors
or inaccurate estimated values. The chosen value allows for
reasonable visual differentiation across LF views, accounting
for varying lighting conditions. Simultaneously, it strikes
a reasonable balance between accuracy, efficiency, and
prevention of inaccurate projections.
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FIGURE 7. Summary statistics of view consistency error across all LF views for each test LF.

TABLE 2. Average quantitative results using the proposed method with
different ⌧ values on various LF datasets for all LF views.

To study the impact of the final refinement step, Table 3
shows the performance of the proposed method with and
without applying the edge-preserving filter to refine the
generated disparity maps in the refinement step (i.e., step
C in Section III). As presented in Table 3, the results are
slightly improved when a simple median filter is applied to all
LF views to regularize the estimated disparity maps in most
datasets. The used filter is simple, fast, preserves scene edges
and can reduce inaccurate disparity propagations, especially
for a few pixels with wrong disparity values surrounded by
pixels with accurate ones (see Fig. 5).

TABLE 3. Average quantitative results on various LF datasets using
different 4D LF disparity estimation methods for all LF views.

Moreover, the proposed method is evaluated and compared
to the benchmark methods using various datasets, as pre-
sented in Table 3, Table 5, Fig. 6, Fig. 7 and Fig. 8.
To compare the computational complexity between the

various methods, all methods were run using the CPU, and
CPU times are reported in Fig. 6. The reported time for
the proposed method includes the disparity estimation time
for the reference view and for occlusions in corner views
and all the steps in Section III. The CPU time spent by all
the benchmark methods for all LF views is then divided
by the number of views to obtain an average CPU time per
view. The breakdown of the average CPU time for each step is
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FIGURE 8. Visual comparison using the proposed disparity propagation method and the benchmark methods for dense and sparse LFs. The central
view and central horizontal and vertical EPIs are shown for all LFs. Not available (n/a) results for the Khan et al. method since it does not support
very sparse LFs.
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FIGURE 9. Examples to show the effect of the selected central view
disparity estimation method on the proposed disparity propagation
method. First row, using the Shi et al. method [16]; Second row, using
Chao et al. SubFocal method [23].

TABLE 4. Breakdown of the average CPU time for the proposed method
(in seconds).

reported in Table 4. As in Table 3 and Fig. 6, the results of the
proposedmethod generate competitive accuracy results while
reducing the complexity when compared to the benchmark
methods, especially for challenging sparse LFs.

Besides the improvements of the proposedmethod in terms
of accuracy metrics in some datasets, a significant reduction
in time is shown in Fig. 6 when compared to Shi et al. [16]
and Jiang et al. [17]. Compared to Khan et al. [10], the CPU
time results are still competitive. However, when the
Khan et al. method is used for the reference and corner
views, the proposedmethod requires less CPU time than [10],
as shown later in this section. This reduction in time is
achieved by exploiting the correlation between LF views and
applying angularly consistent propagation. The CPU time
for the proposed method depends on the used methods to
estimate the reference view disparity map and the occluded
regions as described below in this section.

Regarding the angular consistency of obtained disparity
maps, Fig. 7 shows the angular consistency using boxplots
where the central mark indicates the median and the bottom
and top edges of the box indicate the 25th and 75th
percentiles, respectively. Notice that, in this experiment, two
different disparity estimation methods are used during the
propagation steps in the proposed method (e.g., the SubFocal

FIGURE 10. Summary statistics of view consistency error across all LF
views for each test LF. In this figure, the results of the proposed method
are compared using the benchmark method to estimate the disparity map
for the reference view and occluded regions in the corner view namely,
using Shi et al. method (Proposed-a); using Jiang et al. method
(Proposed-b); using Khan et al. method (Proposed-c); and using the
ground truth disparity (Proposed-d). The proposed disparity propagation
method leads to better view consistency compared to the original
benchmark methods.

method [23] is used for the reference view and the pre-
trained model of Shi et al. [16] is used for occlusions in the
corner views). Despite that, the proposedmethod outperforms
Shi et al. [16] by ensuring angular consistency during the
propagation as can be noticed in Fig. 7. Additionally, the
proposedmethod outperforms Jiang et al. method [17] in 6 LF
scenes, while their method outperforms the proposed method
in the remaining 2 LFs (i.e., Table, and Lion). Khan et al.
method [10] outperforms the proposed method for dense LFs
and ensures angular consistency across views. However, the
method in [10] does not adequately support large occlusions
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TABLE 5. Average quantitative results on various LF datasets using different 4D LF disparity estimation methods for all LF views. The propagation results
are tested using different disparity estimation methods for the reference view and hole filling in the coroner views, including the ground truth disparity.
The best results among the proposed method results using different estimation techniques are highlighted in bold.

across LF views, which is typical for sparse LFs. While the
view consistency of disparity maps is essential, accuracy is
also important. As can be seen from Fig. 7 and Fig. 8, for the
Lion LF, for instance, achieving the best performance in terms
of view consistency does not necessarily lead to better visual
accuracy and in terms of other metrics. Besides the visual
results shown in Fig. 8, readers are encouraged to see also
the dynamic results in our GitHub repository.1

To study the effect of the selected disparity estimation
method on the proposed propagation method, different
disparity estimation methods are used for estimating the
reference view and filling the occlusions in the corner
views. To achieve that, the benchmark methods [10], [16],
[17] and the ground truth disparity are compared to the
proposed method results generated by using each benchmark
method for estimating the reference view and filling the holes
in the corner views. After that, the proposed propagation
method is applied to compute disparity maps for all
LF views.

As can be seen in Table 5, by only using one reference
disparity map and by exploiting the correlations across LF
views, the proposed propagation method outperforms the
original benchmark methods in most test LFs and can gen-
erate competitive results in others. Moreover, the proposed
propagation method ensures better view consistency than the
original benchmark methods in most LFs as presented in
Fig. 10. Notice that, for some LFs, using the ground truth
disparity in the proposed method has lower performance,
in terms of the view consistency metric, compared to the
estimated ones, as shown in Fig. 10. The reason for this is
that the ground truth disparity is more distinct and sharper
around objects boundaries when compared to the smooth
estimated ones. Hence, it generates larger and sharper holes

1Dynamic results for all LF views can be found at:
https://github.com/MaryamHamad/LFDisparityPropagation

FIGURE 11. Average CPU time in seconds per view. In this figure, the
results of the proposed method are generated by using the benchmark
method to estimate the disparity map for the reference view and
occluded regions in the corner views namely, using Shi et al.
(Proposed-a); using Jiang et al. (Proposed-b); and using Khan et al.
(Proposed-c). The proposed disparity propagation method significantly
reduces the required time compared to the original benchmark methods.

in occluded regions that need to be filled after propagation.
Small differences in filling those regions across LF views
can heavily affect the consistency metric results. Finally, the
proposed method can drastically reduce the average CPU
time per view when compared to the benchmark methods,
as shown in Fig. 11.
To sum up, the proposed disparity propagation method

enables computing an accurate disparity map for each LF
view only from one reference view disparity map and hole
filling in the corner views. The proposed method leads to
improved accuracy and view consistency for most of the LF
datasets and reduces the computational complexity compared
to the benchmark methods. Some limitations remain such as
if the input reference view has inaccurate estimation, there is
no correction step to check if the values are accurate or not,
and the inaccurate values will be propagated into all other LF
views as shown in Fig. 9. This limitation can be avoided by
using an accurate disparity estimation method to estimate the
disparity map for the reference view.
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V. FINAL REMARKS
In this paper, an efficient disparity propagation method is
proposed to generate angularly consistent disparity maps for
all LF views. Given only one estimated disparity map of a
reference view, the proposed method exploits the correlation
across LF views and propagates the reference disparity
map to the corner views at first. The remaining holes in
the corner views are not interpolated but truly estimated
by adopting an off-the-shelf disparity estimation method.
Afterwards, disparity maps of the reference and corner views
are propagated recursively in horizontal and vertical angular
directions in an occlusion-aware manner into all remaining
LF views. Finally, a refinement step is included to regularize
the final disparity maps and fill any remaining holes. Since
most of the existing methods estimate disparity information
for the central view only, the proposed method can be used as
plug and play with them to enable the generation of angularly
consistent disparity maps for all LF views. Experimental
results for several LF datasets with different disparity ranges
show competitive results in terms of angular consistency and
estimation accuracy compared to the existing methods with a
significant complexity reduction.

For future work, the question of how to adaptively
select the location of the reference view and the possibility
of adding more reference views will be investigated to
effectively consider occlusions based on the LF disparity
range. Moreover, the current implementation is not optimized
yet and the computational complexity of the proposed
disparity propagation method can be further reduced.
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ABSTRACT Automatic image over-segmentation into superpixels has attracted increasing attention from
researchers to apply it as a pre-processing step for several computer vision applications. In 4D Light
Field (LF) imaging, image over-segmentation aims at achieving not only superpixel compactness and
accuracy but also cross-view consistency. Due to the high dimensionality of 4DLF images, depth information
can be estimated and exploited during the over-segmentation along with spatial and visual appearance
features. However, balancing between several hybrid features to generate robust superpixels for different
4D LF images is challenging and not adequately solved in existing solutions. In this paper, an automatic,
adaptive, and view-consistent LF over-segmentation method based on normalized LF cues and K -means
clustering is proposed. Initially, disparity maps for all LF views are estimated entirely to improve superpixel
accuracy and consistency. Afterwards, by using K -means clustering, a 4D LF image is iteratively divided
into regular superpixels that adhere to object boundaries and ensure cross-view consistency. Our proposed
method can automatically adjust the clustering weights of the various features that characterize each
superpixel based on the image content. Quantitative and qualitative results on several 4D LF datasets
demonstrate outperforming performance of the proposed method in terms of superpixel accuracy, shape
regularity and view consistency when using adaptive clustering weights, compared to the state-of-the-art
4D LF over-segmentation methods.

INDEX TERMS Automatic segmentation, adaptive light field over-segmentation, superpixels.

I. INTRODUCTION
Image segmentation is a process of dividing the scene
into several coherent regions according to some criteria.
Image segmentation aims at minimizing intra-variance and
maximizing inter-variance among regions [1]. Several image
processing and computer vision applications rely on image
segmentation in different fields, such as medical imaging [2],
autonomous vehicle navigation [3], and face or optical char-
acter recognition [4]. Available image segmentation algo-
rithms in the literature require different levels of supervision
to suit different types of applications. These algorithms can
be classified into supervised [5], semi-supervised [6], and
unsupervised (automatic) [7], [8], based on the need for
pre-trained labels or human interactions.

Image over-segmentation divides the scene into uni-
form regions with similar visual characteristics, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Fahmi Khalifa .

color or texture to obtain superpixels [9]. Most existing
image over-segmentation methods belong to the
unsupervised image segmentation class and can be cat-
egorized as clustering-based methods and graph-based
methods [9]. Recently, researchers have also been attempt-
ing to exploit deep learning techniques to generate image
over-segmentations for 2D images [10], [11]. These image
over-segmentation methods, in [10], [11], belong to the
supervised image segmentation class and have shown to
achieve superior performance. However, preserving all image
boundaries during the over-segmentation could be chal-
lenging, since the used ground truth labels for training are
usually segmented in a more semantically meaningful level
(e.g., object level). Additionally, although their performance
is competitive compared to unsupervised methods, the gen-
eralization of the network to over-segment different datasets
is still a challenge to be further studied.
By creating homogenous regions that involve local percep-

tually meaningful information (i.e., superpixels), subsequent
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image analysis and processing are facilitated [8]. A recent
trend in computer vision and image processing applications
is to process an image at the superpixel-level representation
instead of the pixel-level representation. As an example,
in image compression, superpixels can be used to reduce
coding overhead by minimizing the number of regions that
need to be coded [12], [13]. Additionally, superpixels can be
used in object tracking [14], object segmentation [15], and
saliency detection [8], [16].

As for 2D images, in 4D Light Field (LF) images,
the superpixel concept can be also exploited to divide the var-
ious views into smaller regions. However, 4D LFs comprise
spatial as well as angular scene information, since they cap-
ture the scene from different perspectives by using a camera
array, a moving camera gantry or a single camera equipped
with a microlens array in front of the sensor [17], [18].
Therefore, in 4D LF images the superpixel-level representa-
tion should correspond to regions that are coherent not only
spatially but also angularly across views. In 4D LF process-
ing, superpixel-level representation facilitates the propaga-
tion of subsequent processing tasks from a reference view into
other views; hence, a significant reduction in computational
complexity can be achieved. Furthermore, superpixel-level
representation using appropriate LF superpixels, that con-
sider angular and spatial geometry, helps ensure cross-view
consistency, which is a critical property in 4D LF process-
ing (e.g., in virtual reality applications, the 4D LF object
must be accurately and consistently segmented in all views).
Compared to 2D images, 4D LFs offer richer cues that can
be used efficiently to significantly improve the robustness of
image segmentation, such as depth information. In general,
when traditional 2D segmentation is applied to 4D LFs,
the cross-view information is not considered to resolve
object occlusions, thus resulting in inconsistent or inaccurate
image segmentations. Therefore, 4D LF over-segmentation
solutions should aim at achieving superpixel cross-view
consistency (e.g., without flickering borders or sudden
shifts in border positions when the angular perspective is
changed) in addition to other properties such as compactness
(e.g., superpixel-shape regularity) and segmentation accuracy
by adhering to object boundaries. Currently, there are only
a few 4D LF over-segmentation solutions in the literature
that tackle the above 4D LF superpixel challenges. Existing
solutions for 4D LF over-segmentation can be classified as
clustering-based methods [8], [19], [20] and graph-based
methods [21], depending on the used approach. However,
independently of the followed approach, they all suffer from
two important limitations.

The first such limitation is the fact that the used parameters
for clustering or graph optimization are empirically tuned
to the specific set of tested images. Consequently, it may
be very time-consuming, and it may not lead to an optimal
set of parameters considering the actual content of each
view. Moreover, when features of different nature (such as
color, position, and depth) are used, the difference in range
between them is not adequately considered. As a result,

the superpixel accuracy and consistency may be negatively
affected. A possible way to overcome this limitation is to use
a content-adaptive algorithm that adjusts over-segmentation
parameters. The adaptive algorithm can use the feedback
values from previous iterations to dynamically adjust the
parameters for better performance. This type of solutions has
been proposed for adapting the used weights for segmen-
tation or graph optimization in 2D superpixel segmentation
algorithms with promising results, e.g., [22], [23]. Given
the similarities between 2D and 4D LF image segmentation,
a similar approach can be followed for LF images.
The second limitation is the fact that the angular infor-

mation is currently not being fully exploited. In some
cases [8], [19], only a sparse estimation of the disparity
(i.e., the displacement of a point between different views,
which is inversely proportional to the depth) is used for
projecting superpixels from the central view to all other
LF views. When a sparse or roughly estimated disparity is
used for centroid projection, actual corresponding positions
in other views may not be computed accurately, hence may
generate inconsistent superpixels across views. Additionally,
since in most existing solutions the disparity is used merely
for projection and not for clustering, this seriously limits the
ability to segment regions with the same visual appearance
at different depths. In other cases [20], the central horizontal
and vertical views are used to guide the segmentation and
propagation, which may affect the accuracy or consistency
in the off-central views.
To deal with the two limitations above, this paper pro-

poses an adaptive view-consistent 4D LF over-segmentation
method that belongs to the clustering-based over-segmentation
class. The two main contributions of the proposed method
are:

• Automatic LF over-segmentation with adaptive clus-
tering weights – In the proposed method, the used
features are first normalized using the min-max nor-
malization method for proper feature weighting, pre-
venting unbiased clustering and leading, this way,
to a robust segmentation. Additionally, the clustering
weights are adjusted adaptively based on the 4D LF con-
tent. For that, the discriminability measure proposed for
2D images [22] is adapted to compute the contribution
of the used features and adjust the clustering weights
accordingly. To the best of the authors’ knowledge, this
is the first 4D LF method that generates content-based
adaptive 4D LF superpixels based on K -means clus-
tering. Experiments and the dynamic results in the
supplemental materials show outperforming results
quantitively and qualitatively when adjusting the
weights based on image content compared to the existing
solutions that use fixed clustering weights.

• Adaptive clustering based on a robust hybrid fea-
ture set – The proposed method belongs to the
clustering-based class using a bottom-up clustering
approach with hybrid clustering features. Angular and
spatial LF information is included to improve the
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accuracy and cross-view consistency of the generated
superpixels. The recent 4D view-consistent depth esti-
mation method [24] that estimates per-pixel disparity is
used during the superpixel segmentation as a discrim-
inable feature, besides position and visual appearance.
Exploiting per-pixel disparity for clustering and pro-
jecting improves the qualitative and quantitative results
in terms of accuracy significantly and ensures view
consistency.

The remainder of the paper is organized as follows.
Section II briefly reviews the related work on 4D LF
over-segmentation available in the literature. Section III
describes the proposed Adaptive LF Over-segmentation
(ALFO) method in detail, while Section IV evaluates its per-
formance through a series of experimental results. Section V
discusses some remaining limitations. Finally, Section VI
concludes the paper with some final remarks and proposes
directions for future work.

II. RELATED WORK
Superpixels have attracted increasing attention since their
naming in 2003 [25]. Several over-segmentation solutions
for obtaining superpixels in 2D images have already been
proposed; a comprehensive review can be found in [26]. For
4D LF images, unsupervised over-segmentation solutions
have been proposed and can be classified as either
clustering-based or graph-based 4D LF over-segmentation
methods.

A. CLUSTERING-BASED 4D LF OVER-SEGMENTATION
In this class, the image is segmented by defining centroids
(a.k.a. seeds) to guide the segmentation, with each pixel being
grouped into the nearest centroid based on some criteria. The
existing solutions use K -means clustering to generate the
4D LF superpixels, where K is the number of superpixels.

Initially, Hog et al. [8] introduced the concept of superrays
to achieve superpixel segmentation for LFs. Using K -means
clustering, the 2D square grid of the central view is projected
to the other LF views, based on a roughly estimated disparity
for the central view centroids only. Afterwards, the pixels
are assigned to the nearest superray based merely on color
and position features. During the clustering, the color and
position of each centroid are updated. However, the centroid
disparity is never updated even when the centroid position
is changed. The clustering is iteratively applied until conver-
gence is reached. Finally, a cleaning step is needed to smooth
the labeling. In [27], the authors extended the work to handle
LF video by including the temporal dimension. Although
their proposed solution has a fast execution time, the resulting
superrays are not always consistent across views [20], [21].

Zhu et al. [28], [19] proposed a robust superpixel
Light Field SuperPixel (LFSP) segmentation method. Given
the depth map of the central view, they first perform
a 2D K -means superpixel segmentation for the central
view using a 2D superpixel algorithm. Then, the result
is projected into the entire LF based on the central view

depth map. Lastly, after clustering, the segmentation bound-
aries are optimized using the Block Coordinate Descent
algorithm (i.e., an optimization algorithm that sequentially
minimizes a multivariable function along one direction at a
time to find the minimum of that function) [19] to preserve
boundaries for occluded objects. Since the depth map is used
to segment the central view only, the objects in the off-central
views that are occluded in the central view may not be seg-
mented properly across views.
Khan et al. [20] proposed a View-Consistent Light Field

Superpixel (VCLFS) segmentation with implicit disparity
estimation based on Epipolar Plane Images (EPIs) (i.e., the
unique 2D spatio-angular slice of the LF. Each EPI contains
several oriented lines, and the slope of these lines is asso-
ciated with the disparity) [29]. They use two stacks of the
central horizontal and central vertical views independently to
generate the EPIs. Each pair of lines in an EPI represents a
segment; hence, cross-view consistency can be enforced by
propagating the labels through these lines. After applying the
segmentation in the EPI space, they use K -means clustering
by combining the angular segmentations in horizontal and
vertical EPIs into the central view. Labels are then propagated
to all off-central views in the 4D LF using per-pixel disparity.
Finally, unlabeled pixels are assigned to the label of the
nearest neighbor in each view independently. Although the
disparity is exploited during clustering in this solution, in
some cases, such as for non-Lambertian or occluded objects
in the central EPIs, not all the superpixels are view consistent.
In all the mentioned solutions, fixed values are used for the
clustering weights and most of them also fixed the number of
iterations, independently of the content.

B. GRAPH-BASED 4D LF OVER-SEGMENTATION
In this class, the image is represented as a weighted undi-
rected graph. Each pixel is considered as a graph node. After-
wards, graph optimization techniques are used to separate the
graph into sub-graphs to generate superpixels based on the
edge weights between the nodes. Due to the huge number
of pixels in 4D LF images, graph-based solutions are gen-
erally complex in terms of the used resources and execution
time.
Li and Heidrich [21] proposed a Hierarchical and View-

invariant LF Segmentation (HVLFS) method. Given the esti-
mated depth for all LF views, they use 4D graph segmentation
by applying greedy heuristic optimization to maximize the
entropy rate in a 4Dweighted undirected graph. The proposed
method generates hierarchical superpixels with different sizes
based on the user input. This solution exploits several fea-
tures, such as depth and texture, and no centroids projection
is used. Due to the huge graph structure, the authors proposed
several optimization techniques and data structures to reduce
the complexity, such as disjoint trees and max heap structure.
However, they also mentioned some limitations regarding
the need for normalizing the weight values of the used opti-
mization function.Moreover, a massive amount of computing
resources is needed for dense LF segmentation.
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FIGURE 1. Overview of the proposed ALFO method. Given a 4D LF image and the corresponding disparity maps for all
views, initial centroids, characterized by distinct features, are assigned in a reference view. Next, the 4D LF superpixel
segmentation is achieved by iteratively applying K-means clustering, including pixel labeling, centroids updating and
clustering weights adaptation, until convergence is reached.

To the best of our knowledge, to date, these are the existing
solutions that address the 4D LF superpixel segmentation
problem. All these solutions rely on several fixed parameters
for different input images during the K -means clustering
or the graph optimization, without considering the relative
importance of various features for each image. Additionally,
the used features are not normalized before the clustering;
hence, they cannot be weighted properly, and the superpixels
may not be generated optimally.

III. PROPOSED METHOD
The proposed ALFO method aims at generating 4D LF
superpixels that respect visual appearance, compactness,
occlusions, and cross-view consistency. The proposed
method consists of four major stages as shown in Fig. 1.
To generate the 4D LF superpixels, firstly, the disparity of all
4D LF views are estimated entirely (i.e., for each pixel) using
the View-consistent 4D Light Field Depth Estimation algo-
rithm proposed in [24]. Given the input LF image, the esti-
mated disparity for all views, and the grid step size, the central
view is selected to initialize the centroids and assign them
the initial feature values (i.e., position, color and disparity)
extracted from the central view of the 4D LF image and the
central disparity map in the grid spatial coordinates. Next,
the centroids are projected to each view using the disparity
(i.e., the disparity from the central view to other views) to
ensure consistency across views. After that, the K -means
clustering is applied for each view in the 4D LF to assign
a label for each pixel according to its ‘‘nearest’’ centroid,
considering all the features. The features of all centroids are
updated iteratively by back-projecting the pixels that belong
to each superpixel from all LF views into the central view.
Finally, to optimize the segmentation, the used clustering
weights are adapted according to the content of each image
and the generated superpixels in the current iteration. Each
stage in Fig. 1 will be detailed in the following sub-sections
and the main notations used in this paper are summarized
in Table 1.

A. 4D LF CENTROIDS INITIAL ASSIGNMENT
Initially, the 4D LF image (represented as a 2D array
of 2D views) is converted to CIELAB color space.

TABLE 1. Main notations used in this paper.

This color space was designed to approximate the human
visual perception; thus, it is typically used in image seg-
mentation. After that, a reference view (e.g., central view)
is selected to initialize the clustering centroids in a grid.
A uniformly distributed grid is used where the center of each
grid square represents a centroid, and the initial distance
between two centroids is defined as the grid step size, Ssize,
as illustrated in Fig. 2. The value of Ssize is defined by the
user, or a default value (e.g., 20 pixels) can be used to generate
superpixels that adhere well to the boundaries. Ssize is com-
monly referred as the superpixel size in the literature [7], [20].
After generating the centroids grid, each centroid will be

characterized by several features, namely relative position,
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FIGURE 2. Visual representation of the clustering iterations: a) initial
square grid in the central view only. Each square represents a superpixel
and the center point of each square represents its centroid. In (a), for
illustration, all pixels are labeled, however, initially, only centroids have
labels; b) labeling result after the first iteration; c) final labeling output.

color and disparity. However, due to the differences in the
hybrid features ranges, the used features are normalized to
properly weight them in the next stages. The min-max nor-
malization [30] is used as in (1):

!norm = ! � !min

!max � !min
, (1)

where !norm is the normalized value, ! is the current value
and !min, !max are the minimum and maximum values in
the dataset, respectively. For LF images, the MATLAB con-
version from RGB color space to CIELAB color space is
used, and the CIELAB LF image is normalized to the range
of [0, 1] using the color space ranges, namely [0, 100] for
l channel, and [�100, 100] for a and b channels. These ranges
are obtained from MATLAB documentation [31]. To nor-
malize the disparity feature, the maximum and minimum
values from the dense 4D LF dataset are used. Although the
used test images in our experiments are within the disparity
range of [�2.25, 2.25] pixels for horizontally adjacent views,
we considered a larger range than the used test images to
ensure robust over-segmentation for other dense LF datasets
available with disparity values up to [�4, 4] [32]. The posi-
tion feature normalizationwill be detailed later in Sub-section
C. To exploit the 4D LF cues in segmentation, each pixel is
characterized by its color and disparity values, according to
its location (x, y, u, v),where (x, y) are the spatial coordinates
and (u, v) are the angular coordinates.

B. 4D LF PIXELS LABELING
Like state-of-the-art 4D LF superpixel methods, we assume
the centroids in the central view also exist in all
other 4D LF views. Given the disparity maps for all
4D LF views and the initial centroids in the central view,
the K -means clustering is applied to each view by first
projecting the centroids from the central view into each view,
as in (2):

cu,vx = crefx + dref!(u,v)
hor,c ,

cu,vy = crefy + dref!(u,v)
ver,c , (2)

where (cu,vx , cu,vy ) are the spatial coordinates of the pro-
jected centroid using the disparity of the reference centroid
located at (crefx , crefy ), and (dref!(u,v)

hor,c , dref!(u,v)
ver,c ) are the

horizontal and vertical disparities from the reference view
ref =

�
uref , vref

�
to view (u, v), respectively. Since the used

disparity estimation method generates per-pixel disparities
from each view to its right horizontal adjacent view, and
considering uniformly sampled LF, the disparity value is
computed as in (3) [19]:

dref!(u,v)
hor,c = dc ⇥

�
u� uref

�
,

dref!(u,v)
ver,c = dc ⇥

�
v� vref

�
, (3)

where dc is the disparity of the centroid from each view
to its right horizontal adjacent view and (uref , vref ) are the
angular coordinates of the ref view. However, if the camera
baselines are different for horizontal and vertical directions
(e.g., the LF is captured by a camera array), in this case,
camera parameters (extrinsic and intrinsic matrices) should
be considered [19]. The projected centroid (cu,vx , cu,vy ) may
belong toR2, however, in the used datasets we only have color
and disparity values for integer positions. To access these
features from the projected centroid, the color and disparity
values are obtained by rounding the coordinates to ensure
integer indexing belonging to z2. Notice that the normalized
unrounded values of the position and disparity are used for
clustering and clustering weights adaptation. Unnormalized
values are only used for projection.
To improve the clustering performance, searching is per-

formed in a small window, �c, with size (4⇥ Ssize)2 around
each centroid in each view. The searching window enforces
spatial connectivity and improves the performance since
most 4D LF superpixels have a local slice in each view [7]
(i.e., are non-occluded). As shown in Fig. 3, for narrow base-
lines (e.g., when dc < Ssize), each centroid in the reference
view is assumed to exist in all views with a slight disparity.
The solid arrows describe the projection of the centroids from
the reference view into other views based on the disparity
of the centroid. After projecting from the reference view
into all other LF views, for each pixel, let F represents the
set of clustering features {p, l, a, b, d}, where p stands for
relative position, l, a, b for the three color channels in the
CIELAB color space and d for the average of the horizon-
tal and vertical disparities, respectively. Each pixel in all
LF views is then assigned to the ‘‘nearest’’ superpixel accord-
ing to the weighted distance, Dw, as in (4)-(9):

Dp(p, c) =

vuut (px � cx)2 +
�
py � cy

�2

8⇥ S2size
, (4)

Dl(p, c) =
q�

lp � lc
�2

, (5)

Da(p, c) =
q�

ap � ac
�2

, (6)

Db(p, c) =
q�

bp � bc
�2

, (7)

Dd (p, c) =
q�

dp � dc
�2

, (8)

Dw (p, c) = wp ⇥ D2
p + w

l
⇥ D2

l + wa ⇥ D2
a

+wb ⇥ D2
b + wd ⇥ Dd , (9)
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FIGURE 3. Assuming all centroids in the reference view exist in all other
views, the projection of a centroid from the reference view into other
views is illustrated by the solid red arrows. Similarly, back-projection of
all pixels that belong to a superpixel from all other views into the
reference view is illustrated by the dashed arrows.

where wp is the relative position clustering weight, wl , wa, wb
are the color clustering weights, wd is the disparity clustering
weight, p represents each pixel that belongs to the searching
window centered on centroid c and Dp, Dl , Da, Db, Dd are
the relative position, color and disparity distances between
each pixel p and a centroid c, respectively. Note thatDd is not
squared in (9) as will be detailed in Section IV. To normalize
the relative position feature,Dp is divided by 8⇥S2size, by con-
sidering the minimum distance to be zero and the maximum
distance to be 2⇥ Ssize, for both x and y coordinates.

In the first iteration, all the weights are initialized with
same value, equal to 1/ |F | , where |F | is the number of the
used clustering features. After extensive testing, we noticed
that the values of the initial weights do not significantly
impact the final clustering weights. Notice that the used
weights must be in the (0, 1) range and the summation of all
weights is equal to one. Let S = {S1, . . . , Sk} represents the
set of all superpixels, the over-segmentation can be consid-
ered as an energy minimization problem as in (10):

E = argmin
S

KX

c=1

NuX

u=1

NvX

v=1

X

p2Su,vc

Dw(pu,v, cu,v), (10)

where K is the number of superpixels, Nu, Nv are the hor-
izontal and vertical dimensions of the LF array of views,
respectively.

C. 4D LF CENTROIDS UPDATING
After assigning each pixel in all 4D LF views to the ‘‘nearest’’
superpixel (in terms of Dw), the clustering feature set, F ,
for each centroid in the central view is updated iteratively as
described in this section.

The average value of the color channels from all pixels that
belong to that superpixel, considering the entire 4D space, are
assigned to each centroid. However, since in each iteration,

all centroids in the central view are projected to all 4D LF
views, only the relative position of each centroid is updated.
To update the relative position of the centroids in the central
view, all the pixels that belong to a given superpixel in each
view are back-projected into the central view using the dis-
parity of each pixel (see Fig. 3 dashed arrows), as in (11):

prefx = pu,vx + d (u,v)!ref
hor,p ,

prefy = pu,vy + d (u,v)!ref
ver,p ,

(crefx , crefy ) = 1���Brefc
���
⇥

0

B@
X

p2Brefc

prefx ,
X

p2Brefc

prefy

1

CA , (11)

where
⇣
prefx , prefy

⌘
are the back-projected spatial coordi-

nates of the pixel using its horizontal and vertical dispari-
ties d (u,v)!ref

hor,p , d (u,v)!ref
ver,p from view (u, v) into the ref view,

Brefc is the set of all back-projected pixels that belong to super-
pixel Sc from all views into the ref view, with c 2 {1, . . . ,K },
and (crefx , crefy ) are the updated spatial coordinates of the
centroid in the ref view. In contrast to the solution described
in [8], where the pixels of all views are back-projected into
the central view using the same coarse estimated disparity of
the central view centroids only, we use the estimated disparity
values of each pixel that belong to the corresponding super-
pixel in the 4D space to properly back-project into the central
view. Similarly, as in (3), according to the used disparity
estimation method, the disparity from any view (u, v) to the
ref view is computed as in (12):

d (u,v)!ref
hor,c = dc ⇥

�
uref � u

�
,

d (u,v)!ref
ver,c = dc ⇥

�
vref � v

�
. (12)

After that, the spatial position of each centroid is deter-
mined as the average pixel coordinates of all pixels that
belong to the given superpixel. The back-projection step
is used to update the centroids positions in the ref view
without being affected by the slight disparity across views
(e.g., if actual positions of all pixels are considered).
Finally, after updating the positions of the centroids, the

disparity value of each centroid needs to be updated as well.
Given the estimated disparity maps, each centroid disparity
is updated using the disparity value of the updated position
(rounded to integer positions) from the disparity map. The
actual disparity in the updated centroid position is used in
our method instead of computing the average disparity of
all pixels in a superpixel. This approach ensures a robust
projection of a given centroid from the reference view into
other views in the next iteration. Different from the proposed
solution in [20], where the average disparity of all pixels
that belong to each superpixel is considered to update the
disparity of each centroid. Additionally, the centroid disparity
is never updated in the proposed solution in [8], even when a
centroid changed its position, which may affect the projection
accuracy, hence degrading the superpixels consistency.
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D. CLUSTERING WEIGHTS ADAPTATION
Due to the different nature of the used features, fixing
clustering weights for all image types without consider-
ing their content is a non-trivial, time-consuming task and
may generate non-optimal over-segmentations. To improve
over-segmentation flexibility and robustness, and to over-
come this drawback, which prevails in the existing 4D LF
superpixel solutions, adaptive clustering weights are used in
our proposed method. The technique considered here was
inspired by the adaptation technique proposed in [22] for
2D clustering to adapt the K -means clustering weights iter-
atively based on their within-cluster variance. As proposed
in [22], the principle of feature discriminability states that the
features with the smaller sum in within-superpixel variance
(i.e., the total sum of the feature distances from each pixel
to its centroid in all superpixels) are more distinguish-
able. Therefore, they can be assigned larger weights to
guide the segmentation. To compute the discriminability of
each clustering feature, after each K -means iteration and
after all the 4D LF centroids are updated, the normalized
within-superpixel variance for each feature f is computed by
using (13):

WSV f =
XK

c=1

NuX

u=1

NvX

v=1

X

p2Su,vc

Df
�
pu,v, cu,v

�2
, (13)

whereK is the number of superpixels,Nu,Nv are the horizon-
tal and vertical dimensions of LF array of views, respectively,
Su,vc is a 2D slice of superpixel Sc in view (u, v), p represents
each pixel that belongs to the superpixel Sc in all 4D LF
views, Df is the feature distance from each pixel pu,v and the
projected centroid cu,v in view (u, v), and f 2 F . In [22],
WSV f is then divided by the range of feature f in a given
image to normalize it. However, during clustering, in [22],
the used features are not normalized, and range differences
are not considered. Different from [22], in this paper, the
clustering features are normalized initially, hence, WSV f ,
is computed based on normalized features, and for proper
weighting, the normalized features are also used during
clustering.

Initially, all feature clustering weights, are assigned
to 1/ |F |. After that, we iteratively update the clustering
weights according to the generated superpixels of the current
iteration. Based on [22], features with smaller values ofWSV f
are coherent among the superpixel, and can generate a com-
pact grouping for similar pixel values. Hence, to optimize the
clustering weights, a higher weight value is assigned to the
feature with smallWSV f value, as in (14):

wf = 1
P

t2F
�
WSV f

�
WSV t

� 1
|F |�1

, (14)

where t is a feature that belongs to the features array F .
The summation of all the clustering weights should be equal
to 1 in all iterations.

Since the proposed method is adaptive, the number of
K -means iterations is content-dependent as well. After each

iteration, the average displacement of all centroids is com-
puted by finding the Euclidian distance between the centroid
previous position and the updated one in the ref view as
in (15):

Davg = 1
K

KX

c=1

r⇣
crefx 0 � c

ref
x

⌘2
+

⇣
crefy0 � c

ref
y

⌘2
, (15)

where (crefx 0 , crefy0 ) and (crefx , crefy ) are, respectively, the pre-
vious and updated spatial coordinates of each centroid in
the ref view, and K is the number of superpixels. The
4D LF superpixel segmentation will iterate untilDavg reaches
0.5% of Ssize (i.e., the grid step size), or until it reaches the
maximum number of iterations (e.g., 20 iterations).
According to the image dimensions and grid shape or step

size, the approximate number of generated 4D LF super-
pixels, K , can be computed and rounded from (16), where
Ssize is the grid step size, and

��I ref
�� is the number of pixels

in the ref view:

K ⇡
��I ref

��

S2size
. (16)

The entire proposed algorithm is summarized in
Algorithm 1.

Algorithm 1: ALFO: Adaptive Light Field Over-
Segmentation
Input: 4D light field image, I, step size, Ssize, and 4D light field

disparity map, Z
Result: 4D light field labeled image, L
Initialize a 4D regular grid with step size in the reference view;
Initialize the K centroids using reference view values and normalized
features;

Initialize clustering weights to 1/|F |;
Initialize pixel label L(p) = 0 for each pixel;
Initialize pixel distance D(p) =1 for each pixel;
while not converged or reached max iterations do

D(p)=1;
for each centroid c 2 {1, . . . ,K } do

for each view (u, v) 2 I do
project c into (u, v) view using (2);
Create searching window, �c, around the
projected c;

for each pixel p 2 �c do
Compute features distance, Dw (p, c),
using (9);

if Dw(p, c) < D(p) then
L(p) L(c);
D(p) Dw(p, c);

end
end

end
end
Update color, position and disparity for
each c;

Compute within-superpixel variance, WSVf ,
for each feature using (13);

Update clustering weights, Wf , using (14);
end

IV. EXPERIMENTAL RESULTS
In this section, the proposed method is analyzed and
evaluated. For this purpose, quantitative and qualitative
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comparisons with the state-of-the-art methods are performed.
Initially, the used datasets, benchmark methods and eval-
uation metrics are introduced. Afterwards, the generated
results and comparisons are discussed. In this analysis,
visual results are presented only from top-left, central, and
bottom-right LF views to show the over-segmentation con-
sistency across the 4D LF views. Nevertheless, to visualize
the entire 4D LF views and the smooth transition across
views, we highly encourage the reader to see our results in the
supplemental material for dynamic visualizations available
online.1

A. DATASETS AND PARAMETER SETTINGS
To evaluate the proposed method, both synthetic and real
(i.e., not synthetic) 4D LF datasets are used to obtain the
experimental results. For synthetic 4D LF images, the HCI
4D LF dataset [33] is used. The HCI dataset includes both
Ground Truth (GT) disparity maps and segmentation labels.
Additionally, for real 4D LF images, the EPFL MMSPG
dataset captured with a Lytro Illum camera [34] is used,
as shown in Table 2. Due to the vignetting effects in this
dataset (i.e., darkening of the edges of the captured micro-
images), only the central 13 ⇥ 13 views are used, thus dis-
carding the entirely dark views in the 4D LF corners.

TABLE 2. Image datasets used in the experimental results.

It is worth highlighting that our method does not use any
empirically set clustering weights or any post-processing
optimization (e.g., to regularize the superpixel borders across
views) or cleaning (e.g., to remove sparse pixels that are
labeled wrongly). Solely the maximum number of iterations
is set empirically. The maximum number of iterations is set
to 20 to ensure robust segmentation even for complex texture
images. As illustrated in Fig. 4, the average displacement of
the centroids,Davg, converges after 10-15 iterations and goes,

1Higher quality versions at https://github.com/MaryamHamad/ALFO

usually, below 0.5% of the superpixel size before 20 iterations
(see the threshold line in Fig. 4). Moreover, we noticed that
the results were not significantly improved when the clus-
tering is terminated based on this threshold value compared
to the maximum number of iterations. The superpixel size
is assigned by the user to control the generated superpixel
size according to the desired application. In our experiments,
several superpixel sizes are tested and the central view is used
as a clustering reference view.

FIGURE 4. Average displacement of centroid spatial coordinates, Davg,
in pixels, along the number of iterations. Ssize = 20.

B. BENCHMARK METHODS
To compare our method with the state-of-the-art methods
presented in Section II, we used the open-source software
provided by the authors of the LFSP [19] and the VCLFS [20]
methods. For the LFSP method, we used the depth esti-
mation algorithm proposed in [35] applied for central view
only, as defined in the LFSP proposal. To compare with
the Superray method [8], we used the superray software
that was implemented and used in [36], since the original
software of the Superray method [8] is not publicly available.
To generate the superrays, several parameters are needed to
be assigned, such as disparity range between two adjacent
LF views, and compactness weight (e.g., a weight that con-
trols superpixel compactness and balances between color and
position features during the clustering). The disparity range
is obtained from the used estimated disparity in [24] for
each test image independently, and the compactness weight
is set to 10 for better results for different superpixel sizes.
For the HCI dataset, several superpixel sizes were tested
for all the mentioned solutions (i.e., {15, 20, 25, 30, 35, 40}).
For the MMSPG LF dataset, since there is no labeling GT
available, only Ssize = 20 was tested, as detailed below.
Finally, we compared our proposed method with the HVLFS
method [21] using the 4D LF labeled images from the HCI
dataset provided by the author, with average superpixel sizes
belong to [10, 45].
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C. EVALUATION METRICS
In 2D superpixel methods, there is, usually, a requirements
trade-off between compactness (e.g., shape regularity) and
accuracy including boundary adherence [7]. In addition
to these requirements, 4D LF superpixels should also be
consistent across views (e.g., to have coherent shape and
no flickering borders or sudden shifts in border position
when the angular perspective is changed). To evaluate
these characteristics quantitatively, the following metrics are
considered [20]:

1) ACCURACY AND COMPACTNESS METRICS
• Achievable Accuracy (AA) – Since the GT labels, LGT ,
are segmented at the object-level with n segments, each
superpixel in the labeled image, L, is assigned to the
label of the LGT segment that has the largest overlap
with the current superpixel. Afterwards, the accuracy is
measured as follows [22]:

AA = 1
Nu,v

X

u,v

(
1

|I u,v|
KX

c=1

max
j

��Sc \ Gj
��
)

, (17)

where Nu,v is the number of all 4D LF views,
��I (u,v)

�� is
the number of pixels in a single LF view, (u, v) are the
angular coordinates for all LF views, K is the number
of superpixels, Sc is a superpixel in L and Gj is the
jth segment in LGT , with j = {1, . . . , n}. A higher value
indicates better accuracy.

• Boundary Recall (BR)– Given the GT boundary
image, BGT , let True Positive, TP, and False Negative,
FN , represent the number of boundary pixels (i.e., pixels
that represents image edges) in the superpixel labeled
image, L, with respect to BGT . Then, the boundary recall
is computed as follows [37]:

BR = TP
TP+ FN

, (18)

where TP is the number of boundary pixels in BGT
that share boundary pixels with L within chessboard
distance, �, in pixels, FN is the number of boundary
pixels in BGT that do not share any boundary pixels
with L within distance �, where � is set to 2 as in [20].
A higher value of BR indicates better adherence to the
object boundaries.

• Under-segmentation Error (UE)– This metric com-
putes the percentage of superpixels that overlap
GT segment borders as follows [37]:

UEu,v =
nX

j=1

P
Sc:Sc\Gj=;min

���SINc
�� ,

��SOUTc
���

��Gj
�� ,

UE = 1
Nu,v

X

u,v

UEu,v
|I u,v| , (19)

where n is the number of segments in GT labels, and
SINc , SOUTc represent the inside and outside parts of a
superpixel that are divided by a GT label segment Gj,

��SINc
�� ,

��SOUTc
��,

��Gj
��, represent the number of pixels in

each segment, Nu,v is the number of 4D LF views and
|I u,v| is the number of pixels in a single LF view. This
metric evaluates the quality of segmentation based on
the requirement that a superpixel should overlap with
only one object. A lower value of UE indicates that the
superpixels are less likely to flood over the GT segment
borders, hence indicates improved accuracy.

• Compactness (CP) – This metric measures superpixel
boundary curvature as follows [20]:

CP = 1
Nu,v

X

u,v

X

Sc2S

4⇡ASc |Sc|
|I u,v|P2Sc

, (20)

where Nu,v is the number of 4D LF views, S is the set
of superpixels in labeled image, L, |I u,v| is the number
of pixels in a single LF view, ASc and PSc are the area
and perimeter of superpixel Sc, respectively, and |Sc| is
the number of pixels in Sc. Larger CP values indicate
smoother borders of superpixels and better regulation in
superpixel size across views.

2) ANGULAR SIMILARITY AND CONSISTENCY METRICS
• Self-Similarity (SS)– As defined in [19], centroids are
back-projected from each view into the ref view using
the GT disparity. The self-similarity error computes the
average distance between the back-projected centroids
from all views and the centroids in the central view,
the approach in [20] is used as follows:

SS = 1
K

KX

c=1

(
1
Nu,v

X

u,v

r⇣
crefc,(u,v) � crefc

⌘2
)

, (21)

whereK is the number of superpixels,Nu,v is the number
of 4D LF views, crefc,(u,v) is the back-projected centroid
from view located in angular coordinate (u, v) into ref
view, and crefc is the original centroid in the ref view.
A smaller SS error indicates better consistency.

• Number of Labels per Pixel (LP)– This metric com-
putes the average number of labels per pixel in the ref
view by projecting the labels from the ref view to other
views via GT disparity as follows [20]:

LP = 1��I ref
��
X

u,v

X

p2I ref

⇣
L(pu,v) 6= L(pref )

⌘
, (22)

where
��I ref

�� is the number of pixels in the ref view,
L represents the superpixel labeled image, pu,v repre-
sents a projected pixel in view (u, v), pref represents
a pixel in the ref view, () is a binary indicator and�
L(pu,v) 6= L(pref )

�
= 1 indicates that the label of the

projected pixel pu,v has a different label value compared
to its label value in the ref view. This metric discards the
pixels from other views that are occluded in the central
view to simplify the computation. A smaller LP error
indicates better consistency across views because the
corresponding pixels that belong to the same superpixel
have the same label across views.
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FIGURE 5. Visual results for Papillon test image, with and without using the squared disparity distance in the clustering weighted distance, (With-D2),
(With-D1), respectively. Portions of the central view (5, 5) are selected and highlighted on both the test images and the corresponding ground truth
label images. The blue oval highlights higher segmentation accuracy in (With-D1) where the overlapping leaves are robustly segmented. Ssize = 20.

D. VISUAL AND QUANTITATIVE RESULTS
In this section, we firstly compare our results with two
different versions of the proposed ALFO method, to study
the influence of clustering weights adaptation stage and the
used disparity map on the performance. In the first ver-
sion, the used clustering weights are fixed and not adjusted
during clustering to study the clustering weights adaptation
stage impact. In the second version, the GT disparity is
used instead of the estimated disparity, that is used in our
proposed method, to study the influence of using an accurate
4D LF disparity map. Quantitative and qualitative results
are generated for both versions and compared to the pro-
posed ALFO method. Next, the performance of the proposed
method ALFO is evaluated and compared with the bench-
mark methods.

1) ABLATION STUDIES
Before discussing the two versions of the proposed ALFO
method, it is worth to present some intermediate results that
justify the weighted distance in (9), where the distances are
squared for all features but not for the disparity. Therefore,
in this experiment, instead of (9), the following distance is
used:
D00w (p, c) = wp ⇥ D2

p + w
l
⇥ D2

l + wa ⇥ D2
a

+wb ⇥ D2
b + wd ⇥ D2

d , (23)

where the disparity distance is squared, aiming to study its
influence on the results. As can be seen in Fig. 5, the over-
lapping leaves are not segmented robustly when squaring the
disparity and the superpixels are not adhering to the light
green leaf vein. Although the consistency metrics do not
significantly differ in both cases (see Fig. 6 for average quan-
titative evaluation and Table 3 for specific superpixel size
(i.e., 20) where the best results are highlighted with bold font
style), the accuracy metrics are noticeably decreased when
squaring the disparity, especially for large superpixel sizes.
The accuracy is reduced due to the superpixel-flooding over
the true object boundaries in the image when the color and
position are not enough to segment different regions. While
the used features are normalized within [0, 1] range, keeping

FIGURE 6. Average quantitative evaluation on all LF images of the HCI
4D LF dataset, (With-D2), (With-D1) indicate with and without using the
squared disparity distance in the clustering weighted distance,
respectively.

the disparity unsquared in (9) imposes stronger penalty on
disparity feature. Hence, the method will avoid clustering
across occlusions and accurately segment overlapping objects
with same color but different depths. This approach is also
used in [20] where a high weight is assigned to penalize the
disparity feature compared to other used features.
Furthermore, we evaluate the proposed ALFO method by

implementing two different versions, considering two differ-
ent test conditions:
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FIGURE 7. Visual results for two test images of the HCI 4D LF dataset for different test conditions of the
proposed ALFO method, namely SLFO and ALFO-GT. Portions of the central view (5, 5) are selected and
highlighted on both the test images and the corresponding ground truth label images. Adaptive clustering
weights with good disparity maps can robustly segment challenging regions, e.g., the silver non-Lambertian
region in (b). Ssize = 35.

TABLE 3. Average quantitative evaluation on all LF images of
the HCI 4D LF dataset (for superpixel size 20).

• Static LF Over-segmentation (SLFO)– This version
consists in not using the clustering weights adaptation
stage during theK -means clustering. Alternatively, fixed
weights (e.g., initial clustering weights) are used and not
changed during clustering. Equal clustering weights are
used for SLFO to study the influence of the adaptation
stage where the initial weights are adjusted.

• ALFO using GT disparity (ALFO-GT)– This ver-
sion consists in using the GT disparity instead of the
estimated one for the HCI 4D LF dataset to study the
influence of disparity accuracy on the clustering and
projection.

Notice that we normalized the used features as described
in Section III in all versions. Several superpixel sizes are used
to obtain the quantitative results, however, for visual results,
superpixels with Ssize equal to 35 is presented in Fig. 7 for
better visual comparison.

According to the visual results shown in Fig. 7, the quan-
titative results in the form of plot presented in Fig. 8 and the
numerical quantitative results for superpixel size 20 in Table 4
(highlighting the best results in bold font style), we may
conclude that a significant improvement is achieved on the
AA, BR, UE metrics when using adaptive clustering weights

TABLE 4. Average quantitative evaluation on all LF images of
the HCI 4D LF dataset (for superpixel size 20).

associated with accurate disparity maps (i.e., GT disparity
maps) as in ALFO-GT. As can be seen in Fig. 7, some
challenging regions can be segmented more robustly using
ALFO-GT compared to other versions. However, using fixed
weights for all test images, without adjusting the weights
based on the image content, may generate wrong segmenta-
tion (e.g., see the overlapping leaves in Fig. 7a and the small
hole in the gold region in Fig. 7b). The SLFO version shows
higher CP for large superpixel sizes compared to other ver-
sions, without genuinely adhering to the borders. According
to consistency metrics SS and LP, no significant difference
is noticed since the used consistency metrics consider the
non-occluded regions in the central view, where the used dis-
parity has high accuracy in these regions, but some ambiguity
exists in the occluded ones.

2) COMPARISON TO BENCHMARK SOLUTIONS
Before comparing our results to the existing methods, it is
important to mention that our method does not require any
post-processing optimization, since the centroid projection
across views is applied robustly by using per-pixel disparity
and the clustering weights are optimized in each iteration.
In most existing methods, a post-processing stage is needed
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FIGURE 8. Average quantitative evaluation on all LF images of the HCI
4D LF dataset for different test conditions of the proposed method,
namely SLFO, ALFO-GT and the proposed ALFO method. Adaptive
clustering weights and good disparity maps can improve the
segmentation performance.

to remove sparse labels that are wrongly propagated or to
smooth superpixels borders and enforce spatial or angular
connectivity across views. In our experiments, we compared
with other methods without disabling their post-processing
step. As shown in Fig. 9, the used clustering weights are
adapted based on the image content and adjusted in each itera-
tion until the final weights are reachedwhen the segmentation
terminates (see Table 5).

According to the initial values of the used cluster-
ing weights, several tests using different initial weights
(e.g., giving a higher weight for one feature compared to
other features) are applied. We noticed that the initial clus-
tering weights are not crucially impacting the final clus-
tering weights, such as when these weights (wl = 0.2,
wa = 0.15,wb = 0.15,wp = 0.1,wd = 0.4) are used
as initial weights, and Ssize is set to 20, the final clustering
weights percentage change on the HCI dataset is less than or
equal to 2.0% of the final weights when using equal initial
clustering weights, without any significant change on the
quantitative evaluation metrics.

To compare our results with the existing methods, different
superpixel sizes are used for all methods. However, since we
only could obtain labels of the HVLFS method for specific
sizes, only the available sizes in the used size range are
used in our comparisons. Due to the post-processing stage
in some methods, the size of the generated superpixels can
be different from the input size (e.g., in some solutions, some
superpixels are removed if their sizes, after the segmentation

FIGURE 9. Clustering weights adaptation along the number of iterations
for different test images. The included weights are wl , wa, wb for color
channels, wp for relative position and wd for the disparity. Ssize = 20.

TABLE 5. Final clustering weights for different features and test images.

is completed, are smaller than a given threshold). For
this reason, and for fair comparisons, the average size of
the generated superpixel in each image is used instead of
the input superpixel size. The average performance of all the
LF images of the HCI dataset is presented in Fig. 10 and
per-image performance is presented in Fig. 11.
The quantitative evaluation and the visual results in Fig. 10,

Fig. 11, Fig. 12 and Table 6 (bold font style for best results)
can be summarized based on evaluation metrics as follows:

• Achievable accuracy – Our proposed method achieves
outperforming average AA for all superpixel sizes com-
pared to the benchmark methods. The importance of
using the disparity feature during the clustering can be
observed in Fig. 12b and Fig. 12c, where the overlapping
regions share the same color information; hence it can-
not be accurately segmented in the Superrays or LFSP
methods. The HVLFS method accurately segmented the
leaves in Fig. 12b since the depth information is used
during the clustering. However, in Fig. 12c, the method
fails to segment the horses’ heads correctly due to the
limitation in balancing the importance of the used fea-
tures to generate robust segmentation.

• Boundary recall – Our proposed method achieves out-
performing average BR compared to the benchmark
methods and competitive results to the VCLFS method.
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FIGURE 10. Average quantitative evaluation on all LF images of the HCI 4D LF dataset for different 4D LF superpixel segmentation methods.

TABLE 6. Average quantitative evaluation on all LF images of the HCI 4D LF dataset (for superpixel size 20).

Our results are competitive to the VCLFS method since
the per-pixel disparity is used during the clustering in
both methods. In Fig. 12a, our results recall boundaries
across views even in the small black circus. Moreover,
in Fig. 12c, only our method and the VCLFS method
adhere to the actual boundaries of the horses.

• Under-segmentation error – Our proposed method
achieves outperforming UE compared to the Super-
rays and HVLFS methods. However, the LFSP and
VCLFS methods achieve lower UE error (e.g., each
superpixel is less likely to include more than one object)
but not necessarily with better accuracy or compact-
ness as mentioned above and can be seen visually
in Fig. 12.

• Compactness – Our proposed method achieves outper-
forming CP for all superpixel sizes compared to the
benchmarkmethods. Ourmethod encourages spatial and
angular connectivity through robust projection and local
searching. Moreover, the adaptation stage adjusts the
clustering weight of the position, hence can control the
superpixel boundaries to be smoother and more coher-
ent across views. As can be seen in the yellow ball

in Fig. 12d, where our results show more regular shapes
and smoother borders.

• Self-similarity and number of labels per pixel – Our
proposed method achieves outperforming SS and LP
compared to the benchmark methods and competitive
results to the VCLFS method. Superpixel consistency
can be clearly noticed from the dynamic results in the
supplemental material, where the flickering and label
change across views can be noticed easily. Visually, our
results preserve angular consistency and the superpix-
els borders are less likely to flicker, when changing
the angular perspective, compared to the benchmark
methods. We tried to show the consistency metrics by
presenting the same patch from different LF views.
As in Fig. 12 for all images, our results are consistent and
similar across views. Generating consistent superpixels
is a crucial requirement for subsequent editing tasks.

For the real LF images dataset, since there are no GT
segmentation labels available, we only make a visual com-
parison of our method, the Superrays, LFSP, and VCLFS
methods for various representative test images, Ssize is set
to 20. The HVLFSmethod is not evaluated in this experiment
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FIGURE 11. Per-image quantitative evaluation on the HCI 4D LF dataset for different 4D LF superpixel segmentation methods.
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FIGURE 12. Visual results to evaluate accuracy, compactness and consistency across views for the proposed ALFO, Superray, LFSP, VCLFS and HVLFS
methods on the HCI 4D LF dataset. Challenging regions (highlighted on both the test images and the corresponding ground truth label images) are
selected to show the importance of the adaptive clustering weights: a) non-Lambertian and shaded regions; b) overlapping leaves with the same color
and different depths; c) a complex background and overlapping cardboard horses sharing the same texture; d) a spherical region with non-even lighting.
As can be seen, our method can robustly and adaptively segment similar color regions with different depths and reduce the flickering around
superpixels, hence generates not only superpixels that are compact but also accurate and consistent across views. Ssize = 20.
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FIGURE 13. Visual results to evaluate accuracy, compactness and consistency across views for the proposed ALFO, Superray, LFSP and VCLFS
methods on the MMSPG LF dataset. In real 4D LF images, the noise existence and non-even lighting generally can affect the segmentation
accuracy or generate flickering borders around superpixels. However, with the adaptive clustering weights to optimize the segmentation
based on the content of each image, our method shows compact and consistent superpixels compared to the benchmark methods. Due to
the vignetting issue in the corner views of this dataset, only the central 13 ⇥ 13 views are used to generate superpixels. Ssize = 20.
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since only the labels of the HCI 4D LF dataset are available.
We strongly encourage the reader to see the dynamic results
in the supplemental material, where the performance in terms
of accuracy and cross-view consistency can be noticed easily.
As can be seen in Fig. 13, the existence of complex texture
and noise in the real LF image can affect the regularity and
accuracy of superpixels in the existing solutions, where the
borders of superpixels may flicker across views. However,
our results generate more compact and accurate superpixels
as shown in Fig. 13, where the superpixels in the woman’s
hair, the trees in the background, the bike parts and in the
face patch are more regular and consistent when compared
to other methods. In Fig. 13c, a challenging region with
non-even lighting and a non-Lambertian object are selected.
Our results show better consistency, which can be observed
from the red parts in Fig. 13c. However, the light in the
floor in Fig. 13c (see pink square) is different across views
and, hence, may lead to inconsistent superpixels, as is the
case for the benchmark results. More results for real LF
images can be found in the dynamic results available in the
supplemental material. In general, for complex textures in
real LF images, our proposed method can balance between
compactness, accuracy and cross-view consistency instead of
generating superpixels that are extremely sensitive to color
changes with irregular or flickering borders when changing
the view perspective.

The proposed method is implemented using MATLAB
on a desktop computer with Intel i7 4 GHz processor and
32 GB RAM. Our implementation is not optimized and, for
this reason, consumes more time, compared to the benchmark
methods, since the clustering is performed for each light field
view and not merely propagated from the central view as
in some existing solutions. The average computational cost
(i.e., execution time in seconds) of generating 4D LF super-
pixels for all LF views is presented in Table 7 for different
superpixel sizes and datasets. The computational cost of the
HVLFS method is not included since we only have the gen-
erated results from the author but not the software implemen-
tation. Our implementation takes more time for images with
complex textures since it requires more clustering iterations
due to the frequent adjusting of the clustering weights and the
labels of the pixels until convergence is reached. Additionally,
in most test images, it requires more time for smaller super-
pixel sizes since the clustering includes more superpixels and
requires more comparisons to assign the accurate label for
each pixel according to the corresponding superpixel. Since
K -means clustering in local searching can be parallelized,
as shown in [7] for the proposed 2D superpixel method, it is
expected that our method can be further optimized, especially
considering that clustering is done independently in each
view.

V. DISCUSSION AND LIMITATIONS
The proposed ALFO method produces competitive results
in several challenging cases such as overlapping objects
with the same color but different depths (see Fig. 12c),

TABLE 7. Average Segmentation time in seconds for different
over-segmentation methods.

and can segment accurately, consistently and adaptively the
small parts that are smaller than the initial/target superpixel
size (see the dice black dots in Fig. 12a) without any need
for post-processing smoothing or cross-view regularization
steps, when compared to most of the existing methods. Addi-
tionally, using disparity values for each pixel during the
over-segmentation helps in improving the superpixel accu-
racy and consistency for non-Lambertian objects where the
color can change according to each view perspective. The
mentioned advantages can be noticed in the dynamic results
in the supplemental material where the superpixels are accu-
rately adhering to the boundaries and not flickering across
views.
However, the ALFO method still has some limitations that

can be further improved. First, in real LF images, where the
disparity maps are affected by noise or non-even lighting
across views, ALFOmay generate an imprecise segmentation
and superpixels may not adhere well to the boundaries when
there are disparity ambiguities. Hence, better disparity maps
will lead to better performance. Second, non-Lambertian
objects have a non-uniform appearance across views due to
the non-even lighting in each view perspective. In the EPI
space, these non-Lambertian objects present more complex
and non-linear features, characterized by curved lines [38].
Although, in our method, we are not enforcing superpixel
consistency in the EPI space by exploiting the assumption of
linearity in EPI lines (as in other light field over-segmentation
methods [19]–[21]), our method may still generate inaccu-
rate or inconsistent segmentation in some non-Lambertian
areas. The mentioned limitations can be noticed in the
dynamic results for all views in the supplemental material
where, in some regions that include a metallic material or
non-even lighting, the superpixels may not adhere to the
borders accurately across views. Third, our implementa-
tion, including K -means clustering, is not optimized and
may take more time compared to other methods. However,
K -means clustering in local searching can be parallelized,
as shown in [7] for the proposed 2D superpixel method and
in [8] for 4D LF images; hence, it is expected that our method
can be further optimized to generate faster over-segmentation
and reduce the overall subsequent editing complexity
(this optimization is out of scope of the present work). Finally,
similarly to the benchmark methods, we assume that the
centroids in the central view exist in other views. Since this
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assumption may not hold for LF images captured by wide
baseline cameras, where new centroids can exist in other
views and some centroids in the central view are completely
occluded in other views, our method may fail to segment this
type of sparse LF images accurately.

VI. CONCLUSION
In this paper, we proposed an automatic content-adaptive
LF over-segmentation method. Using hybrid and normalized
4D LF features along with adaptive clustering weights, our
method achieves a robust balance between accuracy, com-
pactness and cross-view consistency of superpixels. More
precisely, the estimated disparity for entire 4D LF views is
used jointly with color and position features during clustering
to overcome the limitation in some challenging regions where
color information is not enough for segmentation. Due to the
different nature and ranges of the used features, the clus-
tering weights are adapted to the given content iteratively
until convergence is reached. Experimental results showed
competitive results, quantitatively and visually outperform-
ing the benchmark methods, without requiring any empirical
assignment for the clustering weights or any post-processing
optimization. Additionally, it was shown that the proposed
ALFO method can benefit from accurate disparity maps and
the performance is relatively independent of the initial clus-
tering weights adopted.

In the future, we will apply the proposed method in dif-
ferent applications, such as object segmentation and saliency
detection. Additionally, we will further consider adapting
the final superpixel size to generate an adequate number of
superpixels based on the image content. Furthermore, we will
exploit deep learning techniques to generate superpixels for
4D LF images, since it has shown promising results for
2D over-segmentation.
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Hyperpixels: Flexible 4D Over-Segmentation for
Dense and Sparse Light Fields

Maryam Hamad , Graduate Student Member, IEEE, Caroline Conti , Member, IEEE,
Paulo Nunes , Member, IEEE, and Luís Ducla Soares , Senior Member, IEEE

Abstract— 4D Light Field (LF) imaging, since it conveys both

spatial and angular scene information, can facilitate computer

vision tasks and generate immersive experiences for end-users.

A key challenge in 4D LF imaging is to flexibly and adaptively

represent the included spatio-angular information to facili-

tate subsequent computer vision applications. Recently, image

over-segmentation into homogenous regions with perceptually

meaningful information has been exploited to represent 4D LFs.

However, existing methods assume densely sampled LFs and

do not adequately deal with sparse LFs with large occlusions.

Furthermore, the spatio-angular LF cues are not fully exploited

in the existing methods. In this paper, the concept of hyperpixels

is defined and a flexible, automatic, and adaptive representation

for both dense and sparse 4D LFs is proposed. Initially, disparity

maps are estimated for all views to enhance over-segmentation

accuracy and consistency. Afterwards, a modified weighted

K -means clustering using robust spatio-angular features is per-

formed in 4D Euclidean space. Experimental results on several

dense and sparse 4D LF datasets show competitive and outper-

forming performance in terms of over-segmentation accuracy,

shape regularity and view consistency against state-of-the-art

methods.

Index Terms— Light field over-segmentation, 4D K -means

clustering, light field representation, superpixel, supervoxel.

I. INTRODUCTION

T
HE required resolution (e.g., spatial, angular and tempo-
ral) and degrees of freedom in multimedia applications

are growing rapidly. Consequently, the associated computa-
tional complexity for processing the data is also increasing
significantly. 4D Light Fields (LFs) that capture the same scene
from different perspectives are a clear example of what this
trend is leading to [1]. To efficiently process the huge amount
of data, one possible approach is to reduce the number of
data units that need to be processed. This can be achieved
by grouping the locally homogenous data units according to
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some criteria into larger ones. This approach is known as
“image over-segmentation”. A recent trend in computer vision
is to process 2D images and 3D volumes at a higher-level
representation instead of at the pixel-level representation [2].
As an example, image over-segmentation can be used as
a pre-processing step in image compression [3], [4], object
tracking [5], object segmentation [6], [7], 3D semantic seg-
mentation [8] and saliency detection [9]. Considering that
image over-segmentation can be applied to 2D images and
3D volumes to facilitate subsequent applications, applying a
similar approach to 4D LFs would also make sense.

4D LFs indirectly describe the distribution of light rays in
free space by capturing the same scene from several points
of view [1], [10]. Depending on the LF capturing approach,
dense or sparse 4D LFs can be generated [1]. In dense LFs,
most of the objects exist in all LF views and, therefore,
LF processing or editing can be done on only a single LF view,
or a small subset of LF views, and then propagated into all
other LF views using, for example, LF view warping. In sparse
LFs, however, such possibility is limited by largely occluded
regions or regions that only appear in some LF views due
to the viewing angle. To handle these specific issues of sparse
LFs, all objects that appear in any LF view must be considered,
and an adequate propagation method must be used to ensure
accurate and angularly consistent LF processing or editing.
In both cases, due to the existing similarities within LF views,
LF over-segmentation can be exploited to group data units
within and across LF views. Therefore, a significant reduction
in the number of data units to be processed can be achieved
to facilitate subsequent tasks [7], [11], [12], [13]. 4D LF
over-segmentation should aim at not only spatial accuracy (i.e.,
adhering well to object boundaries and separating regions cor-
rectly), but also angular consistency (i.e., segmented regions
not changing abruptly when the viewpoint changes). Currently,
only a few methods for 4D LF over-segmentation are available
in the literature. These methods can be classified as being
either clustering-based methods [11], [14], [15], [16], [17] or
graph-based methods [18], depending on the used approach.
The clustering-based approach is adopted in this paper,
since it is widely used due to the superior results in
terms of accuracy and also due to the reduced computa-
tional complexity and memory usage, when compared to
graph-based ones [2], [19]. Although the available meth-
ods that tackled 4D LF over-segmentation challenges have
significantly improved over-segmentation angular consistency
(compared to simply applying a 2D method to each view

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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independently), remaining limitations still need to be further
investigated.

Firstly, existing methods consider dense LFs (i.e., captured
with narrow baselines between views) and do not adequately
deal with sparse LFs with large occlusions (i.e., captured with
large baselines between views). For example, one reference
view (e.g., the central view) or the structure of the central
Epipolar Plane Image (EPI) (i.e., the unique 2D spatio-angular
slice of the LF typically containing a regular structure with
several oriented lines [20]) is used to perform 2D over-
segmentation. After that, the obtained segments are propagated
to other LF views. For this, it is assumed that each 2D
segment in the central view should have a corresponding
one in all other LF views (i.e., “full-sliced” property). This
assumption, however, may not always hold, notably for sparse
LFs. In the sparse LF case, some objects may not exist in all
LF views, either because they are occluded in some LF views
by foreground objects or because they fall outside the viewing
angle of those views.

Secondly, the spatio-angular LF cues, including depth or
disparity information (i.e., the displacement of a point between
different views, which is inversely proportional to the depth),
and 4D spatio-angular coordinates are not fully exploited
in most existing methods. The used disparity information
in some existing methods is either estimated for some pix-
els only (e.g., the clustering centroids) or for all pixels in
one reference view only (e.g., the central view) [11], [15].
Moreover, disparity information in some methods is used
to enforce a view consistent projection for the clustering
centroids, but not as a discriminative feature to guide the
over-segmentation (for instance, when color information is
insufficient to separate different regions [17]). Additionally, all
available clustering-based methods are still not 4D in nature,
meaning that the clustering is applied using 2D Euclidean
space without considering the angular dimensions, and the
centroids are fixed in one angular location. Lastly, none of the
previous methods (except in [17]) support adaptive clustering.

In this paper, a novel clustering-based 4D LF
over-segmentation method that tackles these limitations
is proposed. The contribution of this paper is four-fold:

• The definition of 4D hyperpixels for dense and sparse

LFs– The “hyperpixels” definition is provided to have
an entity that adequately reflects the high dimensional
nature of the basic element of 4D LF over-segmentation,
supporting flexible clustering/grouping criteria for both
dense and sparse LFs. The provided definition extends
the existing definitions in [11] and [15] as detailed in
Section III.

• Flexible, adaptive and consistent 4D over-

segmentation method for dense and sparse LFs–
In this paper, LF over-segmentation is applied using
a modified K -means clustering in the 4D hypercubic
domain that is adapted to LF content and fully
exploits the spatio-angular cues. As such, it is the only
over-segmentation method for LFs that is truly 4D in
nature. The differences between the proposed hyperpixel
over-segmentation method and other methods is detailed
in Section IV. Experimental results, including dynamic

results in the supplemental materials, show superior
performance when compared to existing methods.

• A 4D LF dataset of sparse LFs with a large absolute

disparity range– To validate our proposed method for
sparse 4D LFs quantitively, a dataset of 4D LFs including
non-Lambertian objects and complex texture regions that
mimic real images is generated. This is the first sparse 4D
LFs dataset that includes ground truth segmentation label
images, disparity, and depth maps for all LF views. It is
publicly available and can be used to qualitatively and
quantitively evaluate 4D LFs for several LF applications.

• Labeling–LF Angular Consistency (LLFAC) metric–
Existing LF view consistency metrics discard the large
occlusions in off-central views when projected into the
central view and, hence, may not fairly evaluate the view
consistency in sparse LFs. In this paper, we highlight
the importance of having metrics for sparse LFs that can
consider local angular consistency. Therefore, we adapted
the recently proposed metric that is applied for LF style
transfer applications [21] to evaluate labeling LF angular
consistency for dense and sparse LFs.

The remainder of the paper is organized as follows.
Section II briefly reviews the related work on LF over-
segmentation. Section III introduces the concept of hyperpixels
in 4D space and explains the differences with respect to
previous definitions. Section IV describes the proposed method
in detail, while in Section V its performance is evaluated
through a series of experiments. Finally, Section VI concludes
the paper with final remarks and proposes directions for future
work.

II. RELATED WORK

Image over-segmentation aims at providing a more mean-
ingful representation of an image and can reduce the number of
processing data units. Ren and Malik [22] first defined a group
of locally coherent pixels that share the same visual proper-
ties as “superpixels”. Subsequently, this concept has inspired
many researchers to propose various 2D over-segmentation
methods, of which a comprehensive review can be found
in [2]. More recently, deep learning was exploited in 2D
image over-segmentation, leading to a further improvement in
accuracy [23], [24]. However, applying 2D over-segmentation
methods to each LF view independently will not ensure LF
angular consistency, which is crucial for many applications.
The superpixel concept has also been extended to consider 3D
volumes [25], videos [26] and higher-dimensional visual data,
such as 4D LFs, where over-segmentation angular consistency
is particularly important.

In this section, the few available 4D LF over-segmentation
methods are briefly reviewed. Current 4D LF over-
segmentation methods can be classified as clustering-based or
graph-based, depending on the approach used to divide 4D
LFs into homogeneous regions.

A. Clustering-Based 4D LF Over-Segmentation
In this class, 4D LFs are divided into a certain number of

homogeneous clusters of pixels with similar sizes using the
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K -means clustering technique. Currently, all available methods
in this category start the clustering process by initializing the
centroids only in the central view of the LF.

Hog et al. [11] proposed a fast method that groups light rays
of similar color in an LF into what they defined as “superrays”
using 2D K -means clustering. The angular consistency is
enforced by projecting the superrays in the central view into all
other views and vice versa, using the disparity values of their
centroids. Notice that the disparity values are estimated only
for the centroids in the central view in the initial position of
the centroids to apply the projection step and are not included
as a clustering feature. Therefore, a cleaning step is needed to
correct wrongly labeled or unlabeled pixels due to inaccurate
projection or clustering, especially in largely occluded regions.
Later, the authors extended their work to handle LF videos by
also considering the temporal dimension [27].

Zhu et al. [15] defined the concept of 4D LF SuperPixel
(LFSP) and a metric for evaluating LFSP angular consistency
(i.e., the self-similarity metric). The method proposed in [15]
to generate LFSPs relies on segmenting the central view
firstly with a 2D K -means clustering algorithm, assisted by
the disparity feature only for the central view. After that,
superpixels are projected to other views using the centroids
disparity values. Finally, an optimization stage is needed
to ensure the EPI space regularity. In this work, the “full-
sliced” property is assumed, which can represent a significant
limitation for sparse LFs.

Khan et al. [16] proposed a novel View-Consistent
Light Field Superpixel (VCLFS) segmentation. Initially, the
over-segmentation is applied in the EPI space for the central
horizontal and central vertical EPIs independently, by con-
sidering that each pair of lines defines a 2D segment. After
that, a 2D K -means clustering is applied after combining the
horizontal and vertical EPIs into the central view. Labels are
then propagated to all off-central LF views using per-pixel
disparity. Although the disparity for all views is used during
the clustering, relying on EPI regularity can limit the VCLFS
method performance for sparse LFs (e.g., due to their irregular
EPI structure).

Recently, Hamad et al. [17] proposed an adaptive LF Over-
segmentation (ALFO) method based on modified 2D K -means
clustering. In the ALFO method, the weights applied to
the different features for clustering are adjusted adaptively
based on the image content. Hence, the balance between
regularity, compactness, and angular consistency is improved.
In this method, per-pixel disparity is required as input and
exploited during the clustering. Although ALFO has shown
outperforming performance, it still does not fully exploit the
spatio-angular cues, this fact will be further discussed in
Section IV-F. Moreover, as in the previous methods, only the
central view is used to initialize the centroids, which is not
adequate for sparse LFs and largely occluded regions.

B. Graph-Based 4D LF Over-Segmentation

In this class, LF over-segmentation is considered as a
graph-partitioning task. More precisely, an undirected graph
is created from a 4D LF by considering every single pixel

in a 4D LF as a graph node. Afterwards, according to the
edge weights between adjacent nodes, the graph is cut into
sub-graphs with each sub-graph representing a 4D segment.
Generally, applying graph optimization on a huge number
of pixels, may require a long execution time and extensive
consumption of resources.

Li et al. [18] proposed a Hierarchical and View-invariant
LF Segmentation (HVLFS) method. By creating a weighted
undirected 4D graph from a 4D LF, the over-segmentation
is achieved by maximizing the graph entropy in the 4D LF
domain. In this method, different features are used to guide
the over-segmentation, such as color, depth and texture. The
entropy rate for the over-segmentation is measured in the EPI
space to ensure angular consistency. This method generates
subgraphs with different sizes according to the user input.
However, some limitations remain regarding the need for
proper normalization of the used weights for optimization
to robustly fit different LF datasets. Moreover, since angular
consistency is handled by tracking the EPI structure, the
method has been shown to fail when applied to sparse 4D
LFs [18].

III. HYPERPIXELS DEFINITION

A pixel (short for “picture element”) is the fundamental
unit in 2D images. Similarly, the fundamental unit of 3D
volumes is called a voxel (short for “volume element”).
Given the fact that these low-level representations do not
necessarily have a perceptual meaning [22], a more com-
pact and natural representation is desired. Therefore, locally
coherent pixels/voxels in 2D/3D space can be grouped into
superpixels /supervoxels [25], respectively, according to some
criteria. The main objective is to provide a more meaningful
representation and to reduce the number of processing data
units. Recently, a froxel was defined to describe an element
of a frustum-aligned voxel grid, by using depth and camera-
setup-dependent discretization of the view frustum [28].

For 4D LFs, the concepts of superray [11] and LFSP [15]
were proposed. These concepts, however, still have some
limitations that prevent them from being truly analogous to
the superpixel and supervoxel ideas but extended for 4D LFs.

In this paper, we try to overcome such limitations by
introducing the concept of “hyperpixel”, simply defined as “a
group of similar pixels in the discrete 4D LF space”. The
criteria used to define what are similar pixels will depend on
the specifics of the over-segmentation method adopted. The
differences with respect to superrays and LFSP are described
as follows.

The authors in [11] defined superrays as “groups of rays
of similar color coming from the same scene area”. This
definition implies a representation in the continuous 3D scene
space, although the authors used it interchangeably to refer
to its corresponding projection in the discrete 4D LF space
(x, y, u, v). Moreover, in this definition, the authors impose
the following constraint on the grouping of rays: the rays in
each superray must have a similar color. The goal of our pro-
posal is to have an entity defined purely in the discrete 4D LF
space without imposing any constraint on the similarity criteria
used for grouping. With the proposed definition of hyperpixels,
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Fig. 1. Examples of regions only visible in some views. The fire extinguisher
is occluded by the blue car in view (5, 9). The blue car is not visible in view
(5, 1) because it is outside the viewing angle of this view. This scene is one
of the generated sparse 4D LFs in our dataset.

Fig. 2. Visualization of non-existent or occluded regions in the central view,
i.e., view (5, 5), that are visible in other LF views and vice versa. a) The part
of the sofa that can be seen through the hole of the chair armrest in view
(9, 9) is occluded in view (5, 5) ; b) The bottom part of the black and white
carpet appears in view (5, 5) but is not visible in view (1, 1) because it falls
outside the viewing angle of this view. These scenes are from our sparse 4D
LF dataset.

pixel grouping can be performed using a variety of pixel
features (e.g., texture, depth, 4D spatial-angular coordinates,
etc.). Obviously, the pixel grouping can still be performed
using only the color feature, as is the case of superrays. The
choice of grouping criteria to be used depends on the specifics
of the over-segmentation method adopted.

According to [15], “LFSP is a light ray set which contains
all rays emitted from a proximate, similar and continuous sur-
face in 3D space”. This definition also implies a representation
in the continuous 3D scene space, although the authors of [15]
also used it interchangeably to refer to its corresponding
projection in the discrete 4D LF space (x, y, u, v). Moreover,
in this definition, the authors impose the following constraint
on LFSPs: “there are 2D slices of LFSP in all views of light
field in free space (i.e., without occlusion)”. On the other hand,
hyperpixels are not required to have 2D slices in all LF views,
even for objects in free space (i.e., without occlusion). This
is particularly important when considering sparse LFs, where
it is possible that some objects in free space are only visible
in some views and large occlusions can exist (see Fig. 1).
Obviously, our definition would also support the case in which
a given object in free space is visible in all LF views; in that
situation, a 2D slice would exist in all views, as in LFSP.
In Fig. 2, an example is shown of how hyperpixels can have
slices in some views and not be present in other views if no
corresponding pixels exist in those views.

To sum up, we consider that the hyperpixel concept reflects
adequately the high dimensional nature of the basic element
of 4D LF over-segmentation and it is sufficiently generic
and flexible to comprise the 4D projections of both existing
superrays and LFSPs definitions.

IV. PROPOSED 4D LIGHT FIELD OVER-SEGMENTATION

This paper proposes a flexible, adaptive, and view-consistent
4D over-segmentation method for dense and sparse static

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

LFs. According to the hyperpixel definition, our proposed
LF over-segmentation method aims at grouping similar pixels
in 4D space into hyperpixels. For grouping, several features
are considered (i.e., 4D position, color and disparity values).
To achieve that, K -means clustering is applied in 4D space.
In summary, given a 4D LF scene, disparity maps for all LF
views and the hyperpixel size, the proposed method undergoes
four main steps (see Fig. 3), where each step is detailed in the
following subsections:
1. Initial clustering centroids (i.e., the hyperpixel center of

mass in 4D space) are first selected by considering the
central view and largely occluded regions from other views.
Each centroid is characterized by several features.

2. K -means clustering is applied in 4D LF space and all pixels
are labeled iteratively to minimize the within-hyperpixel
variance.

3. Centroids color, 4D position and disparity features are
adjusted at each iteration during the clustering.

4. Clustering weights are adapted after each iteration.
Steps 2, 3 and 4 are repeated until convergence is reached.

In this paper, we assume a regular arrangement of cameras
with a parallel optical axis and uniform camera baseline
and focal length. However, the proposed method can also
be extended and applied to other camera arrangements by
adjusting the used equations accordingly. The main notations
used in this paper are listed in TABLE I.

A. Occlusion-Aware Centroids Initialization
The first step in the proposed hyperpixels over-segmentation

method is to select initial centroids to guide the 4D cluster-
ing process. Different from other available clustering-based
LF over-segmentation methods, where the centroids are ini-
tialized in a pre-defined reference view (e.g., the central
view), the proposed method enables occlusion-aware centroids
initialization. Initializing centroids only in the central view
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Fig. 3. The main steps of the proposed 4D LF over-segmentation method. Given a 4D LF and the corresponding disparity maps for all views, initial centroids
characterized by distinct features are assigned in the reference view/views. Next, hyperpixels are generated by iteratively applying 4D K-means clustering,
including pixel labeling, centroids adjustment and clustering weights adaptation, until convergence is reached.

Fig. 4. Example of occluded regions in sparsely sampled LFs. a) The central
view; b) 4 reference corner views; c) Occluded regions (black regions) in each
view; d) Visibility masks for corner views after redundancy removal. Only the
central view and the black regions in the corner views as in (d) will be used
to initialize unique centroids to consider the largely occluded regions.

may generate inaccurate over-segmentation for occluded or
non-existent regions in the reference view due to different
view perspectives; this can be critical due to largely occluded
regions in sparse LFs. Therefore, to handle this problem, the
four corner views are considered along with the central view
for centroid initialization. These extreme corner views are
selected since they typically contain all LF information.

To detect the small color differences, before initializing the
centroids, the input LF views are converted to the CIELAB
color space, which is widely used for image segmentation
since it mimics human visual perception. To avoid biased
clustering, the LF views and the disparity maps are nor-
malized according to the min-max normalization method as
in [17]. Given the normalized inputs, the centroids are initially
distributed in the central view over a uniform 2D square
grid with step size, Hsize (a.k.a. hyperpixel size). Afterwards,
to detect the occluded or non-existent regions in the central
view that are visible in any corner view, the central view is
warped to the corner views by using its disparity map. All
the occluded regions in each corner view are represented by a
binary visibility mask where the occluded regions are assigned
the value 0 (black pixels in Fig. 4c).

To avoid redundancy, when initializing new centroids in the
corner views, the regions that represent the same occluded 3D
points in more than one corner view are kept only in one corner
view and discarded from others (see, for example, the ovals
with similar color in Fig. 4b). To achieve that, each corner

view is iteratively warped into other corner views using its
disparity map. Afterwards, pixels in the current corner view
that overlap with the projected pixels from other corner views
are kept only in the visibility mask of the current corner view
and discarded from the visibility masks of other corner views.
Moreover, the connected pixels (with 8-direction connectivity)
in the occluded regions that are smaller than Hsize, are also
discarded. Finally, new centroids are initialized uniformly only
in the remaining regions in the corner views that do not have
corresponding centroids in the central view as applied earlier
to the central view. After initializing the centroids in the central
and corner views, that represent the hyperpixels, each pixel in
4D space will be clustered to the appropriate hyperpixel as
explained in the next step.

B. 4D LF Pixels Label Assignment

In this step, each pixel in the 4D LF is labeled and assigned
to the corresponding hyperpixel based on the similarity in
the used clustering features. To exploit LF cues during the
clustering, each pixel is characterized by a feature vector
[x, y, u, v, l, a, b, d] according to its position in the 4D space,
where (x, y) are the spatial coordinates, (u, v) are the angular
coordinates, (l, a, b) are the color components in the CIELAB
color space, and d is the disparity value. To assign labels for
all pixels in 4D LF, a modified version of the K -means clus-
tering algorithm is used by considering an adaptive weighted
clustering in 4D space.

In 4D LFs, considering cameras with a parallel optical
axis, the scene is captured from different angular perspectives
hence, views with spatial shifts are generated. These shifts
lead to the appearance of slanted lines in the EPI space, as can
be seen in Fig. 5 where the EPI slices with yellow and red
borders are generated by first stacking the central horizontal
and vertical LF views, respectively. Different from voxels in
3D space, the corresponding pixels that represent the same 3D
point in 4D space have a spatial shift across views, horizontally
and vertically, according to the disparity of each object in the
scene.

Therefore, to support truly 4D clustering, the centroids
are projected into each LF view to enforce the cross-view
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Fig. 5. In 4D LFs, each LF view (i.e., a slice of 4D LF in a particular
angular plane (u, v)) captures the scene from a different view perspective,
resulting in shifted light rays across views as can be seen in the yellow and
red bordered EPIs shown below and to the left of the central view.

Fig. 6. To ensure consistency with respect to the EPI slanted nature, centroids
are projected spatially during the 4D clustering. a) 2D view overlayed
with hyperpixel borders; b) A stack of horizontal EPIs when projecting the
centroids into each view.

consistency according to the slanted nature of the EPIs as
in Fig. 6. Notice that the EPIs in Fig. 6 are generated by
stacking the 4D LF views in serpentine order (to maintain
connectivity in the EPI lines for better visualization), resulting
in 2D horizontal EPI slices. Due to the differences in sampling
the angular and spatial dimensions (especially for sparse LFs),
a sampling compensation is needed. This can be achieved here
by shifting the LF views using their disparity maps during
the clustering to make the corresponding pixels aligned as
described below.

More precisely, the 4D K-means clustering is applied in
each view by spatially projecting the centroids, using their
disparities, from their current angular position into each view
without changing their angular dimensions, as in (1):

xc0 = x (u0,v0)
c

= x (u,v)
c

+ d(u,v)!(u0,v0)
hor,c ,

yc0 = y(u0,v0)
c

= y(u,v)
c

+ d(u,v)!(u0,v0)
ver,c , (1)

where (xc0 , yc0) are the spatial coordinates of the projected
centroid, c

0, using the disparity of the centroid located in (u, v)

view, and d(u,v)!(u0,v0)
hor,c and d(u,v)!(u0,v0)

ver,c are, respectively, the
horizontal and vertical disparities from (u, v) view to (u0, v0)

Fig. 7. Example of spatial projection of a hyperpixel centroid from view
(u, v) into view (u0, v0) using the horizontal and vertical disparity values.

view. Considering that the used disparity estimation methods
for densely and sparsely sampled 4D LFs generate per-pixel
disparities from each view to its right horizontal adjacent
view [11], [15], [17], the disparity value is here computed
as in (2):

d(u,v)!(u0,v0)
hor,c = dc ⇥

�
u0 � u

�
,

d(u,v)!(u0,v0)
ver,c = dc ⇥

�
v0 � v

�
, (2)

where dc is the disparity of the centroid, c, from each view
to its right horizontal adjacent view and (u, v) are the angular
coordinates where the centroid is located. Notice that in (2)
a uniformly sampled camera setup is considered. However,
if the camera baselines are different for horizontal and ver-
tical directions, then a consideration of camera parameters is
needed [15]. When centroids are projected into other views,
their spatial position (xc0 , yc0) may belong to R2, however,
color and disparity values in the used datasets are only
available for integer positions. Therefore, the coordinates of
the projected centroids are rounded to ensure integer indexing
belonging to Z2. More precisely, for projection, unnormal-
ized position and disparity values are used. However, during
4D clustering and weights adaptation steps, the normalized
unrounded values are used.

Due to the high dimensionality of 4D LFs and since most
hyperpixels usually have a local slice in each view, the
searching of the nearest centroid is applied, as proposed for
2D images [29], in a small searching window, �i , around each
centroid in each view as defined in (3):

�i = (4 ⇥ Hsize)
2 , (3)

where i 2 {1, . . . , K }, Hsize is the hyperpixel size as in Fig. 7.
Let H = {H1, . . . , HK } represent the set of all hyperpix-

els where K is the number of hyperpixels. This way, the
over-segmentation can be considered as an energy minimiza-
tion problem in (4):

E = arg min
H

KX

i=1

X

p2Hi

Dw (p, ci ), (4)

where p is a pixel in 4D space that belongs to hyperpixel Hi ,
Dw is the weighted distance, and ci is the centroid of Hi in
4D space. In this step, each pixel in �i is assigned to the
“nearest” hyperpixel based on, Dw, as in (5)-(10):

Dw (p, c) = wp ⇥ D2
p + wl ⇥ D2

l

+ wa ⇥ D2
a + wb ⇥ D2

b + wd ⇥ Dd , (5)
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where wp is the position clustering weight, wl , wa , wb are
the color clustering weights, wd is the disparity clustering
weight and Dp, Dl , Da , Db, Dd are the position, color and
disparity distances between each pixel p and a target centroid
c, respectively, Dd here is not squared to impose a larger
penalty on the disparity feature as in [17]. The distances in
this paper are computed as follows:

Dp(p, c)

=
s

(xp � xc0)2 + (yp � yc0)2 + (up � uc)2 + (vp � vc)2

8 ⇥ H2
si ze + (Nu � 1)2 + (Nv � 1)2

,

(6)

Dl(p, c) =
q

(lp � lc)2, (7)

Da(p, c) =
q

(ap � ac)2, (8)

Db(p, c) =
q

(bp � bc)2, (9)

Dd(p, c) =
q

(dp � dc)2, (10)

where p represents each pixel in 4D space that belongs
to the searching window centered on centroid c. Further-
more, x

c
0 , y

c
0 are the spatial coordinates of centroid c

when projected into the view of p with angular coordi-
nates (up, vp). Additionally, (uc, vc) is the original angular
coordinate of centroid c without projection and Nu , Nv

are the horizontal and vertical angular dimensions, respec-
tively. The projected spatial position is used here to enforce
cross-view consistency by considering the disparity between
views and to compensate for the difference in sampling
spatial and angular dimensions. To normalize the position fea-
ture, Dp is divided by

�
8 ⇥ H2

si ze + (Nu � 1)2 + (Nv � 1)2�,
by considering the minimum distance to be zero andq

8 ⇥ H2
si ze + (Nu � 1)2 + (Nv � 1)2 is the maximum dis-

tance in 4D space. In the first iteration, all the weights are
initialized with the same value, equal to 1/ |W | , where W ,
is the set of clustering weights {wp, wl , wa , wb, wd} and |W |
is the number of the used clustering weights. As shown in [17],
the values of the initial weights do not significantly impact the
final clustering weights. Notice that the used weights must be
in the (0, 1) range, and

P
w f 2{p,l,a,b,d} = 1, in each iteration.

After assigning labels to all the pixels in 4D LFs, centroids
are adjusted in terms of their features according to the current
iteration as described in the next step.

C. Centroids Adjustment
In this step, the clustering features vector of each centroid

c is adjusted iteratively until convergence is reached. After
each iteration, the color feature values, lc, ac, bc, and the
4D position features, xc, yc, uc, vc, of each centroid are
adjusted by the mean values of all pixels that belong to the
corresponding hyperpixel, Hi , where i 2 {1, . . . , K } as (11):

tc = 1
|Hi |

X

p2Hi

tp, (11)

where tp is the feature value of a pixel, p, in 4D space,
and t 2 {x, y, u, v, l, a, b}. Notice that, different than the

existing LF over-segmentation methods, the proposed method
also adjusts the angular coordinates. This is useful especially
for the objects that exist only in some LF views and are
occluded (partially or completely) or non-existent in other
views.

Finally, to ensure robust centroid projection in the next
iteration, and similar to [17], the disparity value of each
centroid, dc, is updated using the actual disparity value of the
centroid updated 4D position (rounded to integer positions)
from the input disparity maps, d, as in (12):

dc = d (xc, yc, uc, vc) . (12)

After adjusting the centroids, the clustering weights still
need to be adapted according to the current iteration; to avoid
biased or non-optimal over-segmentation as explained in the
next step.

D. Clustering Weights Adaptation
As the last step in each iteration and after the centroids

are adjusted, the clustering weights are adapted according
to the LF content and the current iteration. This step is
beneficial especially when the features differ in their ranges.
Moreover, selecting certain fixed values for clustering weights
that suit different datasets without considering their content
is a challenging, time-consuming task and may generate non-
optimal over-segmentations. Since the use of adaptive weights
has been shown to improve over-segmentation performance
in [17] and [30], a similar technique is exploited here.

As in [30], the feature discriminability principle states that
the features with the smaller within-cluster variances (i.e.,
the total sum of the feature distances from each pixel to its
centroid in all hyperpixels) are more discriminative. Hence,
it is beneficial to assign a larger weight to these features to
properly influence the over-segmentation. The discriminability
of each clustering feature can be computed by finding the
normalized within-cluster variance for each feature, f , as
in (13):

W Vf =
KX

i=1

X

p2Hi

D f (p, ci )
2, (13)

where K is the number of hyperpixels, p is a pixel in 4D
space that belongs to hyperpixel Hi , ci is the centroid of Hi
in 4D space, D f is the feature distance from each pixel, p, and
the centroid, ci , and f 2 {p, l, a, b, d}. Unlike the technique
in [30], but similar to [17], in this paper, the input 4D LF
image and disparity maps are normalized before clustering.
Therefore, we did not divide W Vf by the feature ranges, which
is needed in [30] to normalize W Vf . After computing W Vf for
each feature, the clustering weights are updated by assigning
higher weight values to the features with smaller W Vf values
using (14):

w f = 1
P

j2{p,l,a,b,d}
�
W Vf

�
W Vj

� 1
|W |�1

, (14)

where j represents each clustering feature and |W | is the
number of the used clustering weights.
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E. Convergence Criterion
After applying the above steps, the iterative 4D clustering

will continue until convergence or the maximum number of
iterations is reached. To check for convergence, after each
iteration, the average displacement of all centroids, Davg ,
is computed by finding the 4D Euclidean distance between the
previous centroid position in 4D space and the current 4D posi-
tion. In this paper, we set the maximum number of iterations to
20 as will be discussed in the following section. Additionally,
to improve the performance (in terms of the needed number of
iterations), we considered a convergence threshold for Davg of
0.7% of Hsize (this value has been determined empirically after
exhaustive testing). By choosing this threshold, we noticed,
especially in dense 4D LFs, that the over-segmentation can
converge before reaching the maximum number of iterations
without a significant difference in accuracy.

F. 4D Versus 2D K-Means
In this section, the differences between the proposed 4D

K -means clustering method and the 2D K -means cluster-
ing used in most of the available 4D LF over-segmentation
clustering-based methods are briefly explained.

In the proposed method the centroids are initialized, before
clustering, in the central view and in occluded regions in off-
central views, as explained in Section IV-A. Other methods
initialize centroids only in the central view, e.g., [11] and [17].

Besides the color feature, in the proposed method the
4D pixel position and disparity features are also considered
during the clustering for all LF views. Other methods, either
do not use disparity information as a clustering feature but
merely for enforcing consistent centroids projection [11],
or do not exploit the angular dimensions during the cluster-
ing [11], [15], [16], [17].

During the clustering, the centroids positions can be
adjusted not only spatially but also angularly. In all other
available methods [11], [15], [16], [17] the centroids are
fixed angularly. Moreover, in the proposed method, disparity
values are adjusted from the input disparity maps for each
centroid after updating its 4D position. However, in most
available methods, centroid disparity values are either never
adjusted even when a centroid changes its position [11], or are
adjusted to the mean disparity value of all pixels in the LF
segment [15], [16].

The proposed energy minimization function considers clus-
tering weights for each feature to either penalize or increase its
importance, with the weights being adapted to the LF content,
similar to ALFO [17], which does not happen in other methods
that rely on fixed values for clustering weights.

Consequently, the proposed method is truly 4D in nature
and the creation of hyperpixels is based on grouping similar
pixels in the 4D LF space. All other LF over-segmentation
methods rely on projecting 2D superpixels in the center view
to other LF views and then applying a final optimization.

V. EXPERIMENTAL RESULTS

To evaluate the proposed 4D LF over-segmentation method,
from here on simply called hyperpixels method, in various

TABLE II
IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS

aspects, both dense and sparse, synthetic and real world
LF datasets are used. Additionally, to validate the results,
qualitative and quantitative comparisons with state-of-the-art
methods are presented. In the following sub-sections, the used
4D LF datasets, benchmark methods to compare with and the
used evaluation metrics are detailed. To clearly notice cross-
view consistency, we highly encourage the reader to see the
extended results on entire LFs in the supplemental materials
for dynamic visualizations available online (please note that
not all LF views are presented in this paper but can be found
in the supplemental materials).1

A. Used 4D LF Datasets and Experimental Setup

In this paper, three different datasets are used to generate
hyperpixels for densely and sparsely sampled LFs as shown in
Table II. In the case of dense LFs, the synthetic HCI 4D LF
dataset [31], which contains Ground Truth (GT) disparity maps
and 4D LF segmentation labels, is used. Moreover, only the
central 11⇥11 views of the real world EPFL MMSPG dataset
captured with a Lytro Illum camera [32] are used to eliminate
the vignetting effects in corner LF views (i.e., darkening of
the edges of the captured microimages).

For sparse 4D LFs, there is currently no available 4D LF
sparse dataset with GT segmentation labels, GT disparity
and depth maps for all LF views, which are needed for
quantitative evaluation. For this reason, by using Blender
software with Cycles rendering [33], LF Blender tools pro-
posed by Honauer et al. [34], and some publicly available
3D models in [35], [36], and [37], we generated a new
synthetic dataset accompanied by GT disparity maps, depth
maps and segmentation labels, in order to enable the numerical
evaluation. Our dataset has disparity values between adjacent
views within the range [�125, 125] and consists of 11 4D

1Higher quality versions at https://github.com/MaryamHamad/Hyperpixels
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Fig. 8. Average quantitative evaluation of used test 4D LFs with different
hyperpixel sizes and number of iterations.

LFs with (9 ⇥ 9) angular resolution and either (512 ⇥ 512) or
(1280 ⇥ 720) spatial resolution. Our dataset contains several
objects and challenging regions for segmentation, for exam-
ple, non-Lambertian objects (e.g., glass and metal), complex
textures, uneven lighting and overlapping objects with sim-
ilar colors. As such, it can be used to evaluate various LF
applications (the IT-4DLF dataset is available for download at:
http://www.img.lx.it.pt/IT-4DLF/). In this paper, 7 challenging
sparse 4D LFs and 7 dense 4D LFs from other commonly
used datasets are used.

It is worth noting that our proposed method relies neither
on any experimentally set clustering weights nor on any
post-processing step. Most existing methods require cleaning
or optimization as a post-processing step to fill unlabeled
pixels due to inaccurate over-segmentation or to regularize
the over-segmentation results across views. Like in existing
clustering-based LF over-segmentation methods, the hyper-
pixel size is assigned by the user according to the desired
application. It was observed that using adaptive 4D clustering
enhances over-segmentation convergence [17]. The proposed
hyperpixels method converges most of the time within 10 iter-
ations. However, the maximum number of iterations was
chosen to be 20 to ensure accurate labeling even for complex
scenes. This value was selected after comparing the average
performance for the used test images generated after 10,
20, 30 and 40 iterations. Since there was no significant
improvement in the performance after 20 iterations, as shown
in Fig. 8, this value was chosen as a convergence criterion. Our
implementation is not optimized yet, but it has been shown in
the literature [2], [10], [16] that K -means clustering can be
parallelized for fast over-segmentation, which may be required
for some applications.

B. Benchmark Methods and Experimental Parameters

In this paper, we compared our results with all the existing
4D LF over-segmentation methods listed in Section II namely:
the Superray [11]; LFSP [15]; VCLFS [16]; HVLFS [18]; and
ALFO [17] methods. The used software for these methods was
obtained and used as detailed in [17]. To generate the superrays
in [11], numerous parameters are required as input, such as

the disparity range between adjacent views, and compactness
weight (e.g., a weight that controls superrays compactness).
The disparity range is obtained from the estimated disparity
in [38] and [39] (as used for our method), for each test image
independently and the compactness weight is set to 10, as it
shows superior performance in [29], for different superrays
sizes. As input to the LFSP method [14], [15], different
methods are used by the authors of the LFSP method for
estimating only the central disparity map without significantly
affecting the performance, such as [40] and [41]. In this paper,
the input disparity map of the central view that is used for the
LFSP method is the same as the one used for our hyperpixels
method for dense and sparse LFs. For the VCLFS [16], the
maximum disparity parameter is merely changed according to
each LF and this value is set using the same disparity maps that
are used for our method. For the HVLFS method [18], we only
have results provided by the author for dense synthetic LFs
and superpixel size belonging to [20, 45]; hence, we could not
compare this method with sparse LFs or compute its execution
time. For ALFO method [17], disparity maps for all 4D LF
views are required as input. Therefore, the used disparity maps
for our method are also used for ALFO method.

Regarding the input hyperpixel size (a.k.a. cluster/segment
size), Hsize, for dense and sparse LFs, several sizes were tested
on the HCI and our generated datasets (i.e., 20, 25, 30, 35,
40). For the MMSPG dataset, since there is no labeling GT
available, only Hsize = 20 is presented.

C. Evaluation Metrics

To generate the quantitative results, the evaluation met-
rics comprehensively described for 4D LF in [17] are used.
Namely, the Achievable Accuracy (AA), Boundary Recall
(BR), Under-segmentation Error (UE), Compactness (CP),
Self-Similarity error (SS), and number of Labels per Pixel
(LP). Notice that the existing consistency metrics used in [17]
do not adequately consider regions that exist in other views but
are occluded or non-existent in the central view, especially in
sparse LFs. To overcome this limitation, the recently proposed
LF Angular Consistency (LFAC) metric for style transfer
applications [21] is adapted and modified to compute the
consistency of sparse LF over-segmentation more accurately.
Different from LFAC [21], where the consistency of RGB
stylized LFs (i.e., composed LF in the style of another image)
is compared with an original one and where the estimated
disparity of the original image is used, in this paper, a labeled
4D LF is used to compute the angular consistency assisted
with the GT disparity maps and segmentation label images
for all LF views.

Labeling–LF Angular Consistency (LLFAC)– Given a
GT 4D LF disparity map, DGT , and GT segmentation label
images, LGT , the angular consistency is computed by ini-
tially grouping the hyperpixels into object-level using LGT .
To achieve that, each hyperpixel in the hyperpixel labeled
image, L , is assigned to the label of the segment in LGT that
has the largest overlap with the current hyperpixel. Afterwards,
the local angular variance map, � 2 (L), is initially computed
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Fig. 9. Estimated disparity for sparse LFs: a) The central LF view for which
the disparity estimated; b) GT disparity with range [�35.3, 8.7]; c) Results
by using the deep learning based method in [39]; d) Results by applying
our proposed modification on [39] to improve the accuracy and angular local
consistency.

Fig. 10. Quantitative comparison on our proposed method using different
estimated disparities namely, Estimated Disparity using (ED-original) [39];
modified Estimated Disparity (ED-modified); Ground Truth Disparity (GTD).
Better disparity maps can significantly improve the hyperpixels performance.

as follows [21]:

� 2 (L) = 1
Nu⇥N v

M,NX

u,v

1��Cu,v

��
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8
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u0,v0
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u0,v0
�
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�
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⌘2
9
=

; ,

L AC (L) = 10 log10

⇣
r2

.
� 2 (L)

⌘
, (15)

where Nu, Nv are the number of horizontal and vertical views,
Cu,v is the closest 8 neighboring views of labeled view Lu,v ,
occu,v

u0,v0 represents per-pixel weights where occluded regions
between two adjacent views are set to 1 and 0 elsewhere,
wu,v

u0,v0 represents the warping function as explained in [21],
to warp a given view using a disparity map between view

Fig. 11. Example of inaccurate over-segmentation of a non-Lambertian region
of the nutcracker using different disparity maps during the clustering: a) Using
estimated disparity; b) Using ground truth disparity. Accurate disparity maps
can improve the over-segmentation performance.

Fig. 12. Quantitative comparison of our proposed method with and without
adjusting the centroids angular location during the clustering for sparse LFs.

Lu0,v0 and Lu,v , Lu,v , is the mean of all the LF neighboring
views warped into view Lu,v , r is the pixels values range, and
� 2 (L) is the mean of � 2 (L). A higher LLFAC indicates better
angular consistency.

D. Disparity Maps Estimation
As input, the proposed hyperpixels method requires dis-

parity maps for all 4D LF views, to fully exploit LF cues
during the 4D clustering. In the case of dense LFs, the recently
proposed view-consistent depth estimation method in [38] is
used. This method [38] relies heavily on the EPI structure and
is designed only for dense LFs. In the case of sparse LFs, to the
best of the authors’ knowledge, only the deep learning based
disparity estimation method proposed in [39] can estimate
disparity (for all dense and sparse LF views, considering and
ensuring cross-view consistency), with promising performance
and has an open-source software. This method relies on
initially estimating the corner views using a fine-tuned Flow
Net 2.0 [42], [39]. Afterwards, the inner views disparity maps
are synthesized and propagated using an occlusion-aware soft
3D reconstruction method proposed in [43] based on the corner
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Fig. 13. Average quantitative evaluation on all 4D LFs of the dense HCI 4D LF dataset listed in Table II for different 4D LF over-segmentation methods.

Fig. 14. Qualitative results using the densely sampled HCI 4D LF dataset. Challenging regions are selected to evaluate the robust balancing between spatial
accuracy, compactness and cross-view consistency. For each LF, the central view, the vertical and horizontal EPIs are presented, respectively. As can be seen,
our results adhere well to object boundaries and can accurately segment overlapping objects as in (b) and (c) and maintain compact and consistent across all
views (as can be seen in the supplemental dynamic results). Hsize = 20.

views. This method can generate accurate disparity maps for
LFs with limited disparity ranges. However, the accuracy
of the estimated disparity is significantly negatively affected

when large displacements exist between the corner views,
especially for sparse LFs, which can dramatically affect the
over-segmentation results. The authors extended this method
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Fig. 15. Qualitative results using the densely sampled MMSPG 4D LF dataset. For each LF, the central view, the vertical and horizontal EPIs are presented,
respectively. Regardless of the noise that exists in real LF views and non-even lighting, our results can adhere to object boundaries and can accurately
segment challenging cases such as non-even lighting with complex texture and non-Lambertian regions and preserve compact and consistent across all views.
Hsize = 20.

Fig. 16. Average quantitative evaluation on all 4D LFs of our sparse 4D LF dataset listed in Table II for different 4D LF over-segmentation methods.

in [44] to flexibly select any anchor views (e.g., not only
corner views), but the disparity for only one target view can
be estimated, hence no local or global angular consistency is
considered when applying it for all LF views.

Therefore, the method in [39] is adopted in our experiment
and the improved disparity estimation is used for all methods
for sparse LFs. To ensure accuracy and local consistency in
sparse LFs, instead of estimating the disparity for corner views
and then propagating it to inner views that may include large-
occluded regions, we estimate the disparity maps for every
4 adjacent views (e.g., 2 ⇥ 2) with step size equals to 2. This

way, there is no need for propagation using 3D reconstruc-
tion as in [43], and a significant improvement in disparity
estimation accuracy is achieved, as can be seen in Fig. 9.
Consequently, our over-segmentation performance is further
improved in terms of hyperpixel accuracy, compactness, and
cross-view consistency as shown in Fig. 10 and as discussed
in the following section.

In conclusion, inaccurate disparity estimation can affect the
hyperpixels results, as shown in Fig. 11, and the proposed
hyperpixels method is positively affected by using more accu-
rate disparity maps.
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Fig. 17. Example of LF over-segmentation behavior for several methods for regions that do not exist in the central view. As can be seen inside the cyan
square, a portion of the white region in view (9, 9) does not exist in the central view, i.e., view (5, 5). Our proposed method initializes centroids for these
regions in 4D space before clustering. Therefore, hyperpixels remain with regular and similar sizes in all LF views and the accuracy and consistency are
considered during the clustering for those regions.

E. Qualitative and Quantitative Results

In this section, our results are presented and compared to
the benchmark methods for several dense and sparse 4D LF
datasets. All the results in Fig. 10 – Fig. 18 are generated
using estimated disparity maps as explained in Section V-D
and not the GT ones. The GT disparity maps are only used
for computing the quantitative evaluations.

Before comparing our results with the existing methods, it is
worth showing the effect of updating the centroids angular
location during the clustering. In the case of dense LFs, the
disparity range is narrow and in our experiments the disparity
ranges were always less than the Hsize. Therefore, almost all
hyperpixels have a 2D slice in all LF views. Consequently, the
over-segmentation performance is not significantly affected by
adjusting the centroids angular locations. However, in the case
of sparse LFs, not all hyperpixels have a slice in all LF views;
hence, the effect of updating the centroids angular location can
be noticed. The importance of updating the centroids angular
location during the clustering is shown in Fig. 12 for sparse
LFs. In Fig. 12, the average performance in terms of accuracy,
compactness and angular consistency is notably improved.

The performance evaluation of our method compared with
other existing methods presented in (Fig. 13 – Fig. 18, where
hyperpixel size is the same as cluster/segment size in other
methods) can be summarized based on each metric as follows:

• Achievable Accuracy (")– This metric shows that using
accurate disparity maps can affect the accuracy as seen
in Fig. 10, where GT and different estimated disparity
maps are used during the over-segmentation. As can be
seen in Fig. 13 – Fig. 18, the hyperpixels method achieves
outperforming accuracy by using adaptive 4D clustering
along with hybrid spatio-angular features, for both dense
and sparse LFs. The significance of exploiting disparity
information as a clustering feature becomes apparent in
challenging cases, such as overlapping objects with low
color difference but at different depths. In Fig. 14b and
Fig. 14c, overlapping leaves and the horses’ heads are
examples of this type of challenging regions.

• Boundary Recall (")– Our results robustly preserve the
boundaries in dense and sparse LFs even in challenging
regions, such as the horse heads in Fig. 14c, and non-
Lambertian objects, as the glass cup in Fig. 18a. However,

Fig. 18. Qualitative results using our generated sparse 4D LF dataset.
Challenging regions are selected to evaluate the robust balancing between
spatial accuracy, compactness, and cross-view consistency such as transparent
glass, objects and large untextured regions as in the wall. Regardless of the
wide disparity range in this dataset, the proposed hyperpixels are robust and
consistent across views. Hsize = 20.

if inaccurate disparity values are estimated, the BR results
can be negatively affected as clearly presented in Fig. 10.

• Under-segmentation Error (#)– The proposed hyperpix-
els method balances the tradeoff between accuracy, shape
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TABLE III
LABELING–LF ANGULAR CONSISTENCY (LLFAC) FOR DENSE AND SPARSE LIGHT FIELDS (")

TABLE IV
AVERAGE CPU TIME FOR VARIOUS CLUSTERING-BASED METHODS OVER SEVERAL LF DATASETS AND SIZES (IN SECONDS FOR ALL LF VIEWS)

regularity (i.e., compactness) and consistency by using
the clustering weights adaptation. Hyperpixels results
generate competitive UE in dense LFs and outperform the
benchmark methods for sparse LFs, as shown in Fig. 13
and Fig. 16. Using accurate disparity maps can reduce UE
as in Fig. 10. While the LFSP and VCLFS methods lead
to lower under-segmentation errors for dense LFs, this is
not necessarily true in terms of accuracy or consistency
metric performance, as in Fig. 13.

• Compactness (")– This metric reflects over-segmentation
shape regularity that can be controlled during the cluster-
ing weights adaptation step. In most benchmark methods,
the compactness parameter is either an input set by the
user or is empirically set to a fixed value. However, in this
paper, the clustering weight that affects the compactness
is automatically adapted according to the LF content.
The proposed method achieves competitive CP when
compared to other benchmark methods for dense LFs.
However, due to the new centroids creation in off-central
views, we noticed that the benchmark methods achieve
better CP. In some of the benchmark methods, when a
region lacks a centroid projection, pixels in that region
are grouped to the nearest segment, resulting in larger and
more compact segments in off-central views as in Fig. 17.
This situation increases the average compactness results
and may affect the AA and UE performance. Hyperpixels
compactness can be improved by using accurate disparity
maps as in Fig. 10.

• Consistency metrics: SS (#), LP (#), LLFAC (")–
LF Over-segmentation consistency is an essential prop-

erty that can drastically affect subsequent editing tasks.
The state-of-the-art methods have different techniques to
ensure consistency, such as enforcing the continuity in
the EPI space or using graph optimization. In this paper,
we exploit per-pixel disparity to effectively project cen-
troids across views and achieve cross-view consistency.
As can be seen in Fig. 13, Fig. 16 and Table III, the
proposed method achieves outperforming results in terms
of SS and LP in dense and sparse LFs. Since there are
no GT maps for the real LFs, angular consistency is not
evaluated numerically. However, Fig. 14 and Fig. 15 show
the angular consistency through the EPIs. Moreover, the
angular consistency can be clearly noticed in the videos
of the supplemental materials. Given the fact that in
SS and LP metrics, the consistency is computed after
warping the views into the central one and discarding
the largely occluded region, we computed the LLFAC to
fairly evaluate the labeling angular consistency for sparse
4D LFs. As seen in Table III and Fig. 16, the proposed
method achieves the best angular consistency for sparse
LFs. Additionally, as in Fig. 10, using better disparity
estimation can improve cross-view consistency due to the
accurate centroids projections.

To sum up, the proposed method achieves a robust bal-
ance between all the metrics for all tested 4D LFs without
using any post-processing step to correct labeling the hyper-
pixels. For sparse LFs, we noticed that the methods that
rely on post-processing optimization, such as the super-
ray and LFSP methods, can generate compact and accurate
over-segmentation for sparse LFs but are not necessarily
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consistent across views. Moreover, a significant reduction is
noticed in the VCLFS method performance when sparse LFs
are used. Since the VCLFS method relies on the EPI structure
and cannot adequately handle the irregular EPI structure in
sparse LFs.

Finally, existing limitations in this proposed method,
in some 4D LFs where the disparity is not accurately estimated
(e.g., in real world 4D LF scenes and when non-Lambertian
objects exist), inconsistent or inaccurate hyperpixels may be
generated. As an example, Fig. 11 shows a failure case in a
part of the metallic object that has inaccurate disparity values.
To avoid that, using better disparity maps can significantly
improve the final results. Finally, the current implementation
is not optimized since this was out of this paper scope.
Nevertheless, the average CPU time required by each method
to over-segment 4D LFs using several LF datasets is shown
in Table IV.

VI. CONCLUSION

In this paper, the concept of hyperpixel for 4D LFs is ini-
tially defined. After that, a 4D LF over-segmentation method
based on 4D K -means clustering is proposed to be used for
sparse and dense 4D LFs. Moreover, our proposed method
initializes the centroids in an occlusion-aware manner and uses
an adaptive weighted 4D K -means clustering based on hybrid
features.

The proposed hyperpixels method can be used as a
pre-processing step for sparse and dense LF processing and
editing, such as semantic segmentation and saliency detec-
tion. Quantitative and qualitative results show outperforming
over-segmentation performance for dense and sparse 4D LFs.

In the future, we will further investigate how to exploit
the non-linearities in the EPI space for sparse LFs and non-
Lambertian objects, to enforce hyperpixel consistency across
views. Additionally, we will consider further extending our
method to generate hyperpixels for 5D LF videos.
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Abstract—Efficient segmentation is a fundamental problem 
in computer vision and image processing. Achieving accurate 
segmentation for 4D light field images is a challenging task due 
to the huge amount of data involved and the intrinsic 
redundancy in this type of images. While automatic image 
segmentation is usually challenging, and because regions of 
interest are different for different users or tasks, this paper 
proposes an improved semi-supervised segmentation approach 
for 4D light field images based on an efficient graph structure 
and user’s scribbles. The recent view-consistent 4D light field 
superpixels algorithm proposed by Khan et al. is used as an 
automatic pre-processing step to ensure spatio-angular 
consistency and to represent the image graph efficiently. Then, 
segmentation is achieved via graph-cut optimization. 
Experimental results for synthetic and real light field images 
indicate that the proposed approach can extract objects 
consistently across views, and thus it can be used in applications 
such as augmented reality applications or object-based coding 
with few user interactions. 

Keywords—light field segmentation, foreground-background 
segmentation, superpixels, graph-cut, semi-supervised 
segmentation 

I. INTRODUCTION 
When humans look at images, their brains can easily 

classify the objects in the scene by distinguishing the object’s 
borders and understand the content. However, this task is 
much harder for computers which consider the scene as an 
array of pixels. To analyze the scene and understand its 
content by identifying meaningful objects, computers 
typically must start by applying image segmentation, which is 
the process of partitioning an image into smaller parts with 
homogenous properties. In computer vision, there are low-
level, mid-level and high-level image segmentation 
techniques depending on the semantic meanings of the 
resulting segments. Basically, low-level image segmentation 
divides the image into smaller regions automatically with 
similar visual characteristics, such as color or depth, but not 
necessarily with a semantic meaning, and it can be used as a 
pre-processing step for object tracking or image editing [1], 
[2]. Mid-level image segmentation divides the image into a 
smaller number of larger regions (i.e., objects), it may be 
assisted with user interaction, however, it does not have 
semantic labels for the objects [3]. In addition to the mid-level 
segmentation output, the high-level image segmentation, can 
be assisted with high-level knowledge or learning process to

             
Fig. 1. Example of the proposed segmentation approach: a) a reference 
image with user's foreground and background scribbles; b) the segmented 
object based on the scribbles. 

obtain semantic meaning for the objects (e.g., a car, a flower, 
etc.) [4], which is out of this paper’s scope. In this paper, a 
combination of low-level image segmentation and user 
scribbles are considered to obtain mid-level (e.g., foreground-
background segmentation) without having pre-defined 
semantic labels for the objects.  

Although image segmentation is usually considered as a 
challenging problem, certain conditions can make it even 
harder, such as overlapping between objects with poor 
contrast or the huge amount of data, as in the 4D Light Field 
(LF) images, specifically when pixels are used as graph nodes. 
4D LF images can be obtained by an array of cameras or by a 
single camera equipped with a special microlens array in front 
of the sensor or a moving camera gantry to capture different 
viewpoint images at different times. LF images record not 
only the intensity of light but also the angular direction of light 
rays [5]. The resulting 4D LF image, which can have a very 
large number of pixels, can be interpreted as a 2D array of 2D 
views and parametrized as !(#, %, &, ')  where #, %  are the 
spatial geometry of pixels in each view and &, '  are the 
angular geometry of views. The 2D views are obtained from 
slightly different perspectives. While the 4D LF images 
contain a huge number of pixels, the similarity between pixels 
in different views can be used to reduce the computational 
complexity [1]. Furthermore, one of the most important 
advantages of 4D LF imaging is that it inherently includes 
depth information in its structure, which can be used in 
clustering and label propagation. In general, when traditional 
2D segmentation is applied to 4D LF images, the information 
from adjacent views is not considered to resolve object 
occlusions, thus resulting in inconsistent segmentation across 
views. In order to cope with these challenges, the 4D LF image 
structure should be adequately considered. Various LF 
segmentation techniques have been proposed in the literature 
[3], [6]–[10]. However, most 4D LF segmentation techniques 
are either time-consuming, not interactive, not proposed for 
full consistent 4D LF segmentation or relying on accurate 
depth estimation.  
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To overcome the existing limitations and because the 
regions of interest are different for different users or tasks, an 
improved interactive Semi-supervised 4D LF Foreground-
background Segmentation (SLFS) solution is proposed (see 
Fig. 1). This approach can be widely applied in object-based 
LF coding, augmented reality applications, or object 
extraction. Similar concepts to the segmentation algorithm 
proposed in [9], such as the graph-based image segmentation 
and the graph-cut optimization technique are used in this 
paper. However, different superpixel algorithm (i.e., the state-
of-the-art View Consistent Light Field Superpixel (VCLFS) 
[10]) is exploited as graph nodes, enabling a dramatic 
reduction in the size of the graph and to effectively propagate 
the segmentation consistently across views, without the need 
for extra accurate depth estimation algorithm. 

The remainder of the paper is organized as follows: 
Section II briefly reviews the related work on 4D LF image 
segmentation available in the literature; Section III describes 
the proposed approach in detail; Section IV evaluates the 
SLFS performance through a series of experimental results; 
Section V concludes the paper with some final remarks and 
proposes directions for future work. 

II. RELATED WORK 
Image segmentation is a fundamental task in computer 

vision, and it has been attracting the attention of researchers 
for many years. Several image segmentation solutions for 2D 
images have already been proposed, however, only a few 
solutions have been proposed to tackle the 4D LF challenges, 
such as the huge amount of data and the need for ensuring the 
segmentation consistency across views. For low-level image 
segmentation, 4D LF superpixels/superrays have been 
proposed in [1], [8], [10] and can be used to enhance LF 
editing tasks (e.g., by propagating the edits into a 4D LF 
superpixel instead of a single pixel). For the case of mid-level 
image segmentation, Wanner et al. [3] proposed the first 
variational framework for multi-label segmentation, where the 
color and disparity cues of input seeds are used to train a 
machine learning classifier (i.e., random forest) that is used to 
predict the label of each pixel. However, the segmentation is 
not performed on the full 4D data (only the central view is 
segmented), the authors mentioned that the optimization step 
can take ~5 minutes on a modern GPU if applied for all views. 
Mihara et al. [6] improved Wanner’s approach by building a 
graph in 4D space with spatial and angular neighbors and then 
using graph-cut for multi-label segmentation. Due to the huge 
number of graph nodes and the high computational time, only 
a fraction of the LF views (i.e., 5×5) were considered in the 
experiments. To reduce the graph size, Hog et al. [7] proposed 
a novel graph representation that utilizes the ray bundle (i.e., 
a set of all rays describing the same 3D scene point) as a graph 
node and exploited the redundancy in the LF data, decreasing 
the running time of the Markov Random Field (MRF) 
optimization and achieving entire 4D LF views segmentation. 
However, their approach depends on quite accurate depth 
estimation on all the views, thus, inaccurate individual depth 
maps greatly increase the running time and decrease the 
segmentation coherence. Additionally, the segmentation 
results can be very sensitive to the noise in real LF images.  

It has been proven the efficiency of achieving mid-level 
and high-level segmentation based on low-level (e.g., 
superpixel) segmentation [2]. Lv et al. [9] recently proposed a 
novel hypergraph representation for 4D LF multi-label 

segmentation by exploiting the superpixels proposed in [8] as 
hypernodes to reduce the graph size. However, Lv et al.’s 
approach relies on superpixel segmentation that requires depth 
estimation from extra algorithm, hence, it can be time-
consuming. Additionally, it is not as accurate for real LF 
images as for the synthetic LF images due to the lack of 
accurate estimated depth map. Our approach is different from 
the recent work in [9], by replacing the used superpixels and 
simplifying the graph structure and size. Our approach is 
designed to interactively extract foreground from background 
similar to the recent work in 2D images [2], however, the 
segmentation is applied for all 4D LF data to achieve effective 
interactive segmentation of user’s region of interest. 

III. PROPOSED LIGHT FIELD SEGMENTATION APPROACH 
In order to achieve foreground-background 4D LF image 

segmentation, the proposed approach consists of four major 
steps (see Fig. 2): 

A. LF superpixel extraction 

In contrast to the widely used 2D superpixel algorithms, 
such as Simple Linear Iterative Clustering (SLIC) in [11], 
which divide an image into smaller clusters with similar visual 
appearance and spatial geometry, 4D LF image segmentation 
algorithms need to consider the depth information to extract 
consistent 4D LF superpixels. From the few proposed 4D LF 
superpixel algorithms, the state-of-the-art VCLFS algorithm 
is used in our proposed algorithm for the following reasons. 
Firstly, the VCLFS algorithm does not require an external 
depth estimation algorithm, since it implicitly estimates the 
disparity by computing the slopes of Epipolar Plane Image 
(EPI) lines for all LF views [10]. Secondly, the occluded 
objects where the foreground and background lines are 
intersected in the EPI are considered in the VCLFS algorithm 
and properly detected to prevent wrong segmentation. Finally, 
it outperforms other LF superpixel algorithms, notably [8], 
that is used in the recent 4D LF multi-label segmentation 
algorithm [9], in terms of boundary adherence, view 
consistency and running time [10], which is important for later 
foreground and background segmentation. 

The VCLFS algorithm consists of three major steps: i) line 
extraction from the EPIs of central horizontal and vertical 
views of a 4D LF image; ii) occlusion-aware EPI 
segmentation; and iii) spatio-angular clustering by projecting 
the EPI segments of the central views into the central view and 
firstly clustering the central view using K-means algorithm, 
where the CIELAB color space, position and disparity are 
used. Afterward, the clustering labels are propagated across 
all views based on the EPI segments and disparity. After 
superpixels are extracted, the texture is characterized by using 
histograms of the superpixels’ intensities. To compute the 
histograms, the image is converted to the Hue, Saturation and 
Value (HSV) color space first. The HSV color space is 
designed to approximate the human vision perception and it is 
widely used for image analysis and segmentation [12]. To 
achieve luminance invariance, the value channel is not 
considered, and the histogram is computed using only the hue 
and saturation channels. For each superpixel, a 2D histogram 
of hue and saturation values is computed. Each superpixels’ 
histogram is normalized by dividing it by its sum. The 
obtained superpixels and the corresponding histograms will be 
used in the next step to create the graph representation. 
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Fig. 2. Overview of the proposed SLFS algorithm: step 1) LF superpixels are extracted using the VCLFS algorithm; step 2) a graph is created using superpixels 
as graph nodes; step 3) scribbles are inserted by the user to initially label foreground and background superpixels; step 4) a graph-cut optimization is performed 
to the central view and propagated to the entire 4D LF views to iteratively achieve interactive foreground-background segmentation.

B. Graph creation 

Since our goal is to improve the 4D LF segmentation, the 
theory of graphs can be applied similarly to what has been 
done for 2D image segmentation. However, in the context of 
the 4D LF segmentation, several algorithms used a graph 
representation of the 4D LF image by representing each pixel 
as a graph node [6]. Due to the huge size of a LF image, the 
number of resulting graph nodes is also massive, leading to a 
high computational complexity not suitable for 4D LF 
interactive applications. In contrast, the hypergraph concept 
which is conceptually defined and used in [9] is similarly used 
in our approach and significantly reduces the graph size by 
defining the extracted 4D LF superpixels as graph nodes, 
however, we did not consider the angular neighbors or the 
multiple-target nodes as in [9]. Generally, a hypergraph is one 
type of graph representation that uses a set of nodes as one 
hypernode as well as the connected edges between two 
hypernodes as one hyperedge (see Fig. 3). Additionally, the 
hypergraph is coarsened into a planar graph by considering all 
corresponding superpixels across views as one hypernode. 

In our graph representation, a planar graph is created on 
the central view superpixels and conceptually represented a 
hypergraph, where each hypernode in the central view graph 
includes all corresponding superpixels across views. The 
central view is chosen for two reasons: i) in dense 4D LF 
images, there is only a slight shifting across views and 
according to the Lambertian assumption, the 3D point of the 
scene is corresponding to a straight line in the EPI [10]. Thus, 
most superpixels in the central view having corresponding 
superpixels in all LF views with small disparities; and ii) the 
user is usually interested in segmenting frontal objects instead 
of small occluded objects. The corresponding superpixels 
across views are computed in the VCLFS by changing the 
spatial position of the central view superpixels based on the 
angular location of the view and the superpixels’ disparities, 
and it assigns a same numeric label to the corresponding 
superpixels. The final segmentation will be propagated by 
assigning the corresponding superpixels across views, the 
same foreground or background labels as central view 
superpixels. In Fig. 3, a simplified hypergraph illustration is 
shown. In the red rectangle, there is an edge between two 
superpixels, similarly, the red edge exists in all 4D LF views 
in Fig. 3. The hypernodes *! , *" can be shown in the two circles 
below and connected with a hyperedge. In order to represent a 
graph, we need to define the edges between the graph nodes 

 
1 The Delaunay algorithm finds a subdivision of a set of points into a non-
overlapping set of triangles, such that no point is inside the circumcircle of 
any triangle. 

and compute their weights. Since superpixels’ shapes are 
irregular in most situations, the Delaunay Triangles algorithm1 
[13] is used to find the graph edges between neighboring 
superpixels’ centroids. The Delaunay algorithm provided in 
the open-source Python library Sci-Py [14], [15] is used here. 

 
Fig. 3. The hypergraph representation where all corresponding superpixels 
across views are represented as one hypernode as in !!	#$%		!". The red lines 
represent edges between two neighboring superpixels and, similarly, all 
corresponding edges between two hypernodes are represented as one 
hyperedge. 

To create the graph + and perform graph-cut optimization 
to achieve foreground and background segmentation, the LF 
superpixels are used as nodes of the graph. Furthermore, two 
target nodes are added to the graph, for the foreground ,# 
(source node) and the background ,$ (sink node), respectively 
(see Fig. 2). The maximum flow from the source to the sink is 
determined by the bottleneck (i.e., the edges minimum cut). 
Additionally, two different edge types are defined: i) target 
edges (i.e., the edges between the superpixel and the target 
nodes); and ii) neighboring edges (i.e., edges between spatially 
neighboring superpixels). After defining the types of the nodes 
and edge, we build a graph + = (., /) of the central view, 
where . represents both superpixels and target nodes, and / 
represents edges between nodes. Each edge between 
superpixels is weighted by comparing the adjacent histograms 
using average Kullback-Leibler Divergence (KLD) [16] to 
compute the relative difference between histograms as in (1): 

01*! , *"2 = 01*" , *!2 =	
λ − %

& 6∑ 8!(#) log 6'!())'"())
< +) ∑ 8"(#) log >

'"())
'!())

?) <, (1)  

where 	8!(#)  and 8"(#)  are, respectively, the hue and 
saturation 2D histograms of spatially adjacent superpixels *! 
and *"  in the central view (as a complexity tradeoff in this 
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Fig. 3. The hypergraph representation where all corresponding superpixels 
across views are represented as one hypernode as in !!	#$%		!". The red lines 
represent edges between two neighboring superpixels and, similarly, all 
corresponding edges between two hypernodes are represented as one 
hyperedge.  

scribbles are labeled either foreground or background, 
according to the scribble’s label, and utilized as initial seeds to 
label unlabeled superpixels in the graph-cut step, where the 
cumulative foreground and cumulative background 
histograms are used. When user scribbles are inserted, graph 
target edges between labeled superpixels and target nodes are 
generated. Considering a superpixel under foreground 
scribbles, the edge weights between superpixel node *#  and 
the target nodes ,# and ,$ represent the self-penalty C+ (i.e., 
the cost of labelling each superpixel as either foreground or 
background) as in (2) and (3): 

 C,#1,#2 = C,!(0) = 0	,  (2)  

 C,#(,$) = C,!(1) = W-.), (3)  

where C,#1,#2 is the edge weights between the foreground 
labeled superpixel and ,# (labeled as zero), and C,#(,$) is the 
edge weights between the foreground labeled superpixel and 
,$ (labeled as one). A small value is assigned for foreground 
target edge if the superpixel is under foreground scribbles, 
while a high value is assigned for the background target edge 
to increase the self-penalty. In our experiments we fixed 
W-.)	to 100 as a high value. The same approach is used for 
superpixels under background scribbles. 

D. Graph-cut image segmentation 

Generally, image segmentation can be formulated as the 
minimization of an energy cost function with two additive 
terms: i) the self-penalty (a.k.a data cost); and ii) the 
neighboring penalty (a.k.a smooth cost). Self-penalty 
represents the cost of labelling each superpixel as either 
foreground or background. Furthermore, the neighboring 
penalty ensures that neighboring superpixels are smooth and 
penalizes neighbors that have different labels. 

To achieve the segmentation, graph-cut optimization is 
used, which is effective and handles image segmentation in 
terms of energy minimization [9]. The cumulative foreground 
and background histograms (8/0 , 8/1)  of the superpixels 
under the user scribbles are computed separately after the 
user’s insertion. In order to assign a label for each unlabeled 
superpixel, the KLD is used to compute the relative difference 
between cumulative target histograms and the superpixel 
histogram as in (4): 

!2$",3	56	7# = ∑ 889	56	8:(#) log ';%&	()	%*(<);$(<)
(< 	, (4)  

where C,!1,#	=>	$2  is the self-penalty, and 8/0	=>	/1  is 
foreground or background cumulative histogram. Suppose L 
is a label vector, which includes foreground (0) and 
background (1) labels for all the G superpixels	L ∈ 	 {0,1}? . 
The energy function is computed by summing the data cost 
and smooth costs for assigning label L!  to superpixel *! 
considering the labels of the neighbors M!	as in (5) [17]: 

E(L) = 	∑ C,!(L!),!∈A +	∑ 01*! , *"2OL! − L"O(!,")∈C! . (5)  

Finally, the graph-cut algorithm is applied to minimize the 
energy function to obtain the segmented result P as in (6): 

 P = arg	min
D
E(L),  (6)  

where the energy function E(L) is the cost of assigning label 
L! to  each superpixel *! in the image V	 by summing the data 
cost and the smooth cost for each superpixel *!  and its 
spatially neighboring superpixels *" , where M!  is the set of 
neighboring superpixels of *! . In our algorithm, we take 
advantage of the optimized PyMaxFlow library to apply the 
graph-cut that implements the algorithm in [17] for central 
view. Since each superpixel in the central view conceptually 
represents a hypernode of all self-similar superpixels across 
views, the superpixels’ labels from the central view are 
propagated to the entire 4D LF views by assigning each 
superpixel related to the hypernode to the label of the 
superpixel in the central view. The graph-cut optimization is 
interactively continued after each user’s scribble insertion of 
both foreground and background scribbles, and the 
calculation of the cumulative target histograms are updated 
until the object segmentation is achieved according to the 
user’s decision. Finally, the border’s noise is removed from 
the final mask using median filtering with kernel size of 
(7 × 7)  and simple morphological operation (i.e., opening), 
with kernel size of (3 × 3). The used filters may slightly 
affect the spatial accuracy, but visually obtain smoother 
boundaries and reduce the noise. 

TABLE I. IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS 

4D LF image dataset View resolution 
(' × )) pixels  

Number 

 of views 
Thumbnail 

HCI benchmark 
dataset [18]: 

Papillon, Monasroom, 
Still life, Horses and 

Buddha 

768×768 pixels, 

except for 
horses: 

1024×576 pixels 

9×9 

 

EPFL MMSPG LF 
images dataset [19]: 

Friends 4, Sphynx, and 
Sophie and Vincent 3 

625×434 pixels 15×15 

 

 

IV. EXPERIMENTAL RESULTS 
To evaluate the proposed approach, we implemented the 

proposed SLFS algorithm on a macOS computer with Intel i5 
2.3 GHz processor and 8GB LPDDR3 memory. We used both 
synthetic 4D LF images [18] and 4D LF data captured with a 
Lytro Illum camera [19] as shown in Table I. The algorithm 
is implemented using Python programming language and the 
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paper, summations are over 20 histogram bins), and λ is a 
control parameter that helps in the graph-cut optimization 
process (after extensive testing, in our experiments a default 
value of @ = 25 was used since it led to the best subjective 
results); this parameter is especially useful in case of very 
small or null difference between the superpixel histograms. 

C. User scribbles insertion 

For semi-supervised interactive segmentation, a user can 
insert different scribbles to indicate the region of interest on 
the reference view. In this paper, the central view is selected 
as a reference view, since almost all views contain central 
view content with slight shifting. All superpixels under the 
scribbles are labeled either foreground or background, 
according to the scribble’s label, and utilized as initial seeds to 
label unlabeled superpixels in the graph-cut step, where the 
cumulative foreground and cumulative background 
histograms are used. When user scribbles are inserted, graph 
target edges between labeled superpixels and target nodes are 
generated. Considering a superpixel under foreground 
scribbles, the edge weights between superpixel node *#  and 
the target nodes ,# and ,$ represent the self-penalty C+ (i.e., 
the cost of labelling each superpixel as either foreground or 
background) as in (2) and (3): 

 C,#1,#2 = C,!(0) = 0	,  (2)  

 C,#(,$) = C,!(1) = W-.), (3)  

where C,#1,#2 is the edge weights between the foreground 
labeled superpixel and ,# (labeled as zero), and C,#(,$) is the 
edge weights between the foreground labeled superpixel and 
,$ (labeled as one). A small value is assigned for foreground 
target edge if the superpixel is under foreground scribbles, 
while a high value is assigned for the background target edge 
to increase the self-penalty. In our experiments we fixed 
W-.)	to 100 as a high value. The same approach is used for 
superpixels under background scribbles. 

D. Graph-cut image segmentation 

Generally, image segmentation can be formulated as the 
minimization of an energy cost function with two additive 
terms: i) the self-penalty (a.k.a data cost); and ii) the 
neighboring penalty (a.k.a smooth cost). Self-penalty 
represents the cost of labelling each superpixel as either 
foreground or background. Furthermore, the neighboring 
penalty ensures that neighboring superpixels are smooth and 
penalizes neighbors that have different labels. 

To achieve the segmentation, graph-cut optimization is 
used, which is effective and handles image segmentation in 
terms of energy minimization [9]. The cumulative foreground 
and background histograms (8/0 , 8/1)  of the superpixels 
under the user scribbles are computed separately after the 
user’s insertion. In order to assign a label for each unlabeled 
superpixel, the KLD is used to compute the relative difference 
between cumulative target histograms and the superpixel 
histogram as in (4): 

!2$",3	56	7# = ∑ 889	56	8:(#) log ';%&	()	%*(<);$(<)
(< 	, (4)  

where C,!1,#	=>	$2  is the self-penalty, and 8/0	=>	/1  is 
foreground or background cumulative histogram. Suppose L 
is a label vector, which includes foreground (0) and 
background (1) labels for all the G superpixels	L ∈ 	 {0,1}? . 
The energy function is computed by summing the data cost 
and smooth costs for assigning label L!  to superpixel *! 
considering the labels of the neighbors M!	as in (5) [17]: 

E(L) = 	∑ C,!(L!),!∈A +	∑ 01*! , *"2OL! − L"O(!,")∈C! . (5)  

Finally, the graph-cut algorithm is applied to minimize the 
energy function to obtain the segmented result P as in (6): 

 P = arg	min
D
E(L),  (6)  

where the energy function E(L) is the cost of assigning label 
L! to  each superpixel *! in the image V	 by summing the data 
cost and the smooth cost for each superpixel *!  and its 
spatially neighboring superpixels *" , where M!  is the set of 
neighboring superpixels of *! . In our algorithm, we take 
advantage of the optimized PyMaxFlow library to apply the 
graph-cut that implements the algorithm in [17] for central 
view. Since each superpixel in the central view conceptually 
represents a hypernode of all self-similar superpixels across 
views, the superpixels’ labels from the central view are 
propagated to the entire 4D LF views by assigning each 
superpixel related to the hypernode to the label of the 
superpixel in the central view. The graph-cut optimization is 
interactively continued after each user’s scribble insertion of 
both foreground and background scribbles, and the 
calculation of the cumulative target histograms are updated 
until the object segmentation is achieved according to the 
user’s decision. Finally, the border’s noise is removed from 
the final mask using median filtering with kernel size of 
(7 × 7)  and simple morphological operation (i.e., opening), 
with kernel size of (3 × 3). The used filters may slightly 
affect the spatial accuracy, but visually obtain smoother 
boundaries and reduce the noise. 

TABLE I. IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS 

4D LF image dataset View resolution 
(' × )) pixels  

Number 

 of views 
Thumbnail 

HCI benchmark 
dataset [18]: 

Papillon, Monasroom, 
Still life, Horses and 

Buddha 

768×768 pixels, 

except for 
horses: 

1024×576 pixels 

9×9 

 

EPFL MMSPG LF 
images dataset [19]: 

Friends 4, Sphynx, and 
Sophie and Vincent 3 

625×434 pixels 15×15 

 

 

IV. EXPERIMENTAL RESULTS 
To evaluate the proposed approach, we implemented the 

proposed SLFS algorithm on a macOS computer with Intel i5 
2.3 GHz processor and 8GB LPDDR3 memory. We used both 
synthetic 4D LF images [18] and 4D LF data captured with a 
Lytro Illum camera [19] as shown in Table I. The algorithm 
is implemented using Python programming language and the 
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open-source code for the VCLFS algorithm [20] was used to 
extract the 4D LF superpixels. The segmentation results are 
presented in Fig. 4 and Fig. 5, for synthetic and real LF 
images, respectively. Several parameters can affect the 
segmentation result, such as the superpixel size and image 
texture complexity. In the VCLFS algorithm, the 
segmentation size of # will generate average superpixel size 
of #& pixels per superpixel (assuming a square shape) [20]. In 
our experiments (see Fig. 4 and Fig. 5), we set the 
segmentation size of the VCLFS to 30, to generate an average 
superpixel size of 900 pixels. This size of superpixel 
generates consistent and accurate segmentations with a 
reasonable computational complexity. In Fig. 6, we changed 
the size of superpixels to study its effect on segmentation. 
Larger sizes make the segmentation faster in terms of graph-
cut optimization. However, it results in inaccurate 
segmentation due to the larger clusters that cannot be divided. 
On the other hand, smaller sizes result in a more accurate 
segmentation, but will increase the graph size and 
complexity. In Fig. 6, the segmentation graph-cut takes 
around 8	Z[, when using VCLFS with a segmentation size of 
100, but it takes around 35	Z[ and 82	Z[ for a segmentation 
size of 30 and 15, respectively. According to the image 
texture, images with complex texture require more scribbles 
than those with non-complex texture. In Fig. 4, the 
Monasroom image presents a complex texture requiring more 
user scribbles and interaction than in the Papillon image.  

To compare our results with the other 4D LF segmentation 
algorithms that target multi-label segmentation, we used all 
the published segmentation masks in [7]. We were not able to 
compare with the recent work in [9] since there is no published 
masks or open-source code for the algorithm, additionally, 
there is no enough implementation details to reproduce it. 
Furthermore, similar work targeting foreground-background 
segmentation has been proposed for 2D images [2], and its 
comparison here would be unfair due to the 4D LF structure 
and propagation consistency. To enable the comparison with 
multi-label segmentation, we considered the targeted object 
(e.g., the yellow horse in Fig. 7) as a foreground and other 
labeled objects as background, hence, binary masks from the 
segmentation masks in [7] and the HCI segmentation ground 
truth in [18] are generated instead of multi-label masks. The 
comparison results are displayed in Table II, we used test 
images and their ground truth from the HCI dataset [18].  

                 

   
Fig. 4. SLFS results on the HCI dataset: a) central view with superpixels;  
b) user's foreground and background scribbles (blue for background and red 
for foreground); c) segmentation mask after graph-cut optimization;  
d) the segmented object.  

                                

     
Fig. 5. SLFS results on the EPFL MMSPG dataset: a) central view with  
superpixels; b) user's foreground and background scribbles; c) segmentation 
mask after graph-cut optimization; d) the segmented object. 

           

Fig. 6. Segmentation results for different superpixel’s sizes:  
a) size = 100; b) size = 30; c) size = 15; (larger superpixels may create 
inaccurate segmentation results due to the larger cluster that cannot be 
divided while very small superpixels improves the accuracy and increases 
the graph complexity). 

By using the hypergraph concept with the VCLF 
superpixels to represent the 4D LF image, a significant 
reduction in graph size is achieved. For example, the Buddha 
image has 4.77 × 10E pixels, the algorithm in [7] reduced the 
graph size to 8.19 × 10F nodes. Additionally, the algorithm 
in [9] reduced the graph size to 1.46 × 10G nodes, while our 
algorithm reduced the graph size to only 625 nodes with 
similar accuracy as in Table II. Additionally, the 
segmentation result is consistent across views and adhere to 
the object’s boundaries. Fig. 8, shows the consistent 
segmentation results, where our results show better visual 
consistency in some parts (e.g., the horse’s hoof) compared to 
[7]. The VCLFS algorithm takes ~ 250s and ~273s for HCI 
and EPFL datasets respectively for superpixels extraction 
with superpixel size of 30, the graph-cut for the central view 
takes ~35	Z[ and the propagation to all LF views takes ~3[. 

 

 
Fig. 7. Results from different interactive segmentation algorithms for 
Horses LF image: a) the state-of-the-art multi-label 4D LF segmentation 
result [9]; b) SLFS foreground-background segmentation result.
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TABLE II. ACCURACY RESULTS FOR THE DIFFERENT ALGORITHMS UNDER 
ANALYSIS FOR VARIOUS 4D LF TEST IMAGES 

 Results of [7] Results of SLFS 
Papillon 99.86% 99.66% 
Still life 99.89% 99.87% 
Horses 99.95% 99.59% 
Buddha 99.57% 99.34% 
Average 99.82% 99.62% 

 

             
Fig. 8. Results from different 4D LF segmentation algorithms for Papillon 
and Horses 4D LF images. These images are selected to show the consistency 
across views where Papillon has uniform colors and Horses has complex 
texture. For each image: a red rectaglue on the central image and zoomed 
patches from the top-left view, top-right view, bottom-left view and bottom-
right view are shown, however, all the 4D LF views are segmented. 

V. FINAL REMARKS 
In this paper, an improved interactive 4D LF foreground-

background segmentation solution – SLFS – is proposed and 
evaluated. Firstly, the 4D LF superpixels are extracted 
efficiently using the VCLFS algorithm. Afterward, a 
hypergraph based on superpixels is created. Then, the 
segmentation problem is treated as an energy function 
optimization where a graph-cut technique is applied to 
optimize the segmentation result. Finally, the segmentation 
result is propagated to all 4D LF views consistently. 

Experimental results were conducted on both real and 
synthetic 4D LF images and show the effectiveness of the 
proposed approach with comparable results even after the 
dramatic reduction in the graph complexity. Additionally, the 
experimental results show that the segmentation can be 
affected by the superpixel size, the image complexity and the 
graph-cut parameters.  

The proposed approach can be used in several interesting 
applications where object extraction is needed, such as 
augmented and mixed reality, and object-based coding. For 
future work, the best compromise superpixel size to be used 
for this algorithm and the optimal parameters for graph 
creation and segmentation could be further optimized and will 
be considered. Additionally, the graph structure can be used 
for other LF editing applications, such as in inpainting where 
the space after object extraction can be filled consistently by 
novel pixels in one view and propagated to the 4D LF views. 
Furthermore, this algorithm can be further improved to include 
the segmentation of the sparse 4D LF images where the nodes 
of the large occluded objects are handled particularly in the 
graph creation step.  
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Abstract Image segmentation is an essential initial stage in several computer vision applications. However, unsupervised image 
segmentation is still a challenging task in some cases such as when objects with a similar visual appearance overlap. Unlike 2D 
images, 4D Light Fields (LFs) convey both spatial and angular scene information facilitating depth/disparity estimation, which can 
be further used to guide the segmentation. Existing 4D LF segmentation methods that target object level (i.e., mid-level and high-
level) segmentation are typically semi-supervised or supervised with ground truth labels and mostly support only densely sampled 
4D LFs. This paper proposes a novel unsupervised mid-level 4D LF Segmentation method using Graph Neural Networks 
(LFSGNN), which segments all LF views consistently. To achieve that, the 4D LF is represented as a hypergraph, whose 
hypernodes are obtained based on hyperpixel over-segmentation. Then, a graph neural network is used to extract deep features 
from the LF and assign segmentation labels to all hypernodes. Afterwards, the network parameters are updated iteratively to 
achieve better object separation using backpropagation. The proposed segmentation method supports both densely and sparsely 
sampled 4D LFs. Experimental results on synthetic and real 4D LF datasets show that the proposed method outperforms benchmark 
methods both in terms of segmentation spatial accuracy and angular consistency. 
 
 
Index Terms— Light field, unsupervised segmentation, deep learning, angular consistency, graph neural network 
 

I. INTRODUCTION 
IGHT FIELD (LF) imaging has attracted increasing 
attention from researchers due to the rich information it 

includes and its potential for immersive applications [1], [2]. 
LFs contain information about both the intensity and 
direction of light rays and can be represented as an array of 
views captured from different perspectives. To represent that 
array of views, a 4D function !(#, %, &, ') can be used, where 
(#, %) and (&, ') are, respectively, the spatial and angular 
coordinates of each view. By fixing one angular and one 
spatial coordinate, an Epipolar Plane Image (EPI) (i.e., the 
unique 2D spatio-angular LF slice typically containing a 
regular structure with several slanted lines [1]) can be 
obtained, which corresponds to the depth/disparity cues, as 
presented in Fig.  1. Depth/disparity cues in 4D LFs can help 

improve different computer vision tasks, such as in scene 
segmentation, by using these cues as a discriminative feature, 
notably, when visual information alone is not sufficient. 

 
 

(a) (b) 
Fig. 1. In 4D LFs, each LF view (i.e., a slice of 4D LF in a particular angular 
plane (", $)) captures the scene from a different view perspective as in (a). 
This results in shifted light rays across views as can be seen in the EPIs with 
green and red borders, shown below and to the left of the central view in (b). 

Image segmentation is a fundamental task that aims at 
dividing image data into perceptual and homogenous regions 
according to specific criteria. By segmenting an image, we 
can isolate and identify individual components or objects, 
which is essential for several applications, such as image 
compression, object detection, autonomous driving, medical 
imaging and scene understanding [3]. Image segmentation, 
in 2D images, has been widely investigated with different 
solutions including traditional methods, e.g., clustering and 
graph-cut optimization techniques [3], or deep learning-
based methods [3]. Most of the deep learning-based 2D 
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image segmentation methods are supervised, relying on 
Ground Truth (GT) label images. Since generating pixel-
wise annotations for large datasets can be labor-intensive and 
costly, the development of fully unsupervised methods or the 
fine-tuning of pre-trained foundation models that have been 
trained on large datasets to extract deep features for image 
segmentation tasks became a growing research direction 
with promising performance [3], [4]. 

Although 2D image segmentation is an active research 
area, 4D LF segmentation remains relatively unexplored, 
with additional challenges and performance requirements to 
be considered. While segmentation accuracy is important in 
2D images, segmentation angular consistency in 4D LFs is 
also essential. More precisely, when segmenting 4D LFs, the 
corresponding pixels across all LF views must have the same 
segmentation label. Otherwise, the sudden label changes 
when navigating through the views can lead to unwanted 
flickering. Coupled with the huge amount of data involved, 
and the lack of 4D LF segmentation datasets for training and 
evaluation, this makes 4D LF segmentation a more complex 
task than conventional 2D image segmentation. 

Existing 4D LF segmentation methods can be categorized 
into three main categories according to the level of the 
semantic meaning of the obtained segments (as detailed in 
Section II): i) Low-level unsupervised over-segmentation 
methods, where similar pixels are grouped into perceptually 
meaningful atomic regions, without the need for label 
annotations or user scribbles, e.g., [5]–[10]; ii) Mid-level 
semi-supervised segmentation, where the semantic labels of 
the segmented objects are not included, e.g., [11]–[15]; and 
iii) High-level supervised semantic segmentation methods, 
e.g., [16]–[18], where semantic labels are also predicted for 
each pixel. This paper focuses on achieving mid-level multi-
label segmentation in a fully unsupervised manner using a 
deep-learning approach. 

Low-level and mid-level 4D LF segmentation methods 
typically rely on classical or basic machine learning 
techniques. On the other hand, high-level segmentation 
methods adopt deep learning techniques for training. Most 
deep learning-based 4D LF segmentation methods are 
applied only to the central view without considering other 
objects in the side views. However, when using sparse LFs, 
such as in immersive applications, other LF views, where 
disocclusions and additional objects may exist, must be 
considered. Moreover, the available deep neural networks 
for high-level semantic segmentation are often supervised, 
and, thus, inevitably demand pixel-wise GT segmentation 
labels for the training [16], [17], [19], which are challenging 
to obtain for all LF views, especially for real world LF 
datasets. Nevertheless, the use of deep learning has shown 
promising results in supervised 4D LF semantic 
segmentation and also in weakly-supervised and 
unsupervised 2D image segmentation [20]. Therefore, fully 
unsupervised 4D LF segmentation methods using deep 
learning are becoming increasingly appealing. The reason is 
that it may help in extracting relevant features from the LF 
and reduce the effort of manually defining precise features, 

which can be quite challenging. Another possible approach 
is to adapt pre-trained 2D foundation models, e.g. [21], for 
4D LF data for extracting deep features and exploiting them 
for segmentation tasks. Pre-trained 2D foundation models 
capture rich semantic information from large-scale data, 
thus, by exploiting the pre-trained knowledge, zero-shot or 
few-shot image segmentation can be achieved. However, an 
adaptation is needed when applied for 4D LF data to consider 
ensuring angular consistency constraints. Applying 
unsupervised mid-level segmentation can overcome the GT 
availability limitation by learning deep features from the 
input itself and enabling segmentation based on intrinsic 
features. Moreover, pseudo-segmentation labels for 
segmentation are often generated in mid-level unsupervised 
segmentation, starting with many classes, and then the pixel 
labels and feature representations are jointly optimized by 
updating the network parameters using gradient descent. 

To sum up, this paper aims to overcome the main 
limitations in most existing (mid/high-level) 4D LF 
segmentation methods, namely: i) Relying on the user 
scribbles or supervision; ii) Only supporting densely 
sampled 4D LFs; iii) Only applying segmentation to the 
central view; and iv) Not adequately exploiting LF view 
correlation or ensuring angular consistency across LF views. 
Accordingly, the main contributions of this paper are: 
• Proposal of a novel unsupervised angularly 

consistent 4D LF segmentation method for dense and 
sparse LFs – In this paper, 4D LFs are segmented into 
(mid-level) objects without any prior supervision or user 
scribbles. To the best of the authors’ knowledge, this is 
the first (mid-level) 4D LF segmentation technique that 
exploits deep features to segment objects without 
supervision for both dense and sparse LFs. Additionally, 
the segmentation is applied simultaneously to all LF 
views that compose a 4D LF, ensuring angular 
consistency throughout. This is achieved by initially 
over-segmenting 4D LFs into hyperpixels (where 
corresponding pixels across LF views are grouped 
according to their similarity in terms of color/texture, 
position and depth/disparity into the same hyperpixel) 
using the method proposed by the authors in Hamad et 
al. [10] to provide a compact LF representation. 

• Use of Graph Neural Networks (GNNs) for 4D LF 
segmentation – In this paper, to efficiently deal with the 
large amount of 4D LF data, a novel hypergraph 
representation based on 4D LF over-segmentation is 
used. To exploit the advantage of deep learning 
techniques, a GNN is used on the graph-structured 4D 
LF. While GNNs have shown promising results in node 
classification and 2D image segmentation, to the best of 
the authors’ knowledge, this is the first time a GNN has 
been applied to unsupervised 4D LF segmentation. 

• Proposal of a set of complementary metrics for 
evaluating segmentation angular consistency – 
Although both spatial accuracy and angular consistency 
should be considered when evaluating 4D LF 
segmentation methods, existing 4D LF mid/high-level 
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segmentation methods are often only evaluated in terms 
of spatial accuracy. Therefore, this paper proposes a set 
of complementary metrics that together enable 
evaluating the segmentation angular consistency, to be 
used in addition to spatial accuracy evaluation metrics. 
These metrics can be used for both dense and sparse 
LFs. 

The remainder of the paper is organized as follows. 
Section II briefly reviews the related work on 4D LF 
segmentation. Section III describes the proposed 
unsupervised 4D LF segmentation method. Section IV 
presents the proposed segmentation angular consistency 
metrics. Section V includes experimental results to evaluate 
the proposed method. Finally, Section VI concludes the 
paper with final remarks and directions for future work. 

II. RELATED WORK 
In the past decade, several proposals have been made for 

4D LF segmentation, which can be categorized into three 
main categories depending on the level of semantic meaning 
of the obtained segments, as briefly reviewed in this section: 

Low-level unsupervised over-segmentation methods, e.g., 
[5]–[10], mainly group pixels into atomic regions, which 
share similar characteristics, e.g., color/texture, position and 
depth/disparity, without the need for label annotations or 
user scribbles. These regions are often used as a pre-
processing step for subsequent tasks. Available low-level 4D 
LF over-segmentation methods can be classified as either 
clustering-based or graph-based, depending on the approach 
used to divide 4D LFs into homogeneous regions. In the case 
of clustering-based methods, the K-means clustering 
algorithm is often used. K-means is usually applied to all 4D 
LF views with different approaches, such as starting K-
means clustering in the central view and applying label 
propagation into all other LF views, as in [6], [7], or applying 
K-means clustering for the entire 4D LF as in the hyperpixels 
method [10]. In the case of graph-based methods, the 4D LF 
is represented by a weighted undirected 4D graph where each 
pixel is considered as a graph node, as proposed by Li et al. 
[8]. Afterwards, LF over-segmentation is achieved by 
maximizing the graph entropy in the 4D LF domain. While 
4D LF over-segmentation can be achieved using graph 
techniques, applying graph optimization on a huge number 
of pixels requires extensive computational resources. 

Mid-level semi-supervised segmentation methods group 
the pixels into objects without including semantic labels, 
e.g., [11], [14], [15]. In this case, user scribbles are usually 
inserted in the central view and the entire LF views are 
segmented accordingly [11]–[15]. For mid-level 4D LF 
segmentation, a common approach is to represent the 4D LF 
as a graph and apply classical graph-cut optimization assisted 
by the user scribbles (a.k.a. semi-supervised or scribble-
supervised segmentation). However, representing each light 
ray as a graph node leads to a huge number of nodes, and 
thus can increase the processing complexity [12]. To reduce 
the number of graph nodes, corresponding pixels across LF 
views that represent the same 3D point (a.k.a. a ray bundle) 

are represented by a graph node [13]. To further reduce the 
graph size, the 4D LF can be represented by a hypergraph by 
exploiting the spatio-angular correlation across views [14], 
[15]. To achieve that, low-level 4D LF over-segmentation is 
first applied. Then, a hypergraph is created where 4D 
segments (i.e., corresponding pixels in all views that locally 
share similar criteria and represent the same 3D region) are 
represented by a hypernode. Although these methods reduce 
the graph size significantly, the over-segmentation methods 
they use to create hypergraphs are only suitable for dense 
LFs but not adequate for sparse LFs with large occlusions. 
Mid-level unsupervised segmentation methods can also be 
found in the literature, e.g., [22], [23], for specific 
applications such as transparent object segmentation and soft 
color segmentation, which are out of the scope of this paper. 

High-level supervised semantic segmentation methods, 
e.g., [16]–[18], also predict semantic labels for each pixel. 
However, due to the lack of available LF datasets with GT 
segmentation labels for training deep neural network models, 
this has been a challenging research field in the past. New 
datasets for LF semantic segmentation have been proposed 
recently to support this research direction [17], [19], enabling 
the use of deep learning for this task [19], [17], [16], [18], 
[24]. To achieve supervised semantic segmentation, LF 
datasets with label annotations are required for training and 
evaluation. Therefore, a dataset with 400 real world LFs 
annotated for three foreground objects was created by Jia et 
al. [19] to train a Convolutional Neural Networks (CNN) 
based model. Later, Shen et al. [17] proposed a new dense 
4D LF dataset for urban scenes (UrbanLF) annotated for 14 
semantic classes. After the UrbanLF dataset was published, 
various 4D LF supervised semantic segmentation methods 
were proposed for urban scenes, e.g., [16], [18], [24]. 
Existing methods in this category can segment only specific 
objects (e.g., cars, buses and people). Additionally, they rely 
on supervision using GT segmentation labels of densely 
sampled LFs. As the exploitation of weakly-supervised 
approaches to achieve high-level semantic segmentation 
shows promising results in 2D images [20], adapting these 
approaches for 4D LF could reduce the reliance on expensive 
and time-consuming fully annotated data. 

III. PROPOSED 4D LIGHT FIELD SEGMENTATION METHOD 
This paper proposes an unsupervised and angularly 

consistent mid-level 4D LF segmentation method for both 
dense and sparse static LFs. Given a 4D LF, the proposed 
method consists of four main steps, as summarized in Fig. 2. 
Each step is detailed in the following subsections. It is worth 
noting that the first two steps are considered pre-processing 
steps using existing methods, and the third and fourth steps 
include the contributions of this paper: 
1) Disparity Estimation – Angularly consistent disparity 

maps are estimated for all LF views using an efficient 
disparity propagation method [25]. 

2) 4D LF Over-segmentation – The 4D LF is over-
segmented into hyperpixels, which are consistent over 
the entire LF [10].
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Fig. 2. Main steps of the proposed 4D LF segmentation method. Given a 4D LF, the corresponding disparity maps for all views are initially estimated (Step1), 
next, the 4D LF is over-segmented into hyperpixels (Step2); after that, a hypergraph is generated, where each hyperpixel is represented as a hypernode (Step3); 
finally, a GNN optimization is performed in an unsupervised manner to obtain the 4D segmentation labels (Step4).

3) Hypergraph Generation – Once the hyperpixels are 
obtained, the 4D LF is represented as an undirected 
hypergraph, where each 4D hyperpixel is represented by 
a hypernode and two neighboring hyperpixels are 
connected by a hyperedge. Each hypernode is 
represented by a feature vector. 

4) GNN Optimization – Finally, using the hypergraph as 
input, a GNN model is initialized and iteratively 
optimized, generating this way an unsupervised 4D LF 
segmentation, i.e., assigning a label for each hyperpixel, 
without any annotation effort or using user scribbles for 
supervision. 

In this paper, we consider 4D LFs, however, the proposed 
method can be adapted and applied to other imaging 
modalities that can be represented by a graph (e.g., point 
clouds) and the GNN model may be adapted as well for other 
LF applications, such as LF inpainting and color editing. 

A. Disparity Estimation 
As shown in Fig. 2 (Step 1), initially, disparity maps are 

estimated for all 4D LF views (with respect to its adjacent 
right view). Disparity information is inversely related to 
object depth and represents the difference in position of the 
same 3D point between two views. Therefore, it is a rich 
feature to guide the segmentation in terms of reducing edge 
ambiguity, especially when objects have similar colors or 
texture but different depths. Integrating disparity with other 
features during the segmentation helps deep learning models 
to learn spatial structures, leading to better performance, 
namely in terms of segmentation accuracy and angular 
consistency. The accuracy of the used disparity maps can 
affect the subsequent steps in terms of accuracy and angular 
consistency. Therefore, in this paper, to ensure disparity map 
angular consistency (i.e., corresponding pixels across views 
that represent the same 3D point must have the same 
disparity value), the disparity map of the central view is 
computed first using the method proposed by Shi et al. [26]. 
After that, the disparity of all other LF views is consistently 
propagated using the proposed disparity propagation method 
in [25]. For this step, any disparity estimation method that 
generates angularly consistent disparity maps for all views 
can be used. 

B. 4D LF Over-segmentation 
As shown in Fig. 2 (Step 2), given the input 4D LF and the 

estimated disparity maps for all LF views, 4D LF over-
segmentation is applied as a pre-processing step using the 
proposed method in Hamad et al. [10] to generate 
“hyperpixels”. This step is useful for the proposed LFSGNN 
method since it handles the spatial shifts across LF views, 
due to the viewing angle, by grouping corresponding and 
similar pixels into hyperpixels in both dense and sparse LFs. 
As mentioned above, 4D LF over-segmentation into 
hyperpixels enables generating a more compact graph 
representation and reduces the number of nodes significantly 
(e.g., compared to using each pixel/light ray as a graph node). 
Moreover, using regular square segments of an image (a.k.a 
batches) to represent graph nodes as proposed in [4] may 
result in non-smooth borders; instead, it is more robust to use 
homogenous regions that adhere well to object boundaries 
and ensure angular consistency across all LF views. Since 
applying traditional 2D over-segmentation to each LF view 
independently will not ensure angular consistency, 4D 
hyperpixel over-segmentation is adopted in this paper [10]. 

The 4D hyperpixel over-segmentation method is used 
since it outperforms other existing 4D LF over-segmentation 
methods in terms of spatial accuracy and angular consistency 
[10]. Moreover, it enables a flexible and adaptive over-
segmentation over the entire 4D space for both dense and 
sparse LFs. It is shown in  [10] that using accurate disparity 
maps improves the 4D hyperpixel over-segmentation and 
enables better adherence to the object boundaries, 
subsequently, improving the final mid-level segmentation, as 
explained in Section V. The default hyperpixel size in [10] 
(i.e., 20) is used when applying 4D LF over-segmentation. 

Each hyperpixel is represented by different features 
including color, texture, and disparity of the original 4D LF. 
Both RGB and CIELAB color spaces are used to represent 
the color feature since it has been shown that there is an 
advantage in combining those two color spaces [27]. With 
respect to the CIELAB color space, in this paper, only the 
chromatic components are used (i.e., ) and * channels) to 
reduce the impact of variations in illumination. Moreover, a 
texture feature is computed using the Local Binary Pattern 

4D LF

…

…

4D Segmentation 
Labels

Back Propagation 

…
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Cross-entropy Loss

Step 4: GNN 
Optimization

argmax

…

GraphSAGE
×"

Tanh
Batch Norm.

1D conv.
SoftMax



 5 

(LBP) texture descriptor [28] over the grayscale version of 
the original RGB 4D LF1. The LBP computes the local 
variation of pixels with high discriminative power and 
robustness to illumination changes, being a widely adopted 
effective approach in many computer vision applications. 
The LBP adopted in this paper uses up to 256 unique patterns 
and the texture descriptor of each hyperpixel is the pixel 
histogram over these 256 bins. Moreover, for the RGB, 
CIELAB and disparity features, the arithmetic mean values 
computed for each hyperpixel are used as hyperpixel 
features. Thus, this results in a 262-dimension feature vector, 
ℎ = -./, 0̅, 2/, )/, */, 34, (526!"#$7×&'(	], for each hyperpixel. 
Given the differences in feature ranges, all features are 
normalized to [0, 1]. Normalizing these features will be 
useful later for the GNN optimization step, ensuring stable 
learning and proper optimization. 

C.  Hypergraph Generation 
As shown in Fig. 2 (Step 3), the hyperpixels that were 

computed in the previous step are used to generate a 
hypergraph. Each hyperpixel is represented as a hypernode 
of a hypergraph denoted by 0 = (', =), where ' represents 
the set of hypernodes and = represents the set of undirected 
and unweighted hyperedges that represent the adjacent 
relationship between the nearest neighboring hyperpixels. 
Every hypernode is, therefore, represented by a 262-
dimension feature vector as explained in the previous step. 
In this paper, all hyperpixels that share a common boundary 
are considered neighbors, as illustrated in Fig. 3. 

The hypergraph, hypernode and hyperedge concepts are 
used in this paper since a hyperpixel typically has a 2D slice 
in some or all LF views. Hence, each slice can be considered 
as a classical graph node. However, since all hyperpixel 
slices represent the same hyperpixel, using the hypernode 
concept enables a more compact 4D LF representation. The 
hypergraph generation is flexible to any input resolution and 
the number of hypernodes may differ from one LF to another 
according to the input resolution and hyperpixel size. 
Therefore, there is no explicit adjustment needed to handle 
different 4D LF datasets. The hypergraph generated in this 
step is used as input to the GNN model, as detailed in the 
next step. 
 

   
(a) (b) (c) 

Fig. 3. Example of a single hyperpixel neighbors (only a 2D slice is shown): 
a) Part of the original LF; b) Corresponding hyperpixels boundaries; c) Set 
of neighbors that share common boundaries with a given hyperpixel. This is 
illustrated for a single hyperpixel but applies to all hyperpixels. 

D. GNN Optimization 
The main goal of the proposed method is to classify all 

 
1 https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html 

pixels in a 4D LF into an arbitrary number of 
classes	>	(?)"* ≤ > ≤ ?)+,), where ?)"* is the minimum 
number of classes/labels and ?)+, is the initial maximum 
number of classes/labels, as detailed in Section V-B. To do 
so, the proposed method uses a GNN to achieve an 
unsupervised 4D LF segmentation by merging the initial 
hyperpixels and labeling the 4D LF with > unique labels 
based on the LF content. 
1) Graph Neural Network – A GNN is a neural network 

designed to process graph-structured data. The key idea 
behind GNNs is to enable each node to aggregate 
information from its neighbors through edges. 
Therefore, GNNs can capture complex dependencies 
within the graph data at different levels of abstraction. 
Each layer of a GNN typically comprises two primary 
operations: message passing and aggregation. In the 
message passing operation, node information is gathered 
and exchanged between neighboring nodes. In the 
aggregation operation, all the information gathered from 
the previous operation is fused for each node into one 
message to update its current state. GNNs have shown 
appealing performance in various applications, 
including node classification (e.g., in social networks 
and multi-label image segmentation). In this paper, the 
inductive and scalable Graph Sampling and Aggregation 
(GraphSAGE) framework is adopted which is widely 
used for node classification [29]. The key idea of 
GraphSAGE is to generate a node embedding (i.e., a 
low-dimensional vector representation of nodes in a 
graph) by learning an aggregation function from the 
representation of its neighbor nodes. The reason for 
using GraphSAGE lies in its ability to effectively 
capture local structural information of graph nodes and 
its scalability to process large-scale graph data and 
handle high-dimensional feature spaces [29]. Moreover, 
it enables sampling only a subset of neighboring nodes 
(which can be randomly selected or by using other 
advanced methods) to conduct propagation instead of 
using all the neighborhood information. This can help in 
reducing the computational complexity and makes the 
model less likely to overfit to specific structures in the 
training data. In GraphSAGE, the message passing 
operation can be considered a generalization of the 
traditional CNN on regular grids, where the convolution 
operation is replaced by the aggregator function. The 
mean aggregator (a.k.a. convolutional aggregator) is 
used in this paper, which processes each node in the 
graph as formulated in (1): 

 ℎ-. = A/ℎ-.0/ +A&∑ !!"#$
|2(-)|5∈2(-)  , (1) 

where ℎ-. is the current state of node ', ℎ-.0/ and ℎ5.0/ 
are the previous states of node ' and &, respectively, 
D(') is the set of neighbors of node ' (|D(')| 
represents the number of its neighbors), and A/	and A& 
are matrices of the network parameters that need to be 
optimized. The main objective during training is to 
optimize A/ and A& to make the node representations as 
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informative and predictive as possible, based on their 
local graph structure. Optimizing A/ and A& leads to 
minimizing the final loss through backpropagation. 

 

2) Proposed GNN Model Architecture – The high-level 
architecture of the proposed model is shown in Fig. 2 
(Step 4) and contains F consecutive components, each 
of which contains a GraphSAGE operator, a hyperbolic 
tangent activation (tanh) function, and a batch 
normalization function. The batch size corresponds to 
one full LF hypergraph. The input of the proposed model 
is one matrix with the features of all hypernodes and the 
adjacency list (i.e., a list of neighbors for each 
hyperpixel). The size of the hidden channels of all 
GraphSAGE operators, as well as the output channels, is 
set to K. Therefore, K-dimensional feature maps are 
computed from the hypergraph 0. The value of K is set 
in this paper to the same value as ?)+,. Afterwards, the 
SoftMax operator is applied to the model output to 
obtain the probability distribution over predicted output 
classes. Since GT segmentation labels are not used in the 
proposed method, pseudo-segmentation labels are 
obtained using the argmax operator to find the 
dimension with maximum probability. The maximum 
probability value for each hypernode is selected and, 
when applying argmax for all hypernodes, the pseudo-
segmentation labels are obtained. These pseudo- 
segmentation labels are used as target labels in the loss 
function as shown in Fig. 2. The loss is then computed 
between the model output and the pseudo-segmentation 
labels that are obtained in each epoch. For the loss 
function, 5, the cross-entropy loss is used since it is 
effective and widely used in multi-label classification. 

 5(P, Q) = −S log
7%&'

89/

exp	(P8)
∑ exp	(P:)7%&'	
:9/

,	  (2) 

where P8 represents the probability of the pseudo- 
segmentation label, >, and P: denotes the probability of 
the X$! class and Q, X ∈ {1,2, . . . , ?)+,}. The unsupervised 
4D LF segmentation is achieved by applying both 
forward and backward passes with respect to a loss 
function to optimize model parameters. In the forward 
pass, the segmentation labels are predicted using fixed 
network parameters. However, in the backward pass, the 
network parameters are trained with fixed-label 
predictions as in [30]. The error signal is finally 
backpropagated to update the learnable parameters, 
which are initialized by default with Kaiming He 
initialization [31]. The model is iteratively trained until 
the maximum number of epochs or the minimum 
number of labels, ?)"*, is reached. Finally, the predicted 
labels for the hypernodes are then mapped back to 
represent the 4D segmentation map. This is achieved by 
assigning the predicted label of the corresponding 
hypernode to all pixels in 4D space that belong to the 
corresponding hyperpixel. 

 

IV. SEGMENTATION ANGULAR CONSISTENCY METRICS 
Different from conventional 2D image segmentation 

where only the segmentation accuracy is important, in 4D LF 
segmentation angular consistency must also be considered. 

To evaluate the segmentation angular consistency, we 
used the Labels per Pixel (LP) metric that was proposed to 
evaluate angular consistency for LF over-segmentation [7]. 
Initially, 56 = 1 for all pixels in the central view (i.e., one 
unique label in the central view). To compute the LP metric, 
all LF views are warped into the central view using GT 
disparity maps. Afterwards, for each pixel position, the 
number of labels that have different values than the label in 
the central view is counted and then added to the initial LP 
value. Then, the 56//// value for all pixels in the central view is 
computed (higher value indicates worse angular 
consistency). However, the LP metric is adequate for dense 
LFs only, since when warping the views, all pixels in off-
central views that are not seen in the central view due to the 
viewing angle are discarded. Hence, it is not adequate for 
sparse LFs with a large disparity range. 

Therefore, inspired by the LP metric, we propose a set of 
complementary metrics to evaluate the 4D LF segmentation 
angular consistency for both dense and sparse LFs: 
i) Segmentation Angular Consistency (SAC); ii) Percentage 
of Inconsistent Pixels (IP); and iii) Average Local LP for 
Inconsistent Pixels (556<=). Each metric is explained below. 
All the proposed metrics rely on computing LP in a local 
window. To achieve that, LF views are warped into a locally 
central view within a local window of views (i.e., 3 × 3 
views) and then the LP is computed locally, termed Local LP 
(LLP) in this paper. To consider all local windows in a 4D 
LF, this process is repeated by sliding the window one 
angular position each time and computing the LLP for each 
window. To ensure accurate warping and adequately 
consider occlusions, we project a pixel from each view into 
the window’s central view only if both have the same GT 
segmentation label. Moreover, as proposed in [7], when pixel 
overlapping occurs during the warping (i.e., projecting pixels 
of different objects from the off-central view into the same 
pixel position in the target view due to an occlusion), the 
foreground pixel is considered (i.e., the one with highest 
disparity). After warping all views of the window into the 
window’s central view, the LLP metric is computed for each 
local window and the average LLP, 556/////, is calculated for all 
windows in the LF. 

After computing the 556/////, the SAC metric is computed as 
formulated in (3). In a local window,	`, represents the total 
number of views, which also corresponds to the maximum 
possible LLP value: 
 ab? =	` − 556

/////
` − 1 . (3) 

This metric measures the segmentation angular consistency 
of light rays, where a higher value indicates better angular 
consistency. For example, if all views in a local window of 
` = 3 × 3 have the same segmentation labels for 
corresponding light rays, i.e., 556///// = 1, then the SAC will 
have its highest value, i.e., ab? = 1, regardless of the ` 
value; on the other hand, if each LF view has a different label 
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for the same light ray (worst case scenario), then 556///// = `	 
and ab? = 0, which implies no angular consistency. 

As a complement to the SAC metric, IP and 556<= are 
computed in this paper to highlight the percentage of 
inconsistent pixels across LF views (i.e., pixels where 556///// >
1) and the average LLP in those inconsistent pixels, 
respectively. As can be seen in Fig. 4, larger window sizes 
show more inconsistent pixels, especially in sparse LFs. The 
influence of using different window sizes on the proposed 
metrics is presented in Section V-E. 

 
Fig. 4. Visualization of the LLP for two LFs central views, where white 
pixels indicate pixel positions with &&'(((((>1, using different window sizes. 

V. EXPERIMENTAL RESULTS 
In this section, the proposed 4D LF Segmentation method 

using a GNN, from here on simply called LFSGNN, is 
evaluated both quantitively and qualitatively. Different 4D 
LF datasets are used in our experiments, including dense and 
sparse, synthetic, and real world LF datasets. Moreover, to 
evaluate the segmentation results in terms of spatial accuracy 
and angular consistency, different metrics that rely on the 
availability of the GT segmentation labels and disparity maps 
are considered. Since the real LF dataset does not have GT 
segmentation labels or disparity maps, only visual results are 
presented in this paper for this dataset. Regarding the 
segmentation angular consistency, in this paper, only the 
central view and central EPIs are shown to illustrate the 
angular consistency. However, to be able to observe the 
angular consistency across all LF views, we highly 
encourage the reader to observe the dynamic results, where 
LF views are scanned in serpentine order and presented as 
videos, in the supplemental materials available online for all 
test LFs2. 

A.  4D LF Datasets 
The proposed unsupervised 4D LF segmentation method 

does not target a specific domain (e.g., urban scenes or 
medical images). Therefore, any 4D LF dataset can be used 
to evaluate the proposed method. However, to quantitatively 
evaluate the segmentation accuracy and consistency, the GT 
disparity maps and GT segmentation labels for all LF views 
are needed. Therefore, the synthetic HCI [32] and IT-4DLF 
[33] datasets are used since they provide the GT disparity 
maps and segmentation labels for all views of the dense and 
sparse LFs, respectively. Moreover, to validate our results on 
real world LFs, the MMSPG dataset captured with a Lytro 
 

2 https://github.com/MaryamHamad/LFSGNN 

Illum camera [33] is used, considering the central 9 × 9 
views to eliminate the vignetting effects (i.e., saturation or 
darkening at the edges of a lenslet image compared to the 
center). It is worth noting that the 4D LF datasets designed 
for supervised semantic segmentation, summarized in [17] 
are not adequate for evaluating the proposed method. The 
reason is that multiple objects with different visual 
appearances may be classified to the same semantic label 
(e.g., blue and red cars have the same semantic label), which 
is not the case envisaged in the proposed method. A summary 
of the used LF datasets can be found in Table I. 

TABLE I 
LIGHT FIELD DATASETS USED IN THE EXPERIMENTAL RESULTS 

4D LF dataset 
View resolution 

in pixels 
()! × )") 

Number 
of views 

()# × )$) 

Disparity 
range 

HCI dataset [32]: 
Papillon, Buddha, , 
StillLife and Horses 

768×768 
except for 
Horses: 

1024×576 

9×9 [-4, 4] 

MMSPG dataset 
[33]: Poppies and 

Swans 
625×434 15×15 [-1, 1] 

IT-4DLF dataset 
[10]:  

Kitchen, Room and 
Antique 

512×512 9×9 [-18, 18] 

B.  Implementation Details 
Firstly, the proposed method does not require splitting 

datasets for training and testing since it is unsupervised, and 
the learning parameters are optimized for each LF 
independently. Moreover, since hypergraphs are used to 
represent LFs, hypergraph generation is flexible to different 
input resolutions. In this paper, all experiments were run on 
a desktop computer with a 64-bit Ubuntu operating system, 
AMD® Epyc 7282 16-core CPU, NVIDIA GeForce RTX 
3090 and 256 GB RAM. Our network is implemented using 
Pytorch (2.1.1) and the network is optimized using a 
Stochastic Gradient Descent (SGD) optimizer with an initial 
learning rate of 0.05. Momentum and weight decay are set to 
0.9 and 0.01, respectively. The learning rate scheduler 
decays the learning rate by multiplying it by 0.95 every 50 
epochs. The maximum number of epochs is set to 1000. The 
number of F components of the network is set to 2. The 
maximum number of classes, ?)+,, is set to 128 as a large 
number to start the segmentation process, and the minimum 
number of labels, ?)"*, is set to 5 as a reasonable number of 
objects in the test datasets. 

C.  Benchmark Methods 
As there are currently no available methods that target 

fully unsupervised 4D LF mid-level segmentation, we 
compare our results with state-of-the-art unsupervised 2D 
image segmentation methods applied on 4D LF content 
without changing their model architectures. The first method 
is proposed by Kim et al. [30], which is fully unsupervised 
and adopts a conventional 2D CNN to extract deep features. 

 Light field 3 × 3 5 × 5 7 × 7 9 × 9 
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Afterwards, segmentation labels are assigned according to 
the response vector using an argmax function. Then the 
segmentation labels are used as pseudo-segmentation labels 
to compute the final loss. Finally, image segmentation is 
achieved by iteratively minimizing the loss function until a 
maximum number of epochs or the minimum number of 
labels is reached. The second method is proposed by Aflalo 
et al. [4], in which deep features are extracted from an 
available pre-trained vision transformer. The used 
transformer divides an image into square patches (patch size 
is constant as detailed in [4]) where each patch represents 
extracted features. Those patches are then used to represent 
an image as a graph, where each patch represents a graph 
node. The created graph is then input to a lightweight GNN 
model with one graph convolutional layer to apply 
unsupervised segmentation for 2D images. Although this 
method exploits an existing pre-trained model to extract the 
features, the idea of representing an image as a graph based 
on local regions in the image and applying the GNN 
technique makes it directly related to the proposed method. 

Both above-mentioned methods are designed for 2D 
images. To use them on 4D LF data, they are applied to each 
LF view independently. However, to promote view 
consistent segmentation, for each method, the same initial 
values for all training parameters are used for each LF view 
and the random values generated using a fixed seed to 
ensure reproducibility for each LF view. This ensures similar 
behavior for feature extraction according to the used 
initialization of the training parameters. Moreover, the 
benchmark methods were executed using their available 
Pytorch implementation and, for a fair comparison, the 
minimum number of segmentation labels is set to 5 for all 
methods.  

This paper did not make comparisons with the high-level 
supervised 4D LF segmentation methods since they rely on 
segmenting objects according to their semantic labels, which 
is not the case considered in the proposed method. 

D.  Evaluation Metrics 
The segmented 4D LFs are evaluated, in this paper, in 

terms of spatial accuracy and angular consistency 
considering all views. As explained in Section V, the LP and 
SAC metrics are used to evaluate the non-local and local 
angular consistency, respectively, for both dense and sparse 
LFs. To evaluate the segmentation accuracy, the mean 
Intersection over Union (mIoU) metric is used, which is a 
common metric widely used to evaluate mid-level 
segmentation accuracy. The mIoU metric measures the 
amount of overlap between the GT and predicted 
segmentation labels. Since the proposed method is 
unsupervised, the predicted segmentation labels are not 
necessarily the same as the GT segmentation labels in terms 
of their values or number (this is valid for all benchmark 
methods). Therefore, to calculate the mIoU metric, for each 
label in the GT label images, the largest overlapping between 
that label and all the predicted labels in the corresponding 
location is considered, as described in [30]. 

E.  Influence of Disparity Maps Quality on the Proposed 
Method 

To highlight the importance of the disparity map quality 
on the segmentation accuracy and angular consistency, the 
proposed method is tested by using estimated and GT 
disparity maps (for both the proposed method and the 
hyperpixels over-segmentation on which it relies).  

To evaluate the angular consistency, the proposed SAC, 
IP and 556<= metrics are computed considering different 
values of ` (i.e., 3 × 3, 5 × 5, 7 × 7 and 9 × 9) to explore 
the window size influence. As presented in Table II, the 
proposed metrics are influenced by the window size for both 
dense and sparse LFs due to the maximum possible number 
of labels in a window of views and the discarding of occluded 
or non-existent (due to the viewing angle) pixels in the 
central view when computing the 556. Additionally, 
knowing that ideally, the GT segmentation labels have 
556///// = 1.0 and ab? = 1.0 for a given ` helps in identifying 
how close the angular consistency of the predicted labels is 
to the GT labels. In all upcoming experiments (if ` value is 
not specified), the metrics are computed for ` = 3 × 3; to 
reduce discarding pixels that are occluded or non-existent in 
the window central view, especially for sparse LFs. 
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LFSGNN using 
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Fig. 5. Examples of the influence of disparity map quality on the proposed 
method. The estimated disparity maps have smoother borders between 
objects and hence can merge different objects easier and faster especially 
when the +%&' is less than the number of objects in the scene. 
 

As has been demonstrated in [10], more accurate disparity 
maps can positively affect the hyperpixels angular 
consistency. Since the proposed method relies heavily on the 
hyperpixels, the quality of the used disparity maps also 
influences the segmentation performance in terms of 
accuracy and angular consistency as shown in Table II, Table 
III, Table IV and Fig. 5. As can be noticed from Table II, 
Table III and Table VI the proposed method in most cases 
achieves higher angular consistency when using more 
accurate disparity maps (e.g., GT disparity maps in this 
experiment), which indicates that most of the pixels in the 
central view of a given window have the same label across 
all views of that window. For sparse LFs, such as the Room 
LF (which contains large occlusions), the accuracy of the 
used disparity map significantly affects the segmentation 
angular consistency, as shown in Table II and Table III (in 
this paper, bold style indicates better performance for all 
tables). Notice that in some cases (as in StillLife in Table II), 
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the angular consistency metrics show better performance 
when using estimated disparity maps. The reason for this is 
the smooth disparity values in estimated disparity maps can 
merge objects easier and faster (i.e., ends up segmentation 
with a fewer number of labels) compared to using sharp GT 
disparity maps, thus reducing the unique labels and warping 
error when computing the segmentation angular consistency 
metrics. Moreover, for the same reason, the 556<= is higher 
when using GT disparity maps in most LFs. 

F.  Ablation Study 
Before comparing our results to the benchmark methods, 

an ablation study to investigate different configurations of 
the proposed method is presented. Initially, to study the 
influence of using the texture feature, the proposed method 
is tested with and without using the LBP texture descriptor 
in hypergraph generation and during the GNN optimization. 
As shown in Fig. 6, by incorporating texture features, the 
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Fig. 6. Examples of the influence of using the texture feature during the 
hypergraph generation and GNN optimization steps. 

TABLE II 
LIGHT FIELD SEGMENTATION ANGULAR CONSISTENCY METRICS WITH DIFFERENT WINDOW SIZES USING ESTIMATED DISPARITY MAPS 

								- 
LF 

3×3 5×5 7×7 9×9 

SAC IP [%] &&'() SAC IP [%] &&'() SAC IP [%] &&'() SAC IP [%] &&'() 
Papillon 1.00 0.04 2.35 1.00 0.14 2.93 1.00 0.27 3.52 1.00 0.42 4.18 
Buddha 1.00 0.05 2.52 1.00 0.15 3.15 1.00 0.29 3.91 1.00 0.48 4.21 
StillLife 1.00 0.13 2.55 1.00 0.35 3.32 1.00 0.64 3.98 1.00 1.06 4.30 
Horses 1.00 0.11 2.77 1.00 0.48 3.49 1.00 0.89 4.47 1.00 1.46 5.50 
Kitchen 1.00 0.11 2.99 1.00 0.29 3.86 1.00 0.49 4.92 1.00 0.74 6.20 
Room 0.98 8.91 2.98 0.97 19.15 5.34 0.95 28.78 8.59 0.94 38.65 12.52 

Antique 1.00 0.17 2.39 1.00 0.54 2.79 1.00 1.09 3.17 1.00 1.70 3.64 
Avg. 1.00 1.36 2.65 1.00 3.01 3.55 0.99 4.63 4.65 0.99 6.36 5.79 

 
TABLE III 

LIGHT FIELD SEGMENTATION ANGULAR CONSISTENCY METRICS WITH DIFFERENT WINDOW SIZES USING GT DISPARITY MAPS 

								- 
LF 

3×3 5×5 7×7 9×9 

SAC IP [%] &&'() SAC IP [%] &&'() SAC IP [%] &&'() SAC IP [%] &&'() 
Papillon 1.00 0.02 2.60 1.00 0.04 3.81 1.00 0.05 5.01 1.00 0.09 6.14 
Buddha 1.00 0.03 2.99 1.00 0.05 4.46 1.00 0.06 5.92 1.00 0.10 6.36 
StillLife 1.00 0.18 2.72 1.00 0.30 4.35 1.00 0.40 6.16 1.00 0.59 7.11 
Horses 1.00 0.04 3.07 1.00 0.08 4.96 1.00 0.13 6.96 1.00 0.17 8.70 
Kitchen 1.00 0.07 2.94 1.00 0.19 3.98 1.00 0.31 5.65 1.00 0.45 7.94 
Room 1.00 0.07 2.71 1.00 0.17 3.39 1.00 0.33 4.57 1.00 0.70 6.15 

Antique 1.00 0.01 2.56 1.00 0.03 3.18 1.00 0.05 4.07 1.00 0.08 4.44 
Avg. 1.00 0.06 2.80 1.00 0.12 4.02 1.00 0.19 5.48 1.00 0.31 6.69 

 
TABLE IV 

QUANTITATIVE RESULTS USING ESTIMATED AND GT DISPARITY MAPS 
 

 
LFSGNN using  

estimated disparity 
LFSGNN using  

GT disparity 

LF mIoU LP mIoU LP 

Papillon 0.63 1.01 0.62 1.00 
Buddha 0.75 1.02 0.86 1.01 
StillLife 0.51 1.04 0.43 1.04 

Horses 0.28 1.07 0.35 1.01 
Kitchen 0.20 1.04 0.32 1.03 
Room 0.26 5.45 0.16 1.04 

Antique 0.17 1.04 0.18 1.00 
Avg. 0.40 1.67 0.42 1.02 

 

learning process in most LFs converged faster to ?)"* value, 
in contrast to when the texture feature was not used 
(converges slower, did not approach the ?)"* value and 
stopped based on the number of epochs). This can be noticed 
in Fig. 6 where the segmented LF has more labels than ?)"*	 
when the texture feature was not used. Hence, it was stopped 
due to the epoch criteria being reached first. The rationale 
behind that is that the texture feature helps the model to learn 
a meaningful representation of the LF, and the evaluation 
metrics reflect that numerically, as in Table V. The reason 
for Kitchen and Room achieving better accuracy when the 
texture feature is omitted is that the final segmented LF has 
more unique labels compared to when using the texture, 
which means considering most objects in the LF.  
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TABLE V 
QUANTITATIVE RESULTS WITH AND WITHOUT USING THE TEXTURE FEATURE DURING THE HYPERGRAPH GENERATION AND GNN OPTIMIZATION STEPS 

 

 LFSGNN with texture feature LFSGNN without texture feature 

LF mIoU LP SAC IP [%] &&'() mIoU LP SAC IP [%] &&'() 

Papillon 0.63 1.01 1.00 0.04 2.35 0.62 1.04 1.00 0.05 2.39 

Buddha 0.75 1.02 1.00 0.05 2.52 0.46 1.03 1.00 0.05 2.58 

StillLife 0.51 1.04 1.00 0.13 2.55 0.48 1.05 1.00 0.23 2.60 

Horses 0.28 1.07 1.00 0.11 2.77 0.31 1.07 1.00 0.12 2.70 
Kitchen 0.20 1.04 1.00 0.11 2.99 0.24 1.02 1.00 0.07 2.89 
Room 0.26 5.45 0.98 8.91 2.98 0.33 5.27 0.98 8.48 2.98 

Antique 0.17 1.04 1.00 0.17 2.39 0.22 1.06 1.00 0.20 2.42 
Avg. 0.40 1.67 1.00 1.36 2.65 0.38 1.65 1.00 1.31 2.65 

TABLE VI 
QUANTITATIVE RESULTS USING A DIFFERENT NUMBER OF NETWORK MODEL COMPONENTS (M) 

 LFSGNN when . = 2 LFSGNN when . = 4 LFSGNN when . = 6 

LF mIoU LP SAC IP [%] &&'() mIoU LP SAC IP [%] &&'() mIoU LP SAC IP [%] &&'() 

Papillon 0.63 1.01 1.00 0.04 2.35 0.57 1.01 1.00 0.04 2.35 0.53 1.01 1.00 0.03 2.33 
Buddha 0.75 1.02 1.00 0.05 2.52 0.72 1.02 1.00 0.04 2.56 0.54 1.01 1.00 0.04 2.56 

StillLife 0.51 1.04 1.00 0.13 2.55 0.42 1.05 1.00 0.20 2.62 0.53 1.02 1.00 0.06 2.28 
Horses 0.28 1.07 1.00 0.11 2.77 0.31 1.05 1.00 0.10 2.68 0.27 1.02 1.00 0.03 2.73 
Kitchen 0.20 1.04 1.00 0.11 2.99 0.27 1.06 1.00 0.14 2.81 0.26 1.02 1.00 0.07 2.46 
Room 0.26 5.45 0.98 8.91 2.98 0.14 3.29 0.99 3.79 2.89 0.13 2.61 0.99 3.10 2.92 

Antique 0.17 1.04 1.00 0.17 2.39 0.14 1.04 1.00 0.14 2.42 0.16 1.02 1.00 0.08 2.39 
Avg. 0.40 1.67 1.00 1.36 2.65 0.37 1.36 1.00 0.64 2.62 0.35 1.25 1.00 0.49 2.52 

Hence, it can benefit the evaluation metrics (especially when 
the number of objects in the LF is larger than the minimum 
number of labels parameter) without necessarily improving 
the visual results. As can be seen in Table V, there are no 
significant differences in segmentation angular consistency 
metrics in most LFs. The reason for this is that the 
segmentation angular consistency relies on the disparity 
estimation and 4D LF over-segmentation steps, and those 
steps do not rely on the texture feature. Hence, when using 
the same disparity maps, LFs are represented based on 
hyperpixels where the consistency is ensured similarly. The 
reason for the slight difference in the angular consistency 
metrics is typically due to the reached number of unique 
labels in the final segmented LFs (this can be noticed in Fig. 
6 where segmented LFs without using the texture feature 
have more unique labels). Moreover, the rounding error in 
pixel projection when computing those metrics can also 
affect their results. To study the influence of the used number 
of components, F, in the proposed model (where the texture 
feature is included), different values of F are used and the 
results are reported in Table VI which shows better 
performance in terms of angular consistency metrics when 
using larger F values without necessarily improving the 
segmentation accuracy (mIoU). This is typically because of 
a limitation in GNNs when increasing the GraphSAGE 
layers, the model over-smoothens the predicted segments, 
which leads to the merging of unrelated objects (resulting in 
a smaller number of labels). Accordingly, when the F value 
increases different objects are merged as shown in Fig. 7. 
Thus, the possibility of error occurrence in pixel projection 

when computing the angular consistency metrics is 
decreased. To avoid the over-smoothing effect, the value of 
F = 2 is adopted to lead to a reasonable balance between 
segmentation accuracy and angular consistency. 

G.  Comparison with the Benchmark Methods 
Our results are compared with the benchmark methods on 

different LF datasets as shown in Fig. 8, Fig. 9 and Table VII. 
The proposed method and the benchmark methods are based 
on unsupervised learning; hence the values of the predicted 
labels differ from the GT segmentation labels. Therefore, to 
facilitate the visual comparisons, the labels of GT 
segmentation maps in the synthetic LFs are mapped to the 
labels of each method as shown in Fig. 9. The real world LF 
dataset does not have GT segmentation labels. Hence, the 
colors of the predicted labels across the used methods are not 
related to each other, as can be seen in Fig. 8. 

In Table VII, the proposed segmentation method 
outperforms the benchmarks in terms of accuracy and 
consistency in most LFs. To visually notice the segmentation 
angular consistency, the central horizontal and vertical EPIs 
are presented for all methods. The segmentation angular 
consistency of all LF views can be more clearly noticed in 
the dynamic results in the supplemental material. Kim et al. 
[30] and Aflalo et al. [4] methods suffer from discontinuity 
in the predicted segments, where sparse pixels with wrong 
labels can be noticed in Fig. 9. 

Although the same initial values are used for the training 
parameters in each of the benchmark methods to consider the 
same segmentation behavior for all LF views, the evaluation 
metrics still indicate inconsistent results with high values of 
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LP. This highlights the importance of explicitly considering 
the angular correlation in 4D LFs and the effectiveness of the 
used hypergraph representation (which allows applying 
segmentation to the entire 4D LF simultaneously). As can be 
noticed in Table VII, benchmark results of mIoU in some 
LFs (e.g., in Kitchen) are the same or better than the 
proposed method but significantly worse in terms of angular 
consistency metrics. This is because the mIoU metric 
considers the largest overlapping between the GT 
segmentation label and all the predicted labels in LF views 
(as described earlier in this paper). 

However, the angular consistency metrics are significantly 
affected by the inconsistency across LF views, which are 
essentially noticeable at the boundaries of objects. Moreover, 
for some LFs, the benchmark methods terminate before 
reaching the minimum number of labels, ?)"*, since they 
have different architectures and differ in the used features. 

Thus, they can end up with more unique labels than our 

method which may positively affect the used accuracy metric 
if the content of LF has more objects than the ?)"* value. 
Finally, using hyperpixels as the starting point allows 
exploiting the entire LF data during the segmentation and 
ensures segmentation angular consistency. Moreover, the 
proposed method is trained in an unsupervised manner which 
makes it suitable for different applications. One possible 
direction for improving the performance of the proposed 
method is to fine-tune the used features for domain-specific 
tasks (e.g., LF medical imaging). A major limitation of the 
proposed method is that it does not inherently determine the 
number of objects in an LF. Hence, a technique that 
adequately estimates the minimum number of labels based 
on the LF content would be extremely useful to further 
improve the segmentation results. Moreover, optimizing the 
implementation of the included steps can reduce the required 
computational time.
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Fig. 7. Examples of using the proposed method with a different number of components, .. In some LFs, such as Room, a higher value of . can result in over-
smoothing and different objects can be merged which negatively affects the segmentation accuracy.  
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Fig. 8. Examples of unsupervised 4D LF segmentations on real world LFs for different methods. For each LF, the central view and the central horizontal/vertical 
EPIs are presented to show the segmentation angular consistency across LF views. The minimum number of labels is set to 5. Our results ensure angular consistency 
as can be seen in the presented EPIs (composed of mostly regular slanted lines) and adhere to object boundaries according to the reached number of labels (e.g., 
the swan head). 
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 Original LF GT segmentation labels Kim et al. [30] Aflalo et al.  [4] LFSGNN 
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Fig. 9. Examples of unsupervised 4D LF segmentation on synthetic LFs for different methods. For each LF, the central view and the central horizontal and vertical 
EPIs are presented to show the segmentation angular consistency across LF views. The minimum number of labels is set to 5. Depending on the reached number 
of labels in each LF view and the actual number of objects in each LF, benchmark methods in some 4D LFs achieve better visual accuracy in terms of adhering to 
the object boundaries. This happens especially in sparse LFs (e.g., Kitchen and Room) where the estimated disparity maps used for LFSGNN are not accurate for 
all pixels. However, for accurate disparity maps, such as in the dense LFs (e.g., Papillon, Buddha, StillLife and Horses), LFSGNN achieves better separation 
between objects that share similar color or texture but vary in their depth (e.g., leaves in Papillon and the left pillar in Buddha). The angular consistency is better 
in both sparse and dense LFs compared to the benchmark methods, as can be seen in the central EPIs (composed of mostly regular slanted lines). 
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TABLE VII 
QUANTITATIVE RESULTS USING OUR RESULTS AND BENCHMARK METHODS 

 Kim et al. [30] Aflalo et al. [4] LFSGNN 

LF mIoU LP SAC IP [%] &&'() mIoU LP SAC IP [%] &&'() mIoU LP SAC IP [%] &&'() 

Papillon 0.52 12.98 0.93 22.91 3.41 0.53 10.72 0.89 26.87 4.32 0.63 1.01 1.00 0.04 2.35 
Buddha 0.48 23.80 0.68 70.08 4.69 0.44 6.80 0.93 18.72 3.81 0.75 1.02 1.00 0.05 2.52 
StillLife 0.41 3.16 0.97 8.56 3.50 0.54 7.12 0.94 18.32 3.57 0.51 1.04 1.00 0.13 2.55 
Horses 0.24 11.73 0.91 19.89 4.36 0.39 10.10 0.91 24.66 3.77 0.28 1.07 1.00 0.11 2.77 
Kitchen 0.22 18.70 0.77 47.91 4.85 0.20 31.63 0.78 61.60 3.86 0.20 1.04 1.00 0.11 2.99 
Room 0.23 31.85 0.65 81.46 4.43 0.12 33.19 0.70 80.62 3.90 0.26 5.45 0.98 8.91 2.98 

Antique 0.16 25.35 0.78 52.17 4.36 0.13 17.79 0.83 42.98 4.16 0.17 1.04 1.00 0.17 2.39 

Avg. 0.32 18.22 0.81 43.28 4.23 0.34 16.76 0.86 39.11 3.91 0.40 1.67 1.00 1.36 2.65 

TABLE VIII 
AVERAGE RUNNING TIME IN SECONDS PER VIEW 

 
To compare the computational complexity between the 

proposed method and the benchmark methods, all methods 
were run on the same computer and the GPU is being used 
under similar conditions for all methods. The running times 
are reported in Table VIII. The breakdown running time of 
all the steps of the proposed LFSGNN method is divided by 
the number of views to obtain running time per view for each 
step and reported in Table VIII. The summation of all steps 
of the proposed method is also computed. In Table VIII, 
although both our proposed method and Kim et al. [30] 
method iterate for 1000 epochs, our proposed method 
reduces the running time compared to Kim et al. [30] 
significantly. The method proposed by Aflalo et al. [4] 
iterates only for 10 epochs since it relies on an available pre-
trained vision transformer to extract the deep features before 
performing image segmentation, thus it has the lowest 
running time in Table VIII. Training their lightweight model 
beyond 10 epochs was also tried (i.e., up to 1000) but the 
performance did not show significant improvements. In fact, 
this shows one advantage, in terms of computational 
complexity, of extracting the deep features from pre-trained 
foundation models and then applying fine-tuning for a few 
iterations while performing a specific task as image 
segmentation. Considering the number of epochs, our 
proposed method has shown improvement in both 
segmentation accuracy, angular consistency and a significant 
reduction in the computational complexity. 

VI. CONCLUSION 
In this paper, a novel unsupervised angularly consistent 

4D LF segmentation method is proposed for both dense and 
sparse LFs. Initially, the 4D LF is represented as a 
hypergraph based on 4D hyperpixel over-segmentation. 
Afterwards, a GNN model is designed to extract deep 
features of the hypergraph and to group the hypernodes into 
objects by applying message passing and aggregation 
iteratively until convergence is reached. Different from 
existing 4D LF segmentation methods, the proposed method 
is fully unsupervised, represents 4D LFs robustly and 
efficiently, exploits the power of deep learning of graph-
structured data and supports both dense and sparse 4D LFs. 
Experimental results show outperforming segmentation 
performance for most dense and sparse 4D LFs in terms of 
segmentation accuracy, angular consistency, and 
computational complexity. 

For future work, the proposed LFSGNN method can be 
adapted for other imaging modalities, such as point clouds 
and multi-view images. Additionally, the inclusion of pre-
trained foundation models in the 4D LF segmentation task 
can be also an interesting direction for future work. 
Moreover, the resulting 4D LF segmentation can be used for 
other applications such as in augmented reality where a 
segmented 4D object can be inserted in other 4D LFs. 
Finally, extending the proposed LFSGNN method to LF 
videos by considering the temporal dimension is also an 
interesting research direction that requires further 
investigation. 
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Abstract—Deep learning has shown promising results in 
several computer vision applications, such as style transfer 
applications. Style transfer aims at generating a new image by 
combining the content of one image with the style and color palette 
of another image. When applying style transfer to a 4D Light Field 
(LF) that represents the same scene from different angular 
perspectives, new challenges and requirements are involved. 
While the visually appealing quality of the stylized image is an 
important criterion in 2D images, cross-view consistency is 
essential in 4D LFs. Moreover, the need for large datasets to train 
new robust models arises as another challenge due to the limited 
LF datasets that are currently available. In this paper, a neural 
style transfer approach is used, along with a robust propagation 
based on over-segmentation, to stylize 4D LFs. Experimental 
results show that the proposed solution outperforms the state-of-
the-art without any need for training or fine-tuning existing ones 
while maintaining consistency across LF views. 

Keywords—light field; angular consistency; deep learning; 
neural style transfer; superpixels 

I.  INTRODUCTION 
Appealing paintings and artwork have attracted people for 

thousands of years. In the past, a skilled artist was always 
required to create a painting with a specific style, brush strokes 
and color palette, which typically took a long time. With the 
recent advances in learning-based techniques and the advent of 
style transfer, such creation is now possible to be performed by 
computers. Style transfer is an image editing application in 
which a new image is generated by combining the content of one 
image with the style of another one (e.g., a famous painting). 
Style transfer is a long-standing research area in the broader area 
of texture synthesis [1], [2]. Recently, with the rapid 
development of deep learning, neural networks are being used to 
solve the style transfer task. Gatys et al. [3] were the first to 
apply Convolutional Neural Networks (CNN) to stylize an 
image. In their work, CNNs are used to extract the feature maps 
of the content image (i.e., the image from which the content will 
be transferred) and style image (i.e., the image from which the 
style will be transferred). Afterwards, a target image (i.e., the 
stylized image that combines the content image with the style 
image) is iteratively optimized by minimizing a loss function. 
Johnson et al. [4] improved the performance of [3] by training a 
feed-forward network for each style image and generating a 
stylized image with only one forward pass in the testing stage. 
Although it is 3 times faster than [3], the solution in [4] is not 
flexible in terms of the number of used styles since it requires 
training for each style. Additionally, other neural networks have 

also been exploited to achieve style transfer, such as generative 
adversarial networks that require paired training data to learn a 
specific style, which is not always available and may limit their 
applications [1]. Moreover, Neural Style Transfer (NST) has 
been extended to consider videos [5] and different imaging 
modalities, such as stereo imaging [6] and 4D Light Fields (LF) 
[7], [8]; interested readers are encouraged to read the recent 
comprehensive reviews of the existing NST solutions in [1], [2]. 

4D LFs involve rich information since not only the light 
intensity is captured but also ray directions [9]. LFs capture the 
same scene from different perspectives, thus allowing 
interesting applications such as depth or disparity estimation 
(i.e., the displacement of a point between different views, which 
is inversely proportional to the depth), view synthesis and post-
capture refocusing [9], [10]. 4D LFs can be represented as an 
array of views !(#, %, &, '), where (#, %) are the spatial 
coordinates, and (&, ') are the angular coordinates of each view. 
When fixing one angular and one spatial coordinates, an 
Epipolar Plane Image (EPIs) (i.e., the unique 2D spatio-angular 
LF slice typically containing a regular structure with several 
oriented lines [11]) can be obtained as illustrated in Figure 1. 

While generating stylized images that are visually pleasant 
is an important criterion for 2D images, maintaining cross-view 
consistency is also essential for 4D LFs. More precisely, directly 
applying 2D image or video style transfer methods to the entire 
4D LF views, without considering the correlation between them, 
may result in inconsistent stylized LFs with highly unnatural 
artifacts. Only a few solutions are available in the literature that 
consider 4D LF cues in the style transfer application. Hart et al. 
[7] proposed an extension to the work of Johnson et al. [4] by 
adding a disparity loss term to the loss function. The disparity 
loss is computed by finding the difference between each stylized 
LF view and the stylized central view warped into that view. The 
disparity loss is then backpropagated through the network. This 
repeats for each LF view until convergence is reached. While 
their work considers cross-view consistency, it requires 
optimizing each LF view iteratively (assuming dense LFs). 

This work was funded by FCT/MCTES through national funds under 
projects UIDB/50008/2020 and PTDC/EEI-COM/7096/2020. 

 
Fig. 1. Example of light field representations. a) 4D light field represented 
as an array of views; b) Horizontal and vertical EPIs. 
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Moreover, although the feed-forward approach is fast, it needs 
to be trained for each style, hence, limiting style selection 
flexibility. Egan et al. [8] addressed these drawbacks and 
proposed a novel NST method that considers local angular 
consistency. Their work extended the Gatys et al. work [3] by 
adding the local angular consistency loss in the total loss 
function. Although their work ensures local angular consistency 
for LFs with larger disparity ranges, applying optimization using 
this technique for each view is very time-consuming. 

The contribution of this paper is a novel 4D LF NST method 
that overcomes the limitations of the existing methods by: 

• Enabling NST flexibility (in terms of the number of 
styles that can be used) with less computational 
complexity: to achieve that, the optimization-based 
NST [3] method (which does not require training a 
model for each style image) is used. To reduce the 
optimization-based NST complexity significantly, only 
a limited set of views (i.e., the four corner views) are 
initially stylized using the method in [3] (different from 
[7] and [8] that require optimizing each LF view). 

• Improving 4D LF view-consistency: by exploiting LF 
over-segmentation (that adheres to object boundaries 
and maintains LF view-consistency), the edits from all 
corner views are propagated into each LF view using 
per-pixel disparity in an occlusion-aware manner. The 
proposed method outperforms the existing solutions 
without training or fine-tuning the existing NST models. 

The remainder of this paper is organized as follows: Section 
II describes the proposed method in detail, and Section III 
evaluates its performance through a series of experimental 
results. Finally, Section IV concludes the paper with some final 
remarks and proposes directions for future work. 

II. PROPOSED METHOD 
The proposed method contains four main steps as presented 

in Figure 2. Given a style image and a 4D LF, the four corner 
views are initially stylized using optimization-based NST [3]. 
After that, disparity maps for all input LF views are estimated 
using [12]; to ensure spatio-angular consistency during the 
propagation. Next, the 4D LF is over-segmented into spatio-
angular coherent regions (a.k.a superpixels), as in [13] to 
facilitate the propagation and respect object boundaries and 
occlusions. Afterwards, the stylization is propagated into all LF 
views through occlusion-aware back-projection from each view 
into all corner views. Finally, remaining isolated non-stylized 

pixels that emerged after back-projections due to occlusions, are 
filled robustly. Each step is detailed in the following subsections. 

A. Corner Views Stylization 
Initially, only the extreme four corner views are stylized 

using the approach in [3]. The corner views are selected since 
they typically contain the maximum scene information including 
dis-occlusions. The approach in [3] aims at minimizing the 
distances of the feature representation between the content/style 
image and the target one in one or more layers of the CNN. The 
target image is initially generated using a white noise image and 
iteratively optimized using the loss function, ℒ!"!#$, defined by 
(1), where ℒ%"&!'&!, is the content loss and ℒ(!)$', is the style 
loss. To ensure view-consistent stylization, the initial white 
noise is set the same for all corner views. Finally, to control the 
output, two weighting factors (i.e., the content weight, *, and the 
style weight, +) are included: 

 ℒ!"!#$ = 	*ℒ%"&!'&! + +ℒ(!)$' . (1) 

Notice that the proposed method is independent of the used 
2D NST method. However, the approach in [3] is used due to its 
flexibility to transfer any style and it enables controlling the 
target images by adjusting the weights in (1). Moreover, any 
number of views or angular positions can be used but the results 
may be influenced accordingly. 

B. Disparity Maps Estimation 
LF imaging provides rich information, which makes it 

possible to estimate a disparity map for each LF view. In this 
paper, the proposed method in [12] (that estimates disparities 
from each view to its right adjacent view) is used to estimate 
disparity maps for all LF views. Per-pixel disparity is used here 
to ensure consistent pixel projection during the propagation step. 

C. Light Field Superpixel Creation 
LF over-segmentation is capable of adhering to object 

boundaries and creating a unique label for each homogenous 
region to facilitate subsequent editing tasks. In this paper, the 
recently proposed Adaptive LF Over-segmentation (ALFO) 
method [13] is used to guide the propagation in an occlusion-
aware manner. The ALFO method exploits color, disparity and 
position features to apply adaptive K-means clustering. 
Additionally, it can robustly balance accuracy, shape regularity 
and view-consistency. In our experiments, the superpixel size is 
set to 20 as suggested in [13] as a reasonable size for robust 
adhesion to the borders. 

 
Fig. 2. Overview of the proposed method for view-consistent 4D LF neural style transfer. By combining the style of 2D image with the content of 4D LFs and 
applying an occlusion-aware propagation, a consistent 4D stylized LF is generated. 
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D. Occlusion-aware Propagation 
Given the LF disparity maps, LF superpixels and stylized 

corner views, the stylization now can be propagated into all other 
4D LF views. Initially, each LF view is back-projected into all 
corner views using its disparity map (2): 

 
#*+', =	#*(.,0) + 02"+(.,0)→+', , 

%*+', =	%*(.,0) + 00'+(.,0)→+', , 
(2) 

where #*(.,0), %*(.,0) are the spatial position coordinates of a pixel, 
1, which is located in a view of angular coordinates (&, '), #*+', 
and %*+', are the spatial position in a reference view (i.e., 234 in 
this paper represents a single corner view, hence, the same 
equation is applied for all corner views independently), and 
02"+(.,0)→+',, 00'+(.,0)→+', are the horizontal and vertical disparity 
from view (&, ') to the reference view. The used disparity 
estimation method [12] estimates disparity for adjacent views, 
therefore, for regularly sampled 4D LF views back-projection is 
applied by multiplying the disparity value by 5&+', − &7, 
5'+', − '7 when computing #*+',and %*+',, respectively [13]. 
These equations are applied in the case of parallel optical light 
field capturing assumption, as in [13]–[16]. Otherwise, intrinsic 
and extrinsic camera parameters should be considered. 

Since the projected pixel coordinates may belong to ℝ4, and 
to ensure integer indexing (since the visual information is only 
available for integer indices), the four neighboring pixels, 9* ∈
{!#, !5 , !% , !6}, of the back-projected pixel with integer positions 
(∈ =4) are considered as presented in Figure 3. However, 
consistency is checked by comparing the label and disparity of 
the pixel in 5#*(.,0), %*(.,0)7 and all pixels in 9* to choose which 
ones to be used for the interpolation. To overcome possible 
projection errors, due to disparity errors or discontinuities in 
superpixels, two conditions are checked before interpolation: 

• At least one pixel in 9* has the same label as the pixel 
in its original location 5#*(.,0), %*(.,0)7. 

• The absolute disparity difference between a pixel 
disparity in view (&, ') and at least one pixel disparity 
in 9* is less than a threshold value, >. We empirically 
set > = 0.1; since a superpixel with size (i.e., 20) is 
noticed to have, typically, similar disparity values. 

If any of the above conditions holds for all pixels in 9* or 
part of them, then only these pixels are valid for interpolation. 
Interpolation is applied by computing the bilinear interpolation 
of valid pixels in 9*, otherwise, no interpolation is computed.  

After computing the interpolated value from each corner 
view, the pixel in its original angular location (&, ') is set to the 
mean color value of all valid back-projections from the four 
corner views. The mean is used after extensive experiments 
since it shows the best visual and numerical results when 
compared to using the median or weighted sum and maintains 

 
1Software implementation of all the used metrics can be found at: 
https://github.com/doegan32/Light-Field-Style-Transfer 

consistency across LF views. By doing this, only very few sparse 
and isolated pixels that have no projection, or invisible regions 
due to the angle of view, remain unstylized. To fully stylize all 
LF views, these remaining isolated pixels are filled by applying 
inward interpolation using the widely used region filling based 
on the Laplace equation as in [17]. 

 

III. EXPERIMENTAL RESULTS 
In this section, several methods are used as benchmarks to 

evaluate the performance of the proposed method. Firstly, two 
different baseline methods are considered, as in [8]: i) by 
applying Independent View Stylization (IVS) using existing 2D 
NST [3] to all LF views independently; and ii) by applying 
Pseudo Video Stylization (PVS) as proposed (for videos) in [5] 
for styling a pseudo video sequence of 4D LF views. To the best 
of the authors’ knowledge, only two recently proposed methods 
are specifically focused on tackling 4D LF challenges. The first 
one focuses on Global Angular Consistency Stylization (GACS) 
[7], and the second one focuses on Local Angular Consistency 
Stylization (LACS) [8]. Moreover, different synthetic and real-
world LF datasets and style images are used, as shown in 
TABLE I. For quantitative evaluations, two different metrics are 
used to evaluate the view-consistency namely: i) the LF Epipolar 
Consistency (LFEC) metric defined in [18]; and ii) the LF 
Angular Consistency (LFAC) metric1 defined in [8]. The LFEC 
and LFAC metrics evaluate the angular consistency by back-
warping LF views into a reference view and finding the color 
variance. Different than the LFEC metric that back-warps all LF 
views into the central view, the LFAC metric back-warps into 
the center view of a local window of views; to robustly consider 
large occluded regions. Both metrics require estimating disparity 
to apply back-warping, therefore, we estimated per-pixel 
disparity maps, for our results and all benchmark methods by 
using [12]. We noticed that, by using [12], the metric results of 
the benchmark methods are improved. Moreover, the disparity 
loss (which is the amount of disparity changes) is evaluated by 
using the disparity Mean Square Error (MSE) metric defined in 
[7]. This metric computes the BCD × 100	between the central 
view disparity map estimated from the original LFs and the 
stylized ones. As in [8], the disparity estimation method in [19] 
is used. Results of all metrics are presented in TABLE II. Due to 
the limitation in the paper size, only the central view with 
horizontal EPIs are presented in TABLE III. However, we 
encourage the reader to see our dynamic results2 for all LF views 
for clear view-consistency evaluation. For the used NST 
implementation, we used standard GPU-based MATLAB 
implementation [20] and we set * = 50, + = 107, the same 
values as used in the benchmark methods. 

2Dynamic results for all LF views can be found at: 
 https://github.com/MaryamHamad/LFStyleTransfer  

 
Fig. 3. Example of back-projection: a pixel in (", $) view that needs to be 
stylized is back-projected into each corner view (in blue squares).  
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The proposed method generates outperforming angular 
consistency in both LFEC and LFAC metrics, as can be seen in 
TABLE II. For the MSE metric, the GACS method achieves the 
best average results and preserves better object boundaries; 
hence, generates the central disparity maps that are similar to the 
original LF ones. However, it requires a pre-trained NST model 
as input for each style image. In this paper, corner views are used 
to minimize the occlusions, hence, there are no large holes left 
after propagation in densely sampled LFs. However, our method 
can be extended to consider sparse LFs that may have largely 
occluded regions by simply adding more reference views to 
consider all objects in LF views. The used technique for filling 
the holes in dis-occluded regions after propagation may generate 
some artifacts (which also occur in the benchmark methods) and 
thus requires further investigation. For time complexity, the 
proposed method reduces the needed time to stylize the entire 
LF significantly, i.e., for a LF with 81 views instead of taking 
81 × H(, where H( is the average time needed to stylize a single 
view, it takes less than 10 × H( including LF disparity estimation 
and superpixel generation. Finally, it can be observed that 
neither applying 2D methods for each view independently nor 
existing methods for video are adequate solutions for 4D LFs.  

IV. FINAL REMARKS 
In this paper, a novel view-consistent 4D LF NST method is 

proposed. Without any further training for new deep learning 
models or fine-tuning existing ones, we exploited an existing 
optimization-based NST method to initially stylize only four 
corner views. Afterwards, the stylized views are propagated into 
all other LF views in an occlusion-aware manner by using LF 
superpixels. Experimental results have been shown to 
outperform the considered benchmark methods and produce 
visually appealing and consistent results across all LF views. 

For future work, we will extend style transfer to sparse LFs 
that include wide occlusions. Additionally, we will study other 
applications of the proposed propagation technique, such as 
semantic segmentation and object removal, where the edits are 
applied in reference views and propagated into other LF views. 
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TABLE I.  TEST IMAGES USED IN OUR EXPERIMENTS 

 content 4D 
LFs 

Disparity 
range 

Style 
image 

Thumbnails:  
(content, style) 

a Swan [21] [-1, 1] Candy 
   

b Lego knights 
[22] [-3, 3] Rain 

princess 
   

c Bikes [23] [-1, 1] Rain 
princess 

   

d Herbs [24] [-3, 1.8] Starry 
night 

   

e Table [24] [-2, 1.6] Candy 
   

TABLE II.  ANGULAR CONSISTENCY (LFEC, LFAC) AND DISPARITY 
LOSS (MSE×100) METRICS 

Metric  IVS 
(baseline) 

PVS 
(baseline) 

GACS 
[7] 

LACS 
[8] Ours 

LFEC 
(↑) 

a 19.29 25.24 30.31 28.43 40.83 
b 19.50 21.18 23.16 24.51 29.21 
c 22.14 23.10 33.77 27.48 42.92 
d 22.68 24.80 22.53 27.96 31.29 
e 19.02 22.03 28.19 25.72 32.38 

Avg.  20.53 23.27 27.59 26.82 35.33 

LFAC 
(↑) 

a 29.74 41.27 46.48 42.72 53.54 
b 30.51 35.29 37.82 38.09 44.00 
c 33.66 37.70 48.45 42.13 54.93 
d 33.37 38.92 34.92 41.58 45.49 
e 29.65 36.69 42.54 39.81 46.85 

Avg.  31.39 37.97 42.04 40.87 48.96 

MSE 
× '(( 

(↓) 

a 209.19 2.56 1.01 2.11 0.54 
b 256.36 22.15 13.14 19.50 18.85 
c 29.28 2.09 0.91 1.94 2.40 
d 96.08 11.68 8.10 8.31 5.00 
e 284.98 8.45 1.39 5.20 3.43 

Avg.  175.18 9.39 4.91 7.41 6.04 

TABLE III.  VISUAL COMPARISON WITH BENCHMARK METHODS 

 Content LF Style image IVS (baseline) PVS (baseline) GACS [7]  LACS [8]  Ours 

a 
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Chapter 8  

Achievements and Future Directions 

This chapter summarizes the core achievements of this Thesis and revisits the fundamental 

objectives that guided our research work. Additionally, this chapter also highlights the 

limitations encountered since they offer prospects for future research directions. 

 

 
8.1 Discussion of achievements 

Immersive visual content that provides higher DoF and enriches the end users’ experience is 

increasingly popular in academia and industry alike. Different immersive imaging modalities 

exist, such as LF imaging, omnidirectional imaging, holography and volumetric imaging. 

While giant tech companies are providing new devices for capturing and displaying immersive 

imaging modalities, providing efficient processing and editing solutions for those modalities is 

of the utmost significance. Acknowledging this, this Thesis has addressed 4D LF imaging and 

considered this requirement by proposing novel methods that advance the state-of-the-art 4D 

LF processing and editing tasks. In this context, six main achievements were accomplished that 

together represent a pipeline to process and edit 4D LFs while ensuring accuracy and angular 

consistency. 

The first achievement addressed the first Thesis objective and proposed an efficient 

disparity propagation method to ensure angular consistency. The proposed method in Chapter 

2 enabled computing disparity maps not only for the central view but also per-pixel disparity 

maps for all LF views while supporting different disparity ranges. The proposed method 

exploited off-the-shelf state-of-the-art disparity estimation methods to estimate a disparity map 

for the central view, as well as for the regions in the corner views that do not appear in the 

central view. After that, efficient recursive propagation and refinement steps were applied to 

exploit the correlation in 4D LFs and compute disparity maps for all other LF views. The 

proposed method generated more accurate and angularly consistent disparity maps for all LF 

views when compared to the existing 4D LF disparity estimation methods for dense and sparse 

LFs while significantly reducing computational complexity. 
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The second and third achievements considered the second Thesis objective and proposed 

two different 4D LF over-segmentation methods. More precisely, the proposed method in 

Chapter 3 aimed at exploiting per-pixel disparity information as a clustering feature and 

developing an adaptive K-means clustering while using different clustering features (i.e., 

disparity, color and position). Adjusting the clustering weights automatically according to LF 

content has shown a balance improvement between over-segmentation accuracy, compactness 

(shape regularity of the clusters) and angular consistency [109]. Additionally, applying 

adaptive over-segmentation can lead to an optimal solution without being biased blindly to any 

clustering feature [109]. While this method improved the over-segmentation performance in 

terms of accuracy and angular consistency, it is only suitable for dense LF content. 

The third achievement continued the second Thesis objective by extending, in Chapter 4,  

the LF superpixel/superray concepts into hyperpixels in 4D space [110] and presented a flexible 

4D LF over-segmentation method for both dense and sparse 4D LFs. To achieve that, the 

centroids of hyperpixels were initialized in the central views and also in the regions existing in 

the corner views but occluded or non-existent in the central view; the over-segmentation was 

then applied in 4D space. Like the previous method, this method adopted an adaptive K-means 

clustering and exploited per-pixel disparity information during the over-segmentation. Besides 

the proposed hyperpixels LF over-segmentation method, a synthetic 4D LF dataset was 

generated and a modified metric to evaluate over-segmentation angular consistency was 

proposed to evaluate the proposed method for both dense and sparse LFs. The over-

segmentation results were evaluated on various LF datasets, and the results of the proposed 

methods have shown over-segmentation spatial accuracy and angular consistency that 

outperform existing methods in most test LF datasets. 

The fourth and fifth achievements addressed the third Thesis objective, which was the 

development of spatially accurate and angularly consistent 4D LF mid-level segmentation. In 

particular, in the SLFS method [111], detailed in Chapter 5, a 4D LF was represented by a 

hypergraph based on LF over-segmentation, where each 4D LF segment represented a 

hypernode in the hypergraph. Afterwards, a semi-supervised approach using classical graph 

cut was exploited to achieve interactive foreground-background segmentation for dense 4D 

LFs with the guidance of the user’s scribbles. The results have shown competitive performance 

in terms of segmentation accuracy and angular consistency without relying on accurate 

disparity maps and by considerably reducing the hypergraph size (i.e., the number of 

hypernodes that need to be processed). 
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The fifth achievement continued addressing the third Thesis objective by developing 

multiple labels mid-level 4D LF segmentation in an unsupervised manner, as detailed in 

Chapter 6. The proposed method in Chapter 6 did not require the user’s scribbles to identify 

objects from each other or any GT labeled images for training. Instead, it utilizes an 

unsupervised deep learning approach to optimize the model for each LF by extracting deep 

features. In this method, a 4D LF was represented as a hypergraph based on hyperpixels over-

segmentation where each hypernode was represented by a set of features including color, 

texture, and disparity. Next, the hypernodes were merged into different labels using a GNN 

and gradient descent optimization. The results have shown outperforming performance 

regarding segmentation accuracy and angular consistency compared to benchmark 

unsupervised segmentation methods in most test LF datasets. 

The sixth achievement considered the fourth Thesis objective and tied all the previous 

chapters together in one editing application (i.e., neural style transfer) presented in Chapter 7. 

The proposed 4D LF neural style transfer application [112] included steps from the previous 

chapters, namely, disparity estimation for all 4D LF views and 4D LF over-segmentation. 

Notice that if we target to apply 4D LF editing for a specific object, the methods presented in 

Chapter 5 and Chapter 6 can be used to apply object segmentation at first to facilitate indexing 

each object and ensure angular consistency. However, in Chapter 7, LF editing was applied to 

the entire scene, not only to specific objects. The results of the proposed method in Chapter 7 

have shown outperforming performance when compared to most existing 4D LF neural style 

transfer methods and produced visually appealing and consistent results across all LF views. 

 
8.2 Future directions 

LF imaging still has several challenges that need further investigation, certainly not limited to 

developing efficient methods for LF segmentation and editing. Examples of other LF aspects 

that deserve further investigation include: i) Developing efficient capturing and displaying 

devices that are more affordable and enable the integration of LF technology in our daily lives; 

and ii) Developing efficient LF coding and rendering algorithms that reduce the storage and 

bandwidth requirements to facilitate LF usage in various practical applications. 

While this Thesis has been focused on advancing specific 4D LF processing and editing 

tasks, it makes more sense to introduce future directions that continue what has been started in 

this Thesis. Some limitations and remaining work that deserves to be further improved and 

investigated include: 
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• Development of improved disparity/depth estimation methods that efficiently 

consider both dense and sparse 4D LFs – As shown previously, using accurately 

estimated disparity maps can significantly and positively affect the performance of 4D 

LF over-segmentation, segmentation and edit propagation. Some remaining limitations 

of the proposed disparity propagation method in Chapter 2 still need consideration. One 

limitation is the fact that currently only one reference disparity map is used (which is 

located in the center of the LF) and warped into all other LF views. Thus, to adaptatively 

address the best angular location of the reference view according to camera parameters 

or the scene content, as well as the number of needed reference views, remain for future 

work. Additionally, more complex refinement and accuracy checking techniques could 

improve the resulting disparity maps but may affect the average complexity. Using deep 

learning in LF disparity/depth estimation has shown appealing performance compared 

to classical methods. However, remaining gaps in the literature include developing one 

deep learning model to enable estimating disparity/depth maps for all LF views while 

ensuring angular consistency in dense and sparse 4D LFs. Moreover, handling the 

domain shift between training and testing synthetic and real 4D LF depth/disparity 

datasets is another challenge to investigate. 

• Extending the over-segmentation of static 4D LFs to deal with dynamic LFs – LF 

videos capture the scene across different viewpoints and time instants. Therefore, LF 

videos contain a massive amount of data with redundant information in the spatial, 

angular and temporal dimensions. In this Thesis, it has been shown that applying over-

segmentation to static 4D LFs leads to a compact representation that exploits the spatio-

angular correlations across LF views, which facilitates subsequent tasks and helps in 

ensuring angular consistency. Realizing that, one future direction to extend the 

proposed methods in Chapter 3 and Chapter 4 is to consider dynamic LFs. This can be 

achieved by grouping similar pixels not only spatially and angularly, but also 

temporally across frames to enable efficient LF video processing and editing. 

Moreover, the implementation of the proposed methods can be further optimized by 

parallelizing some steps which can significantly reduce the required processing time. 

• Inclusion of semantic labels extracted by a pre-trained model in 4D LF processing 

and editing – With the advances in deep learning techniques and the huge datasets of 

2D images available for training, mature models for object detection/recognition have 

achieved significant progress with real-time performance. Exploiting off-the-shelf pre-
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trained models to recognize objects, e.g., in a reference view, and using the obtained 

semantic labels as guidance for processing and editing tasks can be a future direction 

that requires further study. More precisely, one of the remaining limitations in the 

proposed segmentation method, presented in Chapter 6, is that the number of 

classes/labels is not automatically estimated based on the LF content before the 

segmentation. Thus, using a pre-trained model that recognizes objects, can enable 

automatically estimating the number of objects in each LF and may lead to a better 

segmentation performance. Moreover, another work direction is to improve the realism 

of the proposed neural style transfer method, presented in Chapter 7, by first 

recognizing the objects in the scene and then applying the styles and colors that suit 

each object across 4D LF views to maintain the semantic meaning (e.g., it is more 

realistic to stylize the skin of humans by its original color instead of blue). 
Besides what has been presented above to improve what has been achieved in this Thesis, 

here are some other directions that can be continued in future work: 

• Generating large 4D LF datasets and benchmarks for 4D LF mid-level 

segmentation for domain-specific applications – In the existing literature, only a few 

datasets target 4D LF segmentation compared to those available for 2D/3D imaging. 

Thus, generating new 4D LF datasets for segmentation and benchmarks for specific 

domains, such as medical LF imaging datasets and self-driving vehicles LF datasets, 

containing GT label images for dense and sparse LFs is encouraged. 

• Developing tools and software applications that can generate immersive 4D LF 

content and enable applying interactive editing – In 2D/3D imaging, there are 

several user-friendly and interactive tools and applications for content creation and 

editing, such as Adobe Photoshop [113] and Blender [59]. On the other hand, there are 

limited tools and software applications that enable 4D LF creation or easy-to-use 4D 

LF editing. Therefore, developing such tools and software applications can empower 

individuals to create and edit 4D LFs, and encourage them to exploit 4D LF content in 

practical applications, such as in marketing and advertising. This direction may also 

exploit the recent advances in generative artificial intelligence technology to create 

high-quality 4D LF content. 

• Developing novel metrics for angular consistency evaluation – In this Thesis, 

several metrics were used to evaluate 4D LF processing and editing applications. 

However, most of the used metrics to evaluate processing/editing accuracy or angular 



 128 
 
 

consistency are either extended from the traditional 2D or 3D metrics, rely on GT 

disparity maps and segmentation labels, or rely on projecting all LF views into a 

reference view (e.g., the central view) and discarding occluded/non-existing pixels in 

the reference view. Hence, they may not be suitable for evaluating sparse 4D LFs with 

large occlusions and may not be able to evaluate real 4D LFs. Thus, proposing novel 

evaluation metrics that can be used for dense and sparse, real and synthetic 4D LFs in 

various processing and editing tasks is strongly required. 

In conclusion, LF imaging has been a subject of persistent interest in the research 

community due to its potential to revolutionize various fields. This Thesis has contributed to 

advancing the state-of-the-art in several LF processing and editing tasks. We hope the 

remaining challenges and research directions presented in this section will inspire future 

researchers to embark on a journey of discovery, building upon the groundwork established in 

this Thesis. 
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