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Abstract 

 

Heart failure (HF) ranks among the most prevalent and growing chronic health conditions 

worldwide. Characterized by a progressive course, HF often presents phases of 

symptomatic stability interspersed with episodes of worsening. These episodes of 

decompensation frequently necessitate unplanned healthcare visits and/or hospital 

admissions, increasing mortality risk and significantly reducing quality of life. In this 

way, HF imposes considerable healthcare-related costs, placing a heavy burden on 

patients, healthcare systems, professionals, and society at large. Accurately predicting 

decompensation episodes could enable timely interventions, potentially reducing hospital 

visits, lowering healthcare expenses, and improving quality of life. 

This study aims to address this gap by developing an interpretable machine learning 

model to predict HF decompensation within a 30-day period. This study is based on data 

from 584 HF patients, followed over a period of 3 years and 4 months, resulting in a 

dataset of 2,008 consultations from which over 600 variables were generated and 

ultimately refined to 25 key predictors. The final model, combining the strengths of 

XGBoost and a Random Tree model, achieved a recall of 81.40% and an AUC of 0.96. 

To improve interpretability, a C5.0 algorithm was used to provide a global explanation, 

along with sensitivity analysis and logistic regression. 

This study advances knowledge in HF decompensation prediction, showcasing the 

integration of business analytics in the health domain. These findings form a foundation 

for future studies and practical applications aimed at improving patient care and 

optimizing healthcare resource allocation. 
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Resumo 

 

A insuficiência cardíaca (IC) é uma das doenças crónicas mais prevalentes e em 

crescimento globalmente. Caracteriza-se por um percurso progressivo, com fases de 

estabilidade intercaladas por episódios de agravamento. Estes episódios de 

descompensação frequentemente exigem hospitalizações e/ou visitas não programadas, 

aumentando o risco de mortalidade e diminuindo a qualidade de vida dos doentes. Assim, 

a IC representa custos significativos para a saúde, sobrecarregando doentes, sistemas de 

saúde, profissionais e a sociedade no geral. A antecipação destes episódios possibilita 

uma atuação mais rápida, reduzindo hospitalizações, custos em saúde e melhorando a 

qualidade de vida dos doentes. 

Este estudo procura colmatar esta lacuna desenvolvendo um modelo de machine 

learning interpretável para prever descompensações de IC num período de 30 dias. Dados 

de 584 doentes, recolhidos ao longo de 3 anos e 4 meses, resultaram num total de 2.008 

consultas e na criação de mais de 600 variáveis, das quais 25 preditores foram 

selecionados. O modelo final, que combina XGBoost e Random Tree, obteve uma 

sensibilidade de 81,40% e uma AUC de 0,96. Para aumentar a interpretabilidade, foi 

utilizado o algoritmo C5.0 para explicação global, complementado por uma análise de 

sensibilidade e regressão logística. 

Este estudo avança o conhecimento na previsão de descompensações em IC, 

demonstrando a aplicação de business analytics no setor da saúde. Estes resultados 

estabelecem uma base para estudos futuros e aplicações práticas, visando a melhoria dos 

cuidados aos doentes e a otimização de recursos nos sistemas de saúde.  
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1. Introduction 

This introduction provides an overview of the research topic, explaining the concepts of 

Heart Failure (HF) and its decompensation, while emphasizing the importance of 

predicting such episodes. Furthermore, it delineates the problem statement and research 

question, outlines the objectives, and describes the methodological approach adopted. 

Finally, it concludes by presenting the structure and organization of the dissertation. 

 

1.1. Theme and its Importance 

HF is a clinical syndrome characterized by symptoms like breathlessness, fatigue and 

ankle swelling, accompanied by signs such as elevated jugular venous pressure and 

peripheral edema. This syndrome is the result of structural and/or functional 

abnormalities in the heart, that causes elevated filling pressures and/or inadequate cardiac 

output (McDonagh et al., 2021). Often, HF patients progress to a stabilized chronic phase 

with medical and device therapy. However, this fragile stability is often disrupted by 

decompensation episodes (Figure 1.1) (Fonseca et al., 2017; Greene et al., 2023).  

The definition of decompensation in HF, also referred to as acute HF, acute 

decompensated HF, and worsening HF, evolved over time and is still not universally 

standardized (Greene et al., 2023). Traditionally, it has been defined by worsening HF 

signs and symptoms requiring urgent or emergent care for intravenous or invasive 

therapies (Butler et al., 2014). However, with the improvement of HF therapies, 

contemporary perspectives recognize decompensation as a broader concept occurring 

both before and beyond hospitalization episodes, since the treatment can be offered in the 

outpatient setting, eliminating the need for hospitalization (Bozkurt, 2023).   

Decompensation episodes can culminate in several outcomes, two of them critical in 

the disease trajectory: readmission and/or mortality. Mortality is defined as death, 

regardless of the cause, while readmission is characterized by the unplanned hospital visit 

due to decompensated HF (Tong et al., 2023). Considering the complexities of patient 

outcomes, researchers often study a composite endpoint (CEP) that consolidates multiple 

individual events or endpoints into a unified assessment (Baracaldo-Santamaría et al., 

2023). In this study, CEP is defined as a composite of mortality or readmission.  
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Figure 1.1: Progression of HF Clinical Risk Over Time 

Source: Adapted Greene et al. (2023, p.419) 

HF is among the most prevalent chronic health conditions globally. This syndrome 

affects up to 64 million individuals worldwide, and its prevalence is likely to increase as 

populations age and diagnostic technologies improve (Norhammar et al., 2023). In 

Portugal, the “Epidemiology of Heart Failure and Learning”1 (EPICA) study published 

in 1998, established a baseline HF prevalence of 4.36% among individuals older than 25 

on the Portuguese mainland (Ceia et al., 2002). However, the recent presented results of 

the "Portuguese Heart Failure Prevalence Observational Study” (PORTHOS), found a 

higher prevalence of 16% among individuals over 50 years old, placing Portugal as one 

of the countries with the highest reported HF prevalence (Baptista, 2024).  

Because of its high prevalence and natural history characterized by frequent health 

care visits, HF imposes significant healthcare-related costs, placing a substantial effort on 

patients, national healthcare systems, healthcare professionals, and society as a whole 

(Baptista et al., 2023). In high-income nations, HF accounts for 1 to 2% of overall 

healthcare spending, with annual care expenses per patient ranging from 5,000 to 15,000 

EUR in Europe and 17,000 to 30,000 USD in the United States (Hessel, 2021). Gouveia 

et al. (2019, 2020) conducted two critical studies on HF in Portugal, projecting its societal, 

health-related, and economic implications, between 2014 and 2036. One forecasts a 

significant rise in HF-related deaths by 2036, reaching 8,112 fatalities, along with a 27.9% 

increase in disability-adjusted life years lost, totaling 27,059 years (Gouveia et al., 2019). 

The second study projects that total HF-associated costs in Portugal will reach 503 million 

EUR in the year 2036, marking a 24% increase from expenditure levels of 2014 (Gouveia 

 
1 Translation of “Epidemiologia de Insuficiência Cardíaca e Aprendizagem” 
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et al., 2020). Both studies emphasize the urgent need for proactive strategies to tackle the 

growing challenges posed by HF in Portugal. 

Furthermore, the increasing number of initiatives in the healthcare domain, such as 

the “Transforming Health and Care Systems” aimed at promoting research and innovation 

in healthcare, underscores the growing significance of this subject 

(https://www.thcspartnership.eu/).  

 

1.2. Research Problem  

There has been an increasing number of studies on machine learning (ML) techniques 

applied to the population with HF. A preliminary search conducted on Web of Science 

(WoS) and PubMed using the query (“Heart Failure” AND “Machine Learning”) yielded 

a total of 396 and 248 articles, of which 70% and 90.7%, respectively, were published 

within the last four years. These ML models designed for HF encompass a diverse array 

of targets/outcomes. For instance, in Błaziak et al. (2022), several outcomes were 

considered, including mortality, rehospitalization, response to treatment, and medication 

adherence, without specific information on predictive models for decompensation.  

The potential benefits of integrating ML in the healthcare industry are widely 

recognized (e.g., Johnson et al., 2018; Obermeyer & Emanuel, 2016; Shameer et al., 

2018). However, significant barriers are delaying its broader adoption. One major 

obstacle arises from the opaque nature of many ML techniques, especially concerning in 

healthcare decision-making due to the potential costs of inaccurately predicted outcomes 

(Ahmad et al., 2018). Usually, there is a trade-off between the performance and 

interpretability of ML models. While simpler models are more interpretable, they often 

perform worse than complex models like deep learning models (ElShawi et al., 2021). 

This has led to criticism of using complex models in the medical field despite their higher 

accuracy. Recognizing these concerns, the European Union has taken action through the 

General Data Protection Regulation (GDPR), which mandates a "right to explanation" 

(GDPR Article 22). This regulation aims to provide individuals with meaningful 

information about the logic and consequences of automated decisions, emphasizing 

transparency and accountability (Goodman & Flaxman, 2017; Selbst & Powles, 2017). 

However, ongoing debates persist regarding the practical implementation of this 

initiative, due to the inherent vagueness of the document and the divergent interpretations 

of interpretability (ElShawi et al., 2021; Vellido, 2020). 
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The concept of interpretability in ML has been approached through various terms 

like transparency, fidelity, and trust. However, existing definitions often overlook end-

user needs, resulting in models and explanations that may not adequately address user 

requirements (Lipton, 2016; Vellido, 2020). Interpretability should ensure the 

transparency of ML systems, making algorithmic processes understandable and graspable 

by end users. While interpretable ML models like decision trees (DT) and logistic 

regressions (LR) offer explanations, others, such as neural networks (NN) or support 

vector machines (SVM), require post-hoc methods to extract explanations, necessitating 

careful consideration of medico-legal and ethical requirements in healthcare. One way to 

achieve this interpretability is by using the simpler structures of the first models to 

replicate the behavior of less interpretable ones. By attaining comparable metrics, it is 

possible to offer global explanations that balance accuracy and interpretability, aiding 

users in assessing and potentially accepting or rejecting predictions before taking action, 

which is especially crucial in clinical settings. 

However, ML models face additional significant challenges, often struggling with 

imbalanced data (Ahsan & Siddique, 2022), and despite the development of numerous 

predictive models (e.g., Guo et al., 2021; Kerexeta et al., 2023; Sohrabi et al., 2019), few 

have undergone external testing. This raises concerns about their generalizability and 

emphasizes the need for broader validation (Błaziak et al., 2022). Unlike other domains, 

the medical sector faces strict privacy and legal regulations, leading to smaller datasets 

that can result in biased ML models and increase the risk of overfitting by focusing on 

noise rather than general patterns (Althnian et al., 2021; Ying, 2019) .  

To address all these concerns and gaps in the literature, this study aims to answer the 

question: “How can a ML model for HF decompensation prediction enhance the 

management of HF patients? “ 

 

1.3. Objectives and Contributions 

Considering the research question, the main goal of this study is to develop an effective 

and interpretable ML model for predicting the occurrence of HF decompensation. To 

achieve this, four specific objectives are defined: O1) Characterize and define the clinical 

event of decompensation in the context of HF; O2) Develop a predictive model for HF 

decompensation; O3) Identify the key factors influencing decompensation events; O4) 

Determine patient profiles prone to experiencing decompensation events and those less 

susceptible.  
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By achieving these objectives and thereby addressing the research question, this 

study contributes to the development of interpretable predictive models for HF 

decompensation, which are almost non-existent at the current moment.  

Unplanned admissions due to HF decompensation pose a substantial burden on 

healthcare systems globally (Hessel, 2021; Norhammar et al., 2023; Savarese et al., 

2023). Creating an effective interpretable predictive model for decompensation episodes 

offers multifaceted advantages, benefiting patients, medical professionals, and all society 

(Moreno-Sánchez, 2023; Sharma et al., 2022a). Patients, as the primary beneficiaries, 

stand to gain by breaking free from the vicious cycle of declining health, frequent hospital 

visits, and readmissions, which not only deteriorate their quality of life but also reduce 

survival (Gouveia et al., 2019). Healthcare providers, on the other hand, can leverage the 

model for more precise and targeted care interventions, leading to a reduction in 

complications and readmissions, which ultimately facilitate and reduce their work burden 

(Rahman et al., 2023). At a societal level, there is potential for substantial cost savings 

(Savarese et al., 2023). Moreover, this research contributes to advancing medical 

understanding and promotes the integration of technology into healthcare practices, 

promising improved patient outcomes across a spectrum of medical scenarios.  

 

1.4. Methodological approach  

Given the research problem and its intrinsic objectives, this case study employs a mixed 

methods design (Johnson et al., 2007), with objective O1 being addressed using a 

qualitative method, while objectives O2 to O4 are approached quantitatively. 

In terms of methodology, the study adopts the CRISP-DM (Cross-Industry Standard 

Process for Data Mining) methodology (Chapman et al., 1999) as its framework. This 

approach, recognized for its flexibility and iterative nature, enables interactive 

engagement with physicians and clinical experts, thereby enhancing the attainment of the 

specified objectives. 

This study employs a retrospective methodology, analyzing secondary data from 

medical records of 584 patients followed by the HF Team in the Cardiology Department 

at Unidade Local de Saúde de Amadora/Sintra (ULSASI) between 2020 and April of 

2024. This data encompasses various types of medical records, including written 

consultations and laboratory results. However, these records comprise free text lacking a 

cohesive structure and are stored within the hospital system, requiring assistance from the 
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Information Technology (IT) team to retrieve them, followed by extensive data 

preparation. 

The present study adhered to all international ethical standards, including the "World 

Medical Association Declaration of Helsinki – Ethical Principles for Medical Research 

Involving Human Subjects", was approved by the Ethics Committee of ULSASI, follows 

the guidelines of ISCTE, and the regulations of the GDPR, demonstrating a strong 

commitment to the protection of personal data. The clinical investigation unit of ULSASI 

permitted the study to proceed without signed informed consent, given the academic 

value of the retrospective study. Patient data were anonymized through 

pseudonymization, ensuring data processing without names or hospital record numbers, 

so that no information could be traced back to any specific individual. 

 

1.5. Dissertation structure 

To effectively predict HF decompensation, this thesis is structured into five chapters, each 

representing a different stage of the research process. 

The first chapter provides an overview of the study, presenting the theme and its 

significance, along with the research problem, objectives, primary contributions, and the 

methodological approach employed. The second chapter reflects the current state-of-art 

regarding the prediction of HF decompensation through ML techniques. It encompasses 

the protocol of the systematic literature review (SLR) and subsequent systematic article 

analyses across four main domains: the context and scope of the studies, methodology, 

results, and their impacts. The subsequent chapter provides a detailed narrative of the 

adopted methodology, covering the entire research process from data collection and 

processing to data analyses, including the metrics for model evaluation. The results, along 

with their discussion, are presented in the fourth chapter. The fifth and final chapter 

presents the conclusions, emphasizing the contributions of this study, discussing its 

limitations, and providing recommendations for future research. 
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2. Systematic Literature Review 

 

This chapter seeks to systematize the scientific understanding of HF decompensation with 

a specific focus on its prediction through the application of ML techniques. 

A widely accepted definition of ML is that it encompasses models capable of 

autonomously learning from data, eliminating the need for explicit input from modelers. 

Including a diverse set of algorithms that empower computers to discern patterns, make 

predictions, and decisions based on underlying data structures (Benedetto et al., 2022; 

Christodoulou et al., 2019; Shameer et al., 2018). Expanding upon the previous definition, 

Beam and Kohane (2018) advocate for viewing ML as a spectrum. They propose that 

whether a predictive algorithm qualifies as ML depends on the degree to which its 

structure or parameters are preordained by humans. ML approaches are broadly 

categorized as either unsupervised or supervised learning, each serving distinct purposes. 

In this dichotomy, unsupervised learning focuses on uncovering inherent relationships 

among variables, while supervised learning involves the classification of observations 

into specific categories or outcomes based on a dataset containing predictor variables and 

labeled outcomes (Johnson et al., 2018).  

In critical fields like healthcare, methodological rigor is crucial for informed 

decision-making, especially for conditions like HF decompensation, where accurate 

prediction and management are key. Within this context, a SLR plays a crucial role in 

gathering, evaluating, and synthesizing existing knowledge.  

A SLR, also known as a systematic review (Kitchenham, 2004), is a 

methodological approach that formulates precise research inquiries (Ahsan & Siddique, 

2022) and uses systematic, explicit, and reproducible techniques. It provides a framework 

for identifying, evaluating, and synthesizing existing research (Kitchenham, 2004; Okoli 

& Schabram, 2015), offering a comprehensive overview of the state-of-the-art, 

highlighting research gaps, and suggesting directions for future studies (Paul et al., 2023; 

Paul & Criado, 2020).The research and evaluation methodology for the SLR is based on 

the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

framework (Moher et al., 2009), which enhances transparency and completeness in the 

process of writing systematic reviews. PRISMA is one of the most widely adopted 

protocols (Paul et al., 2023), with updates in 2020 (Page et al., 2021), reinforcing its 

importance in modern research practices. 
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2.1. Protocol 

Given the research objective, this literature review seeks to address the following 

question: How can ML models be used for predicting HF decompensation? To answer 

this question four additional questions were necessary: 1) “What are the scope and 

objectives of the study?”, 2) “What methodology is used?”, 3) “What are the study 

results?”, 4) “How are the study results evaluated?”. 

The articles included in this SLR are chosen from multiple databases comprising 

various scientific publications, considering the title, and inclusion/exclusion criteria. WoS 

(www.webofknowledge.com), Scopus (https://www.scopus.com), and PubMed 

(https://PubMed.ncbi.nlm.nih.gov/ ) have been selected for their renowned 

comprehensive coverage of high-impact journals across the fields of medicine, health 

sciences, and technology (Li et al., 2018; Paul et al., 2021; Pranckutė, 2021). 

A Boolean search is conducted across multiple databases, focusing exclusively on 

the title field. The chosen keywords are derived from the literature and include terms 

associated with HF outcomes, prediction, and ML. The formulated query is as follows: 

((“Heart Failure” OR HF) AND (“Events” OR “Mortality” OR "Death" OR 

“Readmission” OR "Worsen*" OR "Decompensat*")) AND ("Predicti*") AND 

("Machine Learning" OR “ML”). The validity of this query is confirmed by two subject 

matter experts, a scholar and a cardiologist. This rigorous process results in the 

identification of one hundred and sixty-eight articles on the specified topic, plus one 

additional article identified through an ad hoc search. 

Initially, filters are applied based on two criteria: publication years and document 

type. Articles from 2018 onward are included, aligning with the surge in interest and 

growth within the field, notably highlighted by the increasing number of ML models for 

HF populations, as observed in the study by Błaziak et al. (2022). After removing 

duplicates and articles that are not fully available, a review of abstracts results in the 

exclusion of articles not aligned with the research objectives (Paul et al., 2023) , 

particularly those focused on specific HF etiologies (e.g., Dai et al. (2022), which 

primarily targets sarcoidosis patients) and those exclusively centered on in-hospital 

predictions (e.g., Chen et al. (2023), which focuses solely on predicting in-hospital 

mortality). The inclusion criteria are concurrently applied, resulting in the selection of 

articles that specifically address the prediction of worsening HF events and those 

incorporating an empirical component. 

http://www.webofknowledge.com/
https://www.scopus.com/
https://pubmed.ncbi.nlm.nih.gov/
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Following the application of the eligibility criteria, a total of twenty-four articles 

are selected for review. The article by Kerexeta et al. (2023), which focuses on 

predicting HF decompensation through AI models, is not found through the query and is 

therefore added through ad hoc research.  

 

Figure 2.1: Article selection process 

Chronologically arranged, the Table 2.1 features articles from 2019 to 2023 with a 

notable rise starting in 2021 (n=6) and peaking at ten articles in 2023. This trend 

highlights the growing effort to develop predictive models over the past five years, which 

is five times higher than in 2019, suggesting a promising trajectory for future expansion. 

The articles are spread across twenty different journals, with most (n=19) indexed in all 

three major scientific databases, Scopus being the primary contributor. Additionally, only 

two articles have authors in common (i.e., Awan et al., 2019a; Awan, et al., 2019b). 
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Table 2.1: Articles under study 

Notes: P: PubMed; S: Scopus; W: Web of Science 

 

ID Year Title Journal Authors Source 

1 2023 
Machine Learning Based Readmission and Mortality 

Prediction in Heart Failure Patients 

Scientific 

Reports 

Sabouri, M.; Rajabi, A.B.; Hajianfar, G.; Gharibi, 

O.; Mohebi, M.; Avval, A.H.; Naderi, N.; Shiri, I. 

W; S; 

P 

2 2023 
Heart Failure Emergency Readmission Prediction Using 

Stacking Machine Learning Model 
Diagnostics 

Rahman, M.S.; Rahman, H.R.; Prithula, J.; 

Chowdhury, M.E.H.; Ahmed, M.U.; Kumar, J.; 

Murugappan, M.; Khan, M.S. 

W; S; 

P 

3 2023 
Comparing Machine Learning Classifiers for Predicting 

Hospital Readmission of Heart Failure Patients in Rwanda 

Journal of 

Personalized 

Medicine 

Rizinde, T.; Ngaruye, I.; Cahill, N.D. 
W; S; 

P 

4 2023 

Comparison Of Linear and Non-Linear Machine Learning 

Models for Time-Dependent Readmission or Mortality 

Prediction Among Hospitalized Heart Failure Patients 

Heliyon Tong, R.; Zhu, Z.S.; Ling, J. 
W; S; 

P 

5 2023 

The Price of Explainability in Machine Learning Models For 

100-Day Readmission Prediction In Heart Failure: 

Retrospective, Comparative, Machine Learning Study 

Journal of 

Medical 

Internet 

Research 

Soliman, A.; Agvall, B.; Etminani, K.; Hamed, O.; 

Lingman, M. 

W; S; 

P 

6 2023 

Interpretable Prediction Of 3-Year All-Cause Mortality in 

Patients with Chronic Heart Failure Based on Machine 

Learning 

BMC Medical 

Informatics 

and Decision 

Making 

Xu, C.G.; Li, H.X.; Yang, J.P.; Peng, Y.Z.; Cai, 

H.Y.; Zhou, J.; Gu, W.Y.; Chen, L.X. 

W; S; 

P 

7 2023 

Predicting Mortality and Re-Hospitalization for Heart Failure: 

A Machine-Learning and Cluster Analysis on Frailty and 

Comorbidity 

Aging Clinical 

and 

Experimental 

Research 

Okoye, C.; Mazzarone, T.; Niccolai, F.; 

Bencivenga, L.; Pescatore, G.; Bianco, M.G.; 

Guerrini, C.; Giusti, A.; Guarino, D.; Virdis, A. 

W; S; 

P 

8 2023 

Prediction and Analysis of Heart Failure Decompensation 

Events Based on Telemonitored Data and Artificial 

Intelligence Methods 

Journal of 

Cardiovascular 

Development 

and Disease 

Kerexeta, J.; Larburu, N.; Escolar, V.; Lozano-

Bahamonde, A.; Macía, I.; Beristain Iraola, A.; 

Graña, M. 

W; S; 

P 

9 2023 

Predicting Six-Month Re-Admission Risk in Heart Failure 

Patients Using Multiple Machine Learning Methods: A Study 

Based on The Chinese Heart Failure Population Database 

Journal of 

Clinical 

Medicine 

Chen, S.; Hu, W.; Yang, Y.; Cai, J.; Luo, Y.; Gong, 

L.; L,i Y.; Si, A.; Zhang, Y.; Liu, S.; Mi, B.; Pei, L.; 

Zhao, Y.; Chen, F. 

P 

10 2023 
Mortality Prediction in Patients with or Without Heart Failure 

Using a Machine Learning Model 

JACC: 

Advances 

Jang, S.Y.; Park, J.J.; Adler, E.; Eshraghian, E.; 

Ahmad, F.S.; Campagnari, C.; Yagil, A.; 

Greenberg, B. 

S 

11 2022 
A Comparative Study on Prediction of Survival Event of Heart 

Failure Patients Using Machine Learning Algorithms 

Neural 

Computing & 

Applications 

Özbay, Karakuş M.; Er, O. S 

12 2022 
Predicting 30-Day Readmissions in Patients with Heart Failure 

Using Administrative Data: A Machine Learning Approach 

Journal of 

Cardiac 

Failure 

Sharma, V.; Kulkarni, V.; Mcalister, F.; Eurich, 

D.E.A.N.; Keshwani, S.; Simpson, S.H.; 

Voaklander, D.O.N.; Samanani, S. 

S 

13 2022 

Machine Learning and LACE Index for Predicting 30-Day 

Readmissions After Heart Failure Hospitalization in Elderly 

Patients 

Internal and 

Emergency 

Medicine 

Polo Friz, H.; Esposito, V.; Marano, G.; Primitz L.; 

Bovio, A.; Delgrossi, G.; Bombelli, M.; 

Grignaffini, G.; Monza, G.; Boracchi, P. 

S 

14 2022 
Predicting Long-Term Mortality in Patients with Acute Heart 

Failure by Using Machine Learning 

Journal of 

Cardiac 

Failure 

Park, J; Hwang, IC; Yoon, YE; Park, JB; Park, JH; 

Cho, GY 

W; S; 

P 

15 2022 

Comparison Of Machine Learning and The Regression-Based 

EHMRG Model for Predicting Early Mortality in Acute Heart 

Failure 

International 

Journal of 

Cardiology 

Austin, D.E.; Lee, D.S.; Wang, C.X.; Ma, S.H.; 

Wang, X.S.; Porter, J.; Wang, B. 

W; S; 

P 

16 2021 
Predicting 90 Day Acute Heart Failure Readmission and Death 

Using Machine Learning-Supported Decision Analysis 

Clinical 

Cardiology 
Sarijaloo, F.; Park, J.; Zhong, X.; Wokhlu, A. 

W; S; 

P 

17 2021 
Prediction Model Using Machine Learning for Mortality in 

Patients with Heart Failure 

American 

Journal of 

Cardiology 

Negassa, A.; Ahmed, S.; Zolty, R.; Patel, S.R. 
W; S; 

P 

18 2021 
Predicting Hospital Readmission in Heart Failure Patients in 

Iran: A Comparison of Various Machine Learning Methods 

Healthcare 

Informatics 

Research 

Najafi-Vosough, R.; Faradmal, J.; Hosseini, S.K.; 

Moghimbeigi, A.; Mahjub, H. 

W; S; 

P 

19 2021 
Machine Learning-Based Model for Predicting 1 Year 

Mortality of Hospitalized Patients with Heart Failure 

ESC Heart 

Failure 

Tohyama, T.; Ide, T.; Ikeda, M.; Kaku, H.; Enzan, 

N.; Matsushima, S.; Funakoshi, K.; Kishimoto, J.; 

Todaka, K.; Tsutsui, H. 

W; S; 

P 

20 2021 

Derivation Of an Electronic Frailty Index for Predicting Short-

Term Mortality in Heart Failure: A Machine Learning 

Approach 

ESC Heart 

Failure 

Ju, C.S.; Zhou, J.D.; Lee, S.R.; Tan, M.S.; Liu, T.; 

Bazoukis, G.; Jeevaratnam, K.; Chan, E.W.Y.; 

Wong, I.C.K.; Wei, L.; Zhang, Q.P.; Tse, G. 

W; S; 

P 

21 2021 

Prediction of Long-Term Hospitalisation and All-Cause 

Mortality in Patients with Chronic Heart Failure on Dutch 

Claims Data: A Machine Learning Approach 

BMC Medical 

Informatics 

and Decision 

Making 

van der Galiën, O.P.; Hoekstra, R.C.; Gürgöze, 

M.T.; Manintveld, O.C.; van den Bunt, M.R.; 

Veenman, C.J.; Boersma, E. 

W; S; 

P 

22 2020 

Utilizing Electronic Health Data and Machine Learning for 

The Prediction Of 30-Day Unplanned Readmission or All-

Cause Mortality in Heart Failure 

Cardiovascular 

Digital Health 

Journal 

Beecy, A.N.; Gummalla, M.; Sholle, E.; Xu, Z.; 

Zhang, Y.; Michalak, K.; Dolan, K.; Hussain, Y.; 

Lee, B.C.; Zhang, Y.; Goyal, P.; Campion, T.R., Jr.; 

Shaw, L.J.; Baskaran, L.; Al'Aref, S.J. 

W; S; 

P 

23 2019 

Feature Selection and Transformation by Machine Learning 

Reduce Variable Numbers and Improve Prediction for Heart 

Failure Readmission or Death 

PLOS ONE 
Awan, S.E.; Bennamoun, M.; Sohel, F.; Sanfilippo, 

F.M.; Chow, B.J.; Dwivedi, G. 

W; S; 

P 

24 2019 

Machine Learning-Based Prediction of Heart Failure 

Readmission or Death: Implications of Choosing the Right 

Model and the Right Metrics 

ESC Heart 

Failure 

Awan, S.E.; Bennamoun, M.; Sohel, F.; Sanfilippo, 

F.M.; Dwivedi, G. 

W; S; 

P 
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To validate the alignment of the selected articles with the objectives of the SLR, a 

word cloud is generated (Figure 2.2), highlighting the most frequent terms in the abstracts. 

As expected, terms related to HF, HF patients, ML, and predictive models dominate. 

Interestingly, while events like readmission are present, mortality emerges as the most 

common target. 

 

Figure 2.2: Word could of the abstracts 

After reviewing the selected articles, a quality assessment is undertaken to evaluate 

their contribution to the research objective and specifically address the four specific 

questions. For each research question, evaluation criteria are defined and translated into 

operational questions. The articles are then evaluated against these criteria, with each 

criterion assigned to a numerical value based on the capability of the article to answer the 

research questions (Błaziak et al., 2022): 1 for full capability, 0.5 for partial capability, 

and 0 if the criteria were not met (Table 2.2).   

Table 2.2: Quality criteria for article evaluation 

  Id Quality Criteria 

What are the 

scope and 

objectives? 

1.1 Does the article clearly describe and justify the objective of applying the model? 

1.2 Does the article clearly describe the scope of the study? 

What 

methodology is 

used? 

2.1 Is the sample utilized in the article relevant and clearly contextualized? 

2.2 Does the article provide a detailed description of the data collection and preparation phase? 

2.3 Does the article present and justify the variables used?  

2.4 Does the article provide, describe, and justify the employed techniques/algorithms? 

2.5 Does the article compare different predictive models?  

What are the 

results? 

3.1 Does the article clearly apply validation methods and various evaluation metrics?  

3.2 Does the article clearly present the results of the evaluation metrics?  

3.3 Does the article clearly identify and justify the best-performing model? 

3.4 Does the article clearly identify the most important variables? 

3.5 Does the article provide a detailed discussion of the results, including insights gained from the 

evaluation metrics? 

What are the 

study impacts? 

4.1 Does the article clearly describe the contributions of the study?  

4.2 Does the article clearly describe the limitations of the study?  

4.3 Does the article provide and justify the future recommendations?  
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2.2. Critical Synthesis of the Literature 

The review process commences with an in-depth examination of each selected article. To 

systematically address the four research questions, relevant data is meticulously extracted 

and documented in dedicated Excel tables, where each column represents a partial answer 

contributing to the comprehensive response that the entire table aims to provide (Paul & 

Menzies, 2023). 

The first table characterizes the scope and objectives of each article, including details 

like the country, study period, and data origin to provide an initial understanding. The 

following tables focus on the methodological aspects. One outlines the outcomes each 

study aimed to predict and their follow-up periods, while another details model 

characteristics such as sample size (noting if techniques to correct sample imbalance were 

applied), algorithms used, feature selection methods, and the number of independent 

variables. The evaluation process is divided into four tables, each focused on a different 

outcome, detailing the evaluation method, metrics used, and best-performing algorithm. 

Traditional models are also included if applied for comparison. The most significant 

variables are presented separately in another table, divided into nine dimensions, 

including demographics and clinical history. Lastly, two tables critically evaluate the 

study results, highlighting significant contributions and key stakeholders in one, and 

identifying limitations with recommendations for future investigations in the other. 

Upon concluding the data extraction phase, the accumulated information is subjected 

to thorough interpretation. Employing both statistical and descriptive analyses, each table 

undergoes critical examination to reveal discernible patterns, identify valuable insights, 

and explore potential gaps within the existing literature (Paul et al., 2023). 

 

2.2.1. Scope and Objectives  

The selected studies cover a wide range of objectives and scopes, applied to a variety of 

demographic cohorts (Table 2.3). 

Regarding the scope, the primary focuses were mortality (n=8) and readmission 

(n=7), each similarly represented. Some studies addressed both outcomes separately 

(n=2) (Sabouri et al., 2023; van der Galiën et al., 2021), while others aimed to predict a 

combined endpoint (CEP) (n=6) (e.g., Okoye et al., 2023), and only one study specifically 

addressed decompensation (Kerexeta et al., 2023). 

The studies span various follow-up periods, with mortality predictions ranging from 

in-hospital (Sabouri et al., 2023) to death within 7 days (Austin et al., 2022) up to 3 years 
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(e.g., Park et al., 2022; Xu et al., 2023). Readmission predictions extend from 20 days 

(Rizinde et al., 2023) up to 3 years (van der Galiën et al., 2021), while CEP outcomes are 

between 30 days (e.g., Awan et al., 2019a) and 6 months (e.g., Beecy et al., 2020). 

Mortality studies, by comparison, often include longer follow-up periods, though 30 days 

is a frequent benchmark across outcomes. Decompensation is uniquely predicted within 

a 7-day period (Kerexeta et al., 2023). Notably, only one study applied a time-dependent 

prognosis approach, which does not define a specific time frame but instead focuses on 

understanding the evolving risk profile over time without a fixed endpoint (Tong et al., 

2023).    

While all the studies revolve around prediction models, not all of them have the 

construction of predictive models for mortality and readmission as their final objective. 

Some aim to identify the risk factors associated with a specific outcome (e.g., Awan et 

al., 2019b; Tohyama et al., 2021), others seek to create clusters according to the risk of 

the outcome (Okoye et al., 2023), and others want to compare the model performance 

with more traditional ML models (e.g., Negassa et al., 2021) or preexisting cardiologic 

scores/models already widely used (e.g., Austin et al., 2022; Sharma et al., 2022). 

Additionally, some studies aim to provide explainability of the models, offering insights 

into why certain predictions are made, more focused on the predictive value (e.g., 

(Soliman et al., 2023; Xu et al., 2023). 

Most reviewed studies used a single-center investigation approach, with a subset 

(n=10) opting for a multi-center methodology (e.g., Austin et al., 2022; Tohyama et al., 

2021), i.e. the data was collected from various hospitals within the same country. 

However, a wide range of time-periods was observed, from eight months (Karakuş & Er, 

2022) to 11 years (Rizinde et al., 2023). Most studies (n=16) had collection periods of 3 

years or higher, indicating a significant focus on long-term data collection.  

Previous studies show that HF has different prevalences across racial or ethnic groups 

(Guo et al., 2021; Lewsey & Breathett, 2021), highlighting the importance of cultural 

diversity in a study of this nature. The selected articles span 13 countries across five 

continents, each contributing unique healthcare systems, patient demographics, and 

research capacities to HF outcome prediction. China stands out with the highest number 

of studies (n=5). 
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Table 2.3: Context and scope of the studies 

 
Notes: AI: Artificial intelligence; EHMRG: Emergency Heart Failure Mortality Risk Grade; EHR: Electronic Health Record; HF: Heart Failure; LaCE: Length of stay, Age, Comorbidity, and Emergency visit; ; LACE: 

Length of stay, Acuity of admission, Comorbidity, and Emergency visit; MARKER-HF: Machine learning Assessment of RisK and EaRly mortality in Heart Failure; MC: Multicenter; ML: Machine Learning; NLR: 

Neutrophil-to-Lymphocyte Ratio; PNI: Prognostic Nutritional Index; SC: Single-center.; USA: United States of America

ID Scope Study Objective Data Origin Period Country 

1 
In-hospital and 6-month mortality; 

30- and 90-day readmission 
Predict mortality and readmission, based on conventional features. SC 2012-2018 Iran 

2 6-month readmission Predict emergency readmissions by leveraging ML models to develop a stacking ML model based on EHR data. SC 2016-2019 China 

3 20-day readmission Compare ML models to evaluate their performance in predicting which HF patients are at high risk for readmission after discharge. 
MC  
(7) 

2008-2019 Rwanda 

4 Readmission or mortality Predict readmission or mortality, using conventional statistics and ML to improve time-dependent prognosis understanding. SC 2016-2019 China 

5 100-day readmission 
Compare deep learning with traditional ML models in the prediction of readmission risk for HF patients, while providing explanations 

for the predictions. 

MC  

(-) 
2017-2019 Sweden 

6 3-year all-cause mortality Evaluate ML models for predicting mortality and develop an interpretable model with individualized risk assessments and explanations. SC 2017-2020 China 

7 6-month mortality or readmission Identify risk factors for re-hospitalization or death and determine high-risk clinical phenotypes in older patients using unsupervised ML. SC 2018-2019 Italy 

8 7-day decompensation Develop an AI model to predict decompensation using telemonitoring data and analyze variable significance for HF progression. SC 2014-2022 Spain 

9 6-month readmission Develop an interpretable predictive model to forecast readmission in the HF Chinese population. SC 2016-2019 China 

10 1-year mortality 
Assess the ability of MARKER-HF to predict mortality in patients both with and without HF, in patients with and without 
cardiovascular disease, and in sub-groups with various common medical conditions. 

SC 2013-2020 
South 
Korea 

11 4 to 285 day mortality Determine the life-threatening risk associated with HF in patients using classification-based ML techniques. SC 2015 Pakistan 

12 30-day readmission 
Develop and validate ML models to predict unplanned readmissions in a HF cohort using administrative health data and compare their 

performance with the LaCE score. 

MC  

(-) 
2012-2019 Canada 

13 30-day readmission Assess the ability of ML algorithms to predict readmissions and compare their prognostic performance with the LACE index. SC 2010-2019 Italy 

14 3-year mortality Develop a ML- based risk-prediction model for mortality in patients with acute HF. 
MC  

(3) 
2009-2016 

South 

Korea 

15 7- and 30-day mortality Compare ML algorithms with the regression-based EHMRG model in predicting mortality 
MC  
(86) 

2004-2007 Canada 

16 90-day readmission or mortality Develop a ML-based model integrating various EHR risk factors to predict readmission or all-cause mortality. SC 2011-2019 USA 

17 30-day mortality Develop a ML ensemble model to predict mortality, comparing its effectiveness against the logistic model SC 2001-2010 USA 

18 Readmission Compare the performance of six ML methods for predicting hospital readmission in HF patients. SC 2015-2019 Iran 

19 1-year mortality 
Predict mortality using ML algorithms and administrative claim data, comparing performance with conventional risk models and 
identifying top predictors for accurate ML-based prediction. 

MC  
(128) 

2013 Japan 

20 30-day and 90-day mortality Improve short-term mortality prediction by integrating NLR and PNI into an electronic frailty index using ML. 
MC  

(9) 
2013-2017 China 

21 
1- and 3-year readmission; 1- and 

3-year all-cause mortality 

Assess the predictive value of Insurance claim data for hospitalization and mortality, utilizing both ML and traditional statistical 
techniques. 

SC 2012-2014 
Netherla
nds 

22 
30-day readmission or mortality; 

6-month readmission or mortality 
Create a method for predicting readmissions and mortality by combining clinical and physiological data from EHR. SC 2008-2018 USA 

23 30-day readmission or mortality Apply ML to identify key variables for predicting readmission or death, using feature extraction to simplify and improve performance. 
MC 

- 
2003-2008 Australia 

24 30-day readmission or mortality 
Evaluate ML models for predicting readmission or death using administrative data, addressing class imbalance and improving accuracy 

over regression methods 

MC 

- 
2003-2008 Australia 
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2.2.2. Methodology  

Understanding the methodology employed is crucial for assessing the reliability of research 

findings and enables replication by other researchers, promoting transparency and advancing 

scientific knowledge.  

The vast majority of studies (91.7%) present a binary dependent variable, where 1 indicates 

if mortality/readmission/CEP/decompensation occurs during the follow-up period, and 0 

indicates otherwise. These variables are reflected in Table 2.4. The studies that did not have a 

binary target are the ones that opted for a survival analysis investigation. The study conducted 

by Tong et al. (2023), utilized survival time as the dependent variable, representing the number 

of days from the index hospital admission to the occurrence of the event, which could be either 

death or readmission. In contrast, Jang et al. (2023) employed a composite outcome approach, 

where one category indicated death within 90 days, while the other represented survival time 

beyond a period of 2 years. Exposing the algorithm to the two extreme outcomes represented 

an intermediate step in constructing the MARKER-HF 2 risk score (Adler et al., 2020). 

Table 2.4: Dependent variables for binary outcome studies 

Dependent Variables  Study ID 
 

Follow-up Period 1 2 3 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

D
 

7-day       ✓                

M
o

rt
a

li
ty

 

In-hospital ✓ 
                     

7-day             
✓ 

         

30-day             
✓ 

 
✓ 

  
✓ 

    

90-day                  
✓ 

    

4-285 day         
✓ 

             

6-month ✓ 
                     

1-year                 
✓ 

 
✓ 

   

3-year     
✓ 

      
✓ 

      
✓ 

   

R
ea

d
m

is
si

o
n

 

Und.                
✓ 

      

20-day   
✓ 

                   

30-day ✓ 
        

✓ ✓ 
           

90-day ✓ 
                     

100-day    
✓ 

                  

6-month  
✓ 

     ✓ 
              

1-year                   
✓ 

   

3-year                   
✓ 

   

C
E

P
 30-day                    

✓ ✓ ✓ 

90-day              
✓ 

        

6-month      
✓  

            
✓ 

  

Note: D: Decompensation; Und.: Undefined 

 
2 In medical research, these models are commonly recognized by their acronyms, therefore, the full names are 

provided only in the acronym list. 



10 

In Table 2.5Table 2.5, an overview of the methodology applied to predict these outcomes is 

presented. The predominant focus of the studies lies in classification tasks (n=21), except for 

two dedicated to survival analysis (Jang et al., 2023; Tong et al., 2023) and another aimed at 

cluster creation (Okoye et al., 2023).  

An examination of dataset sizes reveals a range from 299 (Karakuş & Er, 2022) to 41749 

(Jang et al., 2023) HF patients, with an average of 7612 individuals per study. Despite the 

prevalent challenge of imbalanced data in the medical field (Tasci et al., 2022), only 37.5% of 

the articles implemented strategies to mitigate this issue. Among the approaches employed, 

oversampling was the most common method with three of the four articles that resourced to 

this methos opting for the utilization of the synthetic minority over-sampling technique 

(SMOTE) to augment the minority class (e.g., Rizinde et al., 2023; Sabouri et al., 2023). The 

remaining studies opted for a weight adjustment (Awan et al., 2019a; Sharma et al., 2022; van 

der Galiën et al., 2021), with two going with an under-sampling technique (Kerexeta et al., 

2023; Polo Friz et al., 2022). Interestingly, some studies only applied these techniques to 

specific algorithms due to of their properties (e.g., Austin et al. (2022) only applied random 

oversampling to the neural network algorithm). 

A diverse range of algorithms has been utilized across the studies, with only six of them 

opting not to compare different ML algorithms for their final model. However, these studies 

still conducted various other types of comparisons. For instance, some studies compared 

algorithms as variable selection options (e.g., Okoye et al., 2023; Sarijaloo et al., 2021), while 

others assessed model performance against the pre-existing models (e.g., Park et al., 2022). 

Additionally, some studies investigated variations in algorithm performance under different 

circumstances. For example, examined the same algorithm with different feature selection 

techniques (e.g., Awan et al., 2019), explored its performance with different independent 

variables (e.g., Beecy et al., 2020), and analyzed its performance across different patient cohorts 

(e.g., Jang et al., 2023). These additional comparisons were also part of some of the other studies 

that did have comparisons between different algorithms. Regarding the specific algorithms that 

were employed, random forest (RF) was the most used algorithm appearing in 15 studies (e.g., 

Rahman et al., 2023; Sabouri et al., 2023) followed closely by LR (n=12).  

Other risk prediction scores and models have been developed to assist clinicians in 

assessing patient outcomes across different medical conditions and are highlighted in Table 2.5 

in bold to distinguish them from the other algorithms. The LACE (Van Walraven et al., 2010), 

LaCE (Au et al., 2012), and HOSPITAL (Donze et al., 2013) scores are versatile tools used to 

predict hospital readmission risk across a range of patients and conditions. In contrast, models 
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like MARKER-HF, BIOSTAT-CHF (Voors et al., 2017), SHFM (Levy et al., 2006), AHEAD 

(Spinar et al., 2016), EHMRG (Lee et al., 2012) and MAGGIC (Pocock et al., 2013) risk scores 

are tailored for HF patients, focusing on the prediction of mortality and/or readmission 

outcomes. Several studies (n=8) aimed to compare their findings with these established and 

validated scores, while Jang et al. (2023) exclusively utilized the MARKER-HF model to assess 

its performance as a universal scoring system applicable beyond HF patients.  

In over half of the studies (n=15), feature selection techniques were employed (e.g., Awan 

et al., 2019b; Sabouri et al., 2023). The remainder either relied on existing literature (Sharma 

et al., 2022a; Xu et al., 2023) and clinical expertise (Soliman et al., 2023), or simply utilized 

variables available in the dataset (Karakuş & Er, 2022; Najafi-Vosough et al., 2021). For those 

studies utilizing pre-existing scores, variables were pre-defined  (Jang et al., 2023).  Once again 

RF emerges as the most employed technique, underscoring its versatility and effectiveness in 

data analysis. 

Naturally, the number of independent variables varies from study to study, ranging from 

only 8 (Jang et al., 2023) variables up to 2032 (Beecy et al., 2020). The variables encompass 

demographics, clinical history, vital signs, physical exam findings, including electrocardiogram 

(TTE) and echocardiogram (ECG) results, treatments, and comorbidities. Unlike the rest, two 

studies adjusted the number of independent variables based on the specific model being applied 

(Austin et al., 2022; Beecy et al., 2020). 

.
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Table 2.5: Methodology of the studies 

 

Notes: AdaBoost: Adaptive Boosting; Diabetes mellitus; BagT: Bagging Trees; BT: Boosting Trees; C: Classification; CART: Classification and Regression Trees; CatBoost: Categorical Boosting; CG-SVM: Coarse Gaussian Support Vector Machine; 

Clust.: Clustering; CKNN: Coarse K-Nearest Neighbors; CosKNN: Cosine K-Nearest Neighbors; CR: Cox Regression; CubKNN: Cubic K-Nearest Neighbors; CubSVM: Cubic Support Vector Machine; DT: Decision Tree; EN: Elastic Net; ET: Extra 

Trees; FDR: False Discovery Rate; FG-SVM: Fine Gaussian Support Vector Machine; FT: Fine Trees; GB: Gradient Boosting; GBDT: Gradient Boosting Decision Tree; KNN: K-Nearest Neighbors; LASSO: Least Absolute Shrinkage and Selection 

Operator; LDA: Linear Discriminant Analysis; LGB: Light Gradient Boosting; LR: Logistic Regression; LS-SVM: Least Squares Support Vector Machine; LSTM: Long Short-Term Memory; LinSVC: Linear Support Vector Classifier; LinSVM: 

Linear Support Vector Machine; MARS: Multivariate Adaptive Regression Splines; MLP: Multilayer Perceptron; MLNN (1–2–3HL): Multilayer Neural Network with 1 to 3 Hidden Layers; MG-SVM: Medium Gaussian Support Vector Machine; 

MKNN: Medium K-Nearest Neighbors; MRMR: Minimum Redundancy Maximum Relevant; MT: Medium Tree; NB: Naive Bayes; NN: Neural Network; QDA: Quadratic Discriminant Analysis; RUSBT: Random Under Sampling Boosted Trees; 

RF: Random Forest; RFE: Recursive Feature Elimination; RSF: Random Survival Forest; SA: Survival analysis; SBS Sequential backward selection; SFS: Sequential forward selection; SKNN: Subspace K-Nearest Neighbors; SVM: Support Vector 

Machine; SubD: Subspace Discriminant; VC: Voting Classifier; VS: Variable Selection; WKNN: Weighted K-Nearest Neighbors; XGBoost: Extreme Gradient Boosting; * Y indicates if the study applied techniques to address class imbalance; N 

indicates if not

ID Sample* Problem Algorithm Feature Selection Techniques Ind. Var. 

1 737 (Y) C KNN; LR; MLP; NB; QDA; RF; SVM; XGBoost RFE; MRMR; Boruta 34 

2 2008 (N) C 
MLP; LDA; GB; RF; LR; SVM; ET; AdaBoost; KNN; CatBoost; LGB; EN; Stacking Model 

(XGBoost) 
XGBoost; RF; ExtraTrees 166 

3 4083 (Y) C MLP; LR; DT; KNN; RF; SVM ExtraTrees 75 

4 1976 (N) SA Multivariate CR; LASSO CR; RF (SA); GB (SA) Univariate CR; LASSO; Feautre Importance (RF, GB) 146 

5 15612 (N) C CatBoost; LSTM; LACE Clinical expertise; data science knowledge 40 

6 626 (N) C LR; KNN; RF; NB; DT; XGBoost Literature 45 

7 571 (N) Clust. - RF; Multivariable CR ND 

8 488 (Y) C LR; Bagging; XGBoost; SVM; RF; ET; Ada Boost; GB Boruta 42 

9 2002 (N) C LR; DT (CART); XGBoost; NB; SVM; RF 
Combination of single-factor and multi-factor regression with 

FDR correction; LASSO; RF 
12 

10 41749 (N) SA Boosted DT; MARKER-HF Pre-defined 8 

11 299 (N) C 

LR; NB; LinSVM; CubSVM; QuadSVM; FG-SVM; MG-SVM; CG-SVM; FKNN; MKNN; 

CKNN; CosKNN; CubKNN; WKNN; SKNN; BT; BagT; FT; MT; CT; RUSBT; SubD; 

MLNN(1–2–3HL) 

Available variables 

 
12 

12 9845 (Y) C 
XGBoost; GB; AdaBoost; CatBoost; LGB; LinSVC; Gaussian NB; RF; DT; LR (L1); NN; 

LSTM; LaCE 
Literature +/- 160 

13 3079 (Y) C AdaBoost; GB; XGBoost; RF; LACE Lasso  

14 4312 (N) C CoxBoost; BIOSTAT-CHF; AHEAD Score RF minimal depth evaluation 27 

15 12608 (Y) C NN; RF; XGBoost; LASSO; LR (EHMRG) RFE (XGBoost; RF); Feature importance (EN; RF) 111/10 

16 3189 (N) C LASSO-LR SVM; RF; GB; LASSO 98 

17 7516 (N) C 
LR, LR with VS, LASSO, RF, MARS, Mean, Bayesian Logistic, Boosting, Bagging, 

SuperLearner 
Literature 34 

18 1856 (Y) C SVM; LS-SVM; Bagging; RF; AdaBoost; NB Available variables 46 

19 10175 (N) C LASSO; SVM, RF; GBDT; VC; NN; SHFM; MAGGIC Permutation feature importance 89 

20 8893 (N) C GB; DT; LR Literature 16 

21 25776 (Y) C LR; EN; RF; NN Prevalence prioritization; LASSO 150 

22 3774 (N) C XGBoost; HOSPITAL Score Goodman-Kruskal Tau; Chi-Square test 796/2032 

23 10575 (N) C MLP t-test; Chi-Squared test; SFS; SBS; mRMR; PCA 47 

24 10575 (Y) C MLP, LR; RF; DT; SVM (weigthed RF, DT, SVM); LACE - 47 
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2.2.3. Results  

For results evaluation, four tables were devised. These tables categorized the models according 

to outcomes, including decompensation (Table 2.6), mortality (Table 2.7), readmission (Table 

2.8), and CEP (Table 2.9Table 2.9). Additionally, the models were arranged based on their 

prediction period, which provides a structured framework for presenting the data, contributing 

to improved organization and readability. 

The predominant validation method (n=9) involved a combination of hold out, which 

partitions the dataset into training and test sets, and k-fold cross-validation, which divides the 

dataset into k subsets, using each as a validation set while training on the rest (e.g., Özbay 

Karakuş & Er, 2022; Tong et al., 2023). Additionally, six studies exclusively used hold-out 

validation, with only two studies incorporating a separate validation set in addition to the 

training and test sets (Awan et al., 2019a; Awan, et al., 2019b). Among the k-fold cross-

validation techniques, the 5-fold cross-validation method was the most commonly employed 

(n=7). Notably, two articles did not mention any validation method (Jang et al., 2023; Sarijaloo 

et al., 2021). 

Most studies included various evaluation metrics (n=19) with AUC (Area under the ROC 

curve), also referred to as c-statistics (e.g.,Tohyama et al., 2021) or c-index (Negassa et al., 

2021; Tong et al., 2023), being the most reported metric (n=21), with values ranging from 0.59 

(Sabouri et al., 2023) to 1 (Karakuş & Er, 2022) across the various outcomes. On average, the 

models for mortality prediction achieved a higher AUC of 0.82, followed by readmission with 

0.74, and CEP with 0.68. Additionally, four studies also incorporate calibration metrics, such 

as the Brier Score (Austin et al., 2022; Tohyama et al., 2021) and its variations, that is Integrated 

Brier score (Tong et al., 2023) and Scaled Brier Index (Negassa et al., 2021), among others.  

Calibration in predictive modelling assesses the accuracy of predicted probabilities relative to 

observed outcomes, distinct from discrimination metrics, which estimate the ability of the 

model to differentiate between outcomes (Jiang et al., 2012). In contrast, six studies were noted 

for their absence of evaluation graphs (e.g., Tohyama et al., 2021; van der Galiën et al., 2021), 

limiting the visual representation of their findings. 

For additional insight, in articles that compared ML models with pre-existing ones, the 

evaluation metrics of both were considered. In cases where studies report multiple top-

performing models, the model emphasized as the best is highlighted in bold. Only in one 

instance was the ML model surpassed, specifically by the EHMRG score for 30-day mortality 

prediction (Austin et al., 2022). Notably, Extreme Gradient Boosting (XGBoost) was 
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highlighted as the top-performing model in six studies, three of which focused on readmission 

prediction (e.g., Polo Friz et al., 2022; Sharma et al., 2022) and the only study on 

decompensation (Kerexeta et al., 2023). For the other two outcomes, there appears to be a tie, 

with multiple models emerging as top performers. For mortality, LR, elastic net (EN), and 

gradient boosting (GB) each achieve the best performance twice, as shown by Sabouri et al. 

(2023), van der Galiën et al. (2021) and Ju et al. (2021), respectively. Similarly, for the CEP, 

RF, XGBoost, and Multilayer Perceptron (MLP) each stand out twice, as seen in Okoye et al. 

(2023), Beecy et al. (2020) and Awan et al. (2019b), respectively. 

 

Table 2.6: Evaluation of the models used for decompensation prediction 

Follow-up 

Period 
ID Evaluation Method Evaluation Metrics Comparison Metrics 

Evaluation 

Graphs 

Best 

Performance 

7-day 8 
Hold out:80/20; 10-

fold CV 
AUC=0,694 - ✓ XGBoost 

Notes: AUC: Area under the curve; CV: Cross-validation; XGBoost: eXtreme Gradient Boosting 

 

Table 2.7: Evaluation of the models used for mortality prediction 

Follow-up 

Period 
ID 

Evaluation 

Method 
Evaluation Metrics Comparison Metrics 

Evaluation 

Graphs 

Best 

Performance 

In- Hospital 1 
Hold out:70/30; 10-

fold CV 
AUC=0.90-0.91; A=0.84-0.85; 

S=0.84-0.85; R=0.83  

 
✓ 

RFE-LR; 
Boruta-LR 

7-days 15 

stratified random 

sampling;  

Hold-out 80/20 

AUC=0,794; BS=0.021; 
CIL=0.017; CS=0.954 

LASSO: AUC=0,774 

BS=0.021; CIL=-0.264; 

CS=0.882 

✓ 
LASSO; 
EHMRG 

30-days 

15 

stratified random 

sampling;  

Hold-out 80/20 

AUC=0,759; BS=0.063; CIL=-
0.863; CS=1.025 

EHMRG: AUC=0,755; 

BS=0.056; CIL=-0.026; 

CS=0.964 

✓ 
XGBoost; 

EHMRG 

17 

Hold out: 

55.7/44.3; 10-fold 

CV 

AUC=0.83; SBI=0.084; 

RP=0.000-0.171; IDI=0.024; 

 

LR: AUC=0.79; R2=0.168; 

SBI=0.074; RP=0.003-0.162; 

IDI=0.022 

✓ Super Learner 

20 5-fold CV; AUC=0.90; P=0.91; R=0.89   GB 

90-days 20 5-fold CV; AUC=0.92; P=0.94; R=0.93   GB 

4 to285-
days 

11 

Hold out: 70/30; k-

fold (3-fold,5-fold) 

CV  

AUC=0.87-1; A=58.5%-100% 

 

✓ 

MLNN (2 HL); 

FG-SVM; 

FKNN; 
WKNN; 

SKNN; BT; 

BagT 

6-Months 1 
Hold out:70/30; 10-

fold CV; 

AUC=0.59-0.61; A=0.61-0.63; 

S=0.44-0.48; R=0.63-0.66 

 
✓ 

MRMR-LR; 

MRMR-NB 

1-year 

19 
hold out 80:20, 5-

fold CV  

AUC=0.777; A=70.7%; 

R=71.1%; S=70.6%; BS=0.121  

SHFM: AUC=0.713; A=80.5% 

R=26.6%; S=91.7%; BS=0.139 
MAGGIC: AUC=0.726%; 

A=70.4%; R=58.7%; S=72.9%; 

BS=0.130% 

✓ VC 

21 CV AUC=0.7866; R=74.2; S=69.7;   EN 

10 ND AUC =0.770 

 
✓ 

MARKER-HF 

(patients 

without HF) 

3-years 

6 5-fold CV; 
AUC=0.82; A=78.96%; P=98%; 

R=99.44% 

 
✓ RF 

14 
Hold out: 

62.7/37.3; 5-fold 

CV  

AUC=0,760-0,761 
BIOSTAT-CHF: AUC=0.714-

0.715; 

AHEAD: AUC=0.656-0.681 

✓ CoxBoost 

21 CV AUC=0.7911; R=64.4; S=78.1   EN 

Notes: A: Accuracy; AHEAD: Atrial fibrillation, Hemoglobin, Elderly , Abnormal renal parameters, Diabetes mellitus; AUC: Area Under the 
Curve; BagT: Bagging Trees; BIOSTAT-CHF: BIOlogy Study to TAilored Treatment in Chronic Heart Failure; BS: Brier Score; BT: Boosted 

Trees; CIL: Calibration-in-the-large; CS: Calibration Slope; CV: Cross-Validation; EHMRG: Emergency Heart Failure Mortality Risk Grade; 

EN: Elastic Net; FG-SVM: Fine Gaussian Support Vector Machine; FKNN: Fuzzy k-Nearest Neighbors; GB: Gradient Boosting; IDI: 
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Integrated discrimination index; LASSO: Least Absolute Shrinkage and Selection Operator; LR: Logistic Regression; MAGGIC: Meta-

Analysis Global Group in Chronic Heart Failure; MLNN (2 HL): Multilayer Neural Network with 2 Hidden Layers; MRMR: Minimum 

Redundancy Maximum Relevant; NB: Naive Bayes; P: Precision; R: Recall; RF: Random Forest; RP: Range of prediction ; S: Specificity; 
SBI: Scaled Brier Index; SHFM: Seattle Heart Failure Model; SKNN: Soft k-Nearest Neighbors; SVM: Support Vector Machine; VC: Voting 

Classifier; WKNN: Weighted K-Nearest Neighbors 

 

Table 2.8: Evaluation of the models used for readmission prediction 

Notes: A: Accuracy; AdaBoost: Adaptive Boosting; AUC: Area under the ROC Curve; AUPRC: Area under the precision-recall curve; 

CatBoost: Categorical Boosting; CV: Cross-validation; EN: Elastic Net; F1: F1-score; GB: Gradient Boosting; KNN: K-Nearest Neighbors; 

LACE: Length of stay, Acuity level, Comorbidity, and Emergency visit; LaCE: Length of stay, Age, Comorbidity, and Emergency visit; LR: 
Logistic Regression; LR+: Positive likelihood ratio; MRMR: Minimum Redundancy Maximum Relevant; NPV: Negative predictive value; P: 

Precision; R: Recall; RF: Random Forest; PPV: Positive Predictive Value; S: Specificity; SVM: Support Vector Machine; 

 

Table 2.9: Evaluation of the models used for CEP prediction 

Follow-up 

Period 
ID Evaluation Method Evaluation Metrics 

Comparison Metrics Evaluation 

Graphs 

Best 

Performance 

Undefined 4 5-fold CV; 
AUC=0.587-0.61; TDAUC=0.617-

0.641; IBS=0.164-0.166;   
 

✓ RSF; GB 

30-days 

22 
Hold out:90/10; 5-fold 

CV; 

AUC=0.756 

 

HOSPITAL score: 

AUC=0.666 ✓ 

XGBoost 

(feature-
aggregated)  

23 Hold out: 70/15/15 

AUC= 0.62; R=58.7%; S=60.6% 

(original model with 47 var. + 

PCA= 0.66) 

 
✓ MLP + mRMR 

24 Hold out: 70/15/15 
AUC= 0.628; AUPRC=0.461; 

A=64.93%; R=48.42%; S=70.01 

LACE: AUC=0.551; 

0.448; A=59.85; 

R=45.54; S=64.80 

 MLP 

90-days 16 N.D. 

AUC=0.760; R=83%; S=56%; 

A=63%; PPV=38% (minimum cost 

threshold) 

 
✓ LASSO+LR 

6-Months 

7 Hold out: 70/30 N.D.   RF 

22 
Hold out: 90/10; 5-

fold CV; 
 

AUC= 0.701 

HOSPITAL score 

AUC=0.654 ✓ 

XGBoost 

(discharged 

index) 

Notes: A: Accuracy; AUC: Area under the ROC Curve; AUPRC: Area under the precision-recall curve; CV: Cross-validation; GB:Gradient 
Boosting ; HOSPITAL: Hemoglobin, discharge from Oncology service, Sodium level, Procedure during the index admission, Index Type of 

admission, number of Admissions, and Length of stay; IBS: Integrated Brier score; LACE: Length of stay, Acuity level, Comorbidity, and 

Emergency visit; ; LASSO: Least Absolute Shrinkage and Selection Operator; LR: Logistic Regression; MLP: Multilayer Perceptron; MRMR: 

Follow-up 

Period 
ID 

Evaluation 

Method 
Evaluation Metrics 

Comparison Metrics Evaluation 

Graphs 
Best Performance 

Undefined 18 CV 
A=0.90-0.91; R=0.69-0.72; S=0.94-
0.95; PPV=0.73-0.78; NPV=0.93-

0.94 

 

 

RF (median 

imputation method; 

multiple imputation 
method) 

20-days 3 Hold out:80/20 

 

 AUC=94%; A=87%; P=84%; 

R=89%; F1=87% 

 
✓ RF 

30-days 

1 
Hold out:70/30; 

10-fold CV; 

AUC=0.71-0.73; A=0.68-0.81; 

S=0.69-0.85; R=0.50-0.63 

 
✓ 

Boruta-SVM; 

MRMR-LR 

12 
Hold out:80/20; 

10-fold CV 

AUC=0.654-0.685; PPV=0.21-0.62; 

LR+=1.00-6.12 

LaCE:  AUC=0.570; 

PPV=0.21-0.24; 
LR+=1.00-1.20 

✓ XGBoost 

13 Hold out:80/20 
AUC=0.803; R=0.78; S=0.75; 

A=0.77 

LACE:  

AUC=0.504; R=0.54; 
S=0.59; A=0.0.59 

✓ XGBoost 

90-days 1 
Hold out:70/30; 

10-fold CV; 

AUC=0.60; A=0.63; S=0.66; 

R=0.53 

 
✓ MRMR-KNN 

100-days 5 

 Hold 

out:88.39/11.61; 
10-fold CV 

AUC=0.66; R=0.83; S=0.50; 

F1=0.60; AUPRC=0.68 

LACE:  
R=0.35; S=0.78; 

AUC=0.56; F1=0.39; 

AUPRC=0.51 

 Catboost 

6-months 

2 CV 

AUC=0.861- 0.881; A=84.9%- 

89.41%; P=84.92%-90.10%; 

R=84.9%-89.41%; S=84.07%-
87.83%; F1=84.84%-89.28%,  

 

✓ 

Catboost; 

Adaboost; GB; 

Stacking Model 

(XGBoost) 

9 Hold out: 70/30 
AUC=0.634; A=0.652; R=32.4%; 

S=84.4% 

 
✓ LR 

1-year 21 CV AUC=0.7320; R=71.0; S=66.3    EN 

3-years 21 CV AUC=0.7330; R=67.8; S=67.7    EN 
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Minimum Redundancy Maximum Relevant; ND: Not Disclosed  R: Recall; RF: Random Forest; RSF: Random Survival Forest; PPV: Positive 

Predictive Value; S:Specificity; TDAUC: Time-Dependent AUC; XGBoost: Extreme Gradient Boosting  

 

Over 83% of the articles identified key variables that enhance predictive ability and provide 

insights into the dependent variable. Focusing on the 20 articles that explicitly identified these 

variables, 87 are identified and organized into 8 groups: demographics (n=9), clinical history 

(n=15), medical status (n=9), lab results (n=23), vital signs (n=3), symptoms (n=4), treatments 

(n=4), TTE/ECG (n=12), and comorbidities (n=8)3. Table 2.10 displays the most important 

variables mentioned in at least two of these articles.  

Table 2.10: Most important variables identified across the studies 

Most Important 

Variables 

Study ID Total 

1 2 3 4 5 6 7 8 9 12 13 14 15 16 18 19 20 21 22 23 - 

Demographics                     - 

Age ✓ 
 
✓ 

 
✓ ✓ ✓  

   
✓ 

  
✓ ✓ ✓ ✓ 

 
✓ 11 

Sex   
✓ 

            
✓ 

 
✓ 

  3 

Clinical History                      

AT   
✓ 

                 
✓ 2 

LOS   
✓ 

 
✓ 

  
 ✓ 

      
✓ 

    4 

Nº Hospitalizations     
✓ ✓ 

   
✓ ✓ 

         4 

Medical Status                     - 

Type of HF  
✓ 

     
 ✓ 

           2 

CCI  
✓ 

  
✓ 

 
✓  

            3 

NYHA      
✓ 

 
 ✓ 

           2 

Lab Results                     - 

BNP      
✓ ✓  

            2 

BUN               
✓ 

   
✓ 

 2 

Cr ✓ 
     

✓  
      

✓ 
   

✓ 
 4 

GFR      
✓ 

     
✓ 

        2 

Hb ✓ ✓ 
       

✓ 
        

✓ 
 4 

Htc        
 ✓ 

         
✓ 

 2 

NLR  
✓ 

              
✓ 

   2 

NT-proBNP     
✓ 

      
✓ 

 
✓ 

      3 

RBC    
✓ 

              
✓ 

 2 

Na            
✓ ✓ ✓ ✓ 

     4 

Uric acid ✓ 
  

✓ 
   

 ✓ 
           3 

Vital signs                     - 

HR   
✓ 

       
✓ 

  
✓ 

      3 

DBP   
✓ 

  
✓ 

     
✓ 

 
✓ 

      4 

SBP ✓ 
 
✓ 

  
✓ 

       
✓ 

      4 

Symptoms                     - 

Edema ✓       ✓             1 

Treatments                     - 

Inotropic Support ✓             
✓ 

      2 

Diuretic use              
✓ 

 
✓ 

  
✓ 

 3 

TTE/ECG                     - 

LVEF              
✓ ✓ 

     2 

Comorbidities                     - 

DM        
 ✓ 

        
✓ 

  2 

CKD ✓ 
   

✓ 
          

✓ 
   

✓ 4 
Notes: AT: Admission type; BNP: B-type Natriuretic Peptide; BUN: Blood Urea Nitrogen; CCI: Charlson Comorbidity Index; CKD: Chronic 

Kidney Disease;  Cr: Creatinine ; DBP: Diastolic Blood Pressure; DM: Diabetes Mellitus; Electro/Echo: Electrocardiogram/Echocardiogram; 

GFR: Glomerular Filtration Rate; Hb: Hemoglobin; HF: Heart Failure; HR: Heart Rate; Htc: Hematocrit; LOS: Length of stay; LVEF: Left 
Ventricle Ejection Fraction; NLR: Neutrophil To Lymphocyte Ratio; NT-proBNP: Na: Sodium; N-Terminal pro–B-type Natriuretic Peptide; 

NYHA: New York Heart Association Functional Classification; RBC: Red Blood Cell Count; SBP: Systolic Blood Pressure; TTE/ECG: 

Electrocardiogram/ Echocardiogram. 

 
3 Appendix A lists all variables identified as important in the reviewed studies 
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Notably, age predominates as the most frequently cited variable, highlighted in 55% of the 

studies (e.g., Rahman et al., 2023; Sabouri et al., 2023; Soliman et al., 2023), with no other 

variable reaching a comparable frequency. In terms of categories, lab results emerged with the 

highest number of features (n=11), highlighting creatinine (Cr) (including serum creatinine and 

discharged creatinine), hemoglobin (Hb), and sodium (Na) as the top predictors. In contrast, the 

TTE/ECG and symptoms categories contain only one variable meeting the minimum frequency 

requirement: left ventricle ejection fraction and edema, respectively. For the remaining 

categories, clinical history, medical status, and vital signs each encompass three variables, with 

Length of stay (LOS) and number of hospitalizations, Charlson Comorbidity Index, diastolic 

blood pressure, and systolic blood pressure identified as the top predictors, respectively. In 

contrast, treatments and comorbidities feature only two variables each, with diuretic use and 

chronic kidney disease, being the most frequently mentioned in each category. 

 

2.2.4. Impacts: Contributions, Future recommendations, Stakeholders, Limitations 

To comprehend the impacts of the studies included in the SLR, their results are thoroughly 

examined. Table 2.11 systematizes the contributions of the studies and underlined stakeholders, 

while Table 2.12 summarizes their limitations, and suggestions for future research.  

Many studies make significant advances in both scientific understanding and practical 

applications by demonstrating the efficacy of ML algorithms in various HF outcomes (e.g., 

Polo Friz et al., 2022; Sabouri et al., 2023). They accomplish this by comparing these algorithms 

with commonly used pre-existing models (e.g.,Sharma et al., 2022), identifying previously 

overlooked important variables (e.g.,Tohyama et al., 2021), validating existing models (e.g., 

Austin et al., 2022; Jang et al., 2023), and offering solutions to common challenges in applying 

ML in medicine, such as interpretability (e.g., Soliman et al., 2023; Xu et al., 2023), imbalanced 

data, and missing values (e.g., Najafi-Vosough et al., 2021).  

The primary stakeholders emphasized in the studies are healthcare providers and HF 

patients (e.g., Negassa et al., 2021; Rizinde et al., 2023). Furthermore, certain studies delineate 

patient cohorts, like pre-fail and chronic HF patients, or focus on specific populations, such as 

Chinese patients. Additionally, some studies emphasize the involvement of healthcare 

administrators, researchers, government bodies, and insurance companies. 

Among the studies reviewed, only two did not acknowledge any limitations (Austin et al., 

2022; Xu et al., 2023). The primary challenge highlighted across most studies is the absence of 

external validation (e.g., PARK et al., 2022; Sarijaloo et al., 2021). Additionally, issues such as 

missing data (e.g., Sharma et al., 2022), selection bias (e.g., Jang et al., 2023), incomplete 
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variable inclusion (e.g., laboratory or non-clinical biomarkers) (e.g., Karakuş & Er, 2022), 

dataset size limitations (e.g., Okoye et al., 2023), class imbalance (e.g., Sabouri et al., 2023) 

and interpretability concerns (e.g., Polo Friz et al., 2022) are commonly recognized. Future 

recommendations often echo these limitations, advocating the inclusion of additional variables 

(e.g., NT-proBNP, Troponin) (e.g., Ju et al., 2021; Negassa et al., 2021) , inclusion of additional 

endpoints like quality of life and functionality (Sabouri et al., 2023), the exploration of new 

interventions like the SGLT-2 inhibitors (Soliman et al., 2023), and the thorough validation of 

their findings (e.g., Tohyama et al., 2021). 

Table 2.11: Contributions and highlighted stakeholders of the studies 

ID Contributions Highlighted Stakeholder 

1 
Effective ML models for in-hospital mortality and 30-day readmission; Conventional features 

combined with ML methods; 
Healthcare providers; Healthcare 

administrators 

2 

Demonstrates the effectiveness of stacking models in improving prediction accuracy, 

especially in complex data structures; Addresses a gap in understanding multi-feature-based 
ML models. 

Healthcare providers; 

Government bodies 

3 
Provides a comparative analysis of six ML models for HF management in Rwanda, 

identification of key predictors for hospital readmission. 
Healthcare providers; HF patients 

4 Use of non-linear algorithms in survival analysis. Healthcare providers; Researchers 

5 
Shallow models offer comparable performance and better interpretability, deep models, 

despite their complexity, require surrogate models for explanation 
Healthcare providers 

6 
ML interpretable tools like permutation importance, PDP plots, and SHAP values identify key 

mortality predictors (e.g., number of hospitalizations, age, GFR, BNP, DBP, SBP, and NYHA) 
Healthcare providers 

7 Integrates frailty and comorbidity assessments with ML 
Healthcare providers; Pre-frail 

patients, 

8 

Enhances HF decompensation predictions using XGBoost and LR; improves clinician trust 

through model explainability; aids in patient triaging based on risk assessments; identifies 
symptoms as key predictors (e.g., edema, orthopnea) 

Healthcare providers 

9 
Provides visually intuitive nomogram for clinicians to identify high-risk patients for six-

month re-admission. 

Healthcare providers; Chinese HF 

Patients 

10 
Presents a universal mortality prediction model, the MARKER-HF risk score, applicable 

across diverse medical conditions, including heart failure. 
General medical population (with 

and without HF) 

11 
Achieves maximum performance of Fine Gaussian SVM and KNN methods for mortality-

survival outcomes 

Healthcare providers; Researchers 

in Informatics Science and 
Healthcare Data Analytics 

12 
Provides a ML classifier that surpasses the LaCE score in informativeness, includes feature 

importance and impact through SHAP plots. 
Healthcare system administrators 

13 
Shows superiority of XGBoost, over the conventional LACE index. Utilizes SHAP analysis to 

elucidate influential features. 
Care teams 

14 ML model surpasses traditional risk scores, shows the significance of echocardiographic data. Healthcare providers 

15 
EHMRG matches ML in discrimination and surpasses in calibration, importance of calibration 

metrics 
Healthcare researchers 

16 Identifies 18 crucial risk factors for HF Healthcare providers; HF patients 

17 
Impact of clinical variables on improving short-term risk prediction compared to 

comorbidities, clinical, psychosocial variables, and discharge medications. 
Healthcare providers; HF patients 

18 
Compares six ML algorithms for predicting hospital readmission with RF as the most 

effective. Addresses class imbalance and missing data 

Healthcare providers; HF 
patients; Healthcare 

administrators 

19 

 

 Barthel index in ACD-VC as a key indicator of frailty; Develops the SMART-HF model 
(https://hfriskcalculator.herokuapp.com/) 

Healthcare providers; Non-

healthcare providers, Government 
bodies; Insurance companies 

20 electronic frailty index that includes inflammatory and nutritional indices Healthcare providers 

21 Integrates healthcare data from hospitals, GPs, and pharmaceutical claims. CHF Patients 

22 
ML outperforms the HOSPITAL score, with social, clinical, and physiological data integration 

enhancing accuracy and providing valuable insights. 
Healthcare administrators 

23 
Uses ML and feature selection to identify key variables; simplified models with selected 

variables match full-set performance, leveraging techniques like PCA for better accuracy. 
ND 

24 
Introduces an MLP model to address class imbalance, achieving higher accuracy than the 

LACE score; underscores the importance of model and metric selection in imbalanced data. 
ND 

Notes: ACD-VC: Administrative Claim Data - Voting Classifier; BNP: B-type Natriuretic Peptide; DBP: Diastolic Blood Pressure; GFR: 

Glomerular Filtration Rate; GP: General Practitioner; HF: Heart Failure; KNN: k-Nearest Neighbors LR: Logistic Regression; ML: Machine 

Learning; MLP: Multilayer Perceptron; ND: Not Defined; NYHA: New York Heart Association Functional Classification; PCA: Principal 
Component Analysis; PDP: Partial Dependence Plot; RF: Random Forest; SBP: Systolic Blood Pressure; SHAP: SHapley Additive 

exPlanations; SVM: Support Vector Machine; XGBoost: Extreme Gradient Boosting.
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Table 2.12: Future recommendations and limitations of the studies 

ID Future Recommendations Limitations 

1 

Refine prediction models for 3-month readmission and 6-month 
mortality; Investigate additional endpoints; Enhance model 

applicability with external data and boost performance using DL 

methods. 

Small sample; Gender Imbalance; SC; Exclusion of non-clinical 

factors; Lack of external data; Limited consideration of additional 
endpoints 

2 

Investigate important HF biomarkers; Fine-tune model on 

specific population data; Expand research by accumulating 

multiple datasets from different regions 

SC; Lack of time series data for entire hospitalization; Exclusion of 
important HF biomarkers; Geographical constrains; Small sample; RN 

3 
Create tailored predictive models by addressing data quality and 

adapting to local healthcare systems 
Cultural influences on healthcare practices and data collection 

4 

Incorporate multimodal data using NN and DL for better SA; 

Explore automated ML methods to streamline the modelling 
process 

SC; LEV; RN; MV in key predictors; Simple imputation strategy 

introduce bias; Non-linear models pose interpretability and ethical 
challenges. 

5 

Enhance ML model interpretability; Improve feature engineering 

with clinical factors; Investigate new interventions; Assess cost-

efficiency of readmission reduction strategies. 

Insufficient data on post-hospital and primary care; Incomplete 

assessment of drug-readmission correlation; Limited data on patients 

using SGLT-2 inhibitors 

6 ND ND 

7 
Validate CFS and BNP levels clustering in multicentre ADHF 

studies; Perform external validation in larger elderly HF cohorts 

SC; Small to medium sample; Lack of consideration for certain 

variables such as BMI and the etiology of hospitalization; 

8 

Enhance predictive performance by using models that leverage 
temporal data, such as recurrent neural networks and attention-

based models 

Exclusion of baseline variables (e.g., age, diagnosis duration); 
Discarding customized patient alerts to avoid clinician conflicts; 

Missing records of home treatments over the last four year 

9 ND 
RN; SC; Lack of ECG Features; Sensitivity <50%; Unidentified causes 

of readmission; Limited applicability 

10 

Validate MARKER-HF in diverse non-HF populations, including 

Caucasian and Black patients; Expand applicability to broader 

clinical contexts, beyond CVD. 

SC; Only East Asian patients; Exclusion of patients with missing data 

introducing selection bias; Underestimation of mortality risk in 

patients with malignancy 

11 

Use feature engineering to address limitations related to the 

dataset's size and imbalance. Augment patient information to 

capture additional CVD risk factors. 

Small sample size; Imbalance dataset; Lack of certain patient 
information 

12 
Improve ML model accuracy by incorporating diverse data types, 

such as social factors and clinical notes through natural NLP. 

MV in lab data; Requirement of 2 echos; Limited clinical prediction 
ability; Barriers to data access and sharing; Assumption of 

hospitalization independence; Inability to measure significant 

readmission predictors. 

13 ND 
RN; SC; LEV; Selection bias; Lack of post-discharge data; CCI may 

underreport chronic conditions. 

14 

Confirm ML model applicability across diverse populations; 

Evaluate treatment efficacy based on ML-predicted mortality risk 
levels. 

RN; Institutional-based train and test cohorts may introduce bias due to 

institutional differences; LEV 

15 
Compare ML and conventional statistical models for prognosis-

based research, focusing on discrimination and calibration. 
ND 

16 Validate in larger multi-center or prospective cohorts 
SC; RN; Applicability uncertainty for patients without baseline echo; 

Missing data from lab variables 

17 

Validate findings on broader database for enhanced external 

validity; Incorporate additional covariates regarding health status 
and QOL information 

SC; Difficulty in determining cause of death; Lack of patient 

information; Conservative findings due to exclusion of relevant factors 
and HF-specific mortality 

18 ND Lack of medication and psychosocial information 

19 
Further validation of SMART-HF using other databases with 

different populations and settings. 

Median age of 80; Missing data bias; BI lacks literature support for 

assessing frailty.; Omission of vital signs, echocardiography, lab and 
treatment data; Reliance on Japanese medical standards 

20 

Conduct prospective studies to validate the developed model by 

integrating additional inflammatory, nutritional, and frailty 
assessment tools for clinical application. 

LEV; Lack of treatment data during acute and post-admission phases; 

Lack of HF subtype differentiation; Limited generalizability; 
Interpretability challenges due to opaque nature of ML 

21 

Enrich Health insurance claims data with clinical data; Explore 

causal relationships of important features; Enhance risk 

stratification and prognosis with advanced ML with clinical data. 

Absence of key clinical features; Data history limited to 7 years; 

Limited interpretability of ML models, especially NN; Possible 

exclusion of relevant features due to feature reduction methods 

22 
Integrate disease-specific predictive models into EHR; Assess the 
impact of the integration on patient care and resource utilization. 

RN; SC; Reliance on billing data may miss HF progression; ML 

methods unable to infer variable-outcome direction; LR modelling 

may oversimplify complex relationships. 

23 ND Age Limitation (65+); Lack of Clinical Data 

24 
Investigate the utilization of performance measures that consider 

the class imbalance problem during parameter tuning. 

RN; Age limitation (65+); Lack of clinical data; Lack of HF subtype 

differentiation; Hyperparameter optimization limited to traditional 

stepwise range values. 

 
Notes: ADHF: Acute Decompensated Heart Failure; BI: Barthel Index; BMI: Body Mass Index; BNP: B-type Natriuretic Peptide; CCI: 

Charlson Comorbidity Index; CFS: Clinical Frailty Scale; CVD: Cardiovascular Disease; DL: Deep Learning; ECG: Echocardiogram; EHR: 

Electronic Health Record; HF: Heart Failure; LEV: Limited External Validity; LR: Logistic Regression; ML: Machine Learning; MV: Missing 

Values; NN: Neural Network; NLP: Natural Language Processing; QOL: Quality of Life; RN: Retrospective Nature; RF: Random Forest; SA: 

Survival Analysis; SC: Single Center; SGLT-2: Sodium-glucose cotransporter-2;  
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2.3.  Quality Assessment 

To ensure rigor and reliability in the findings and streamline the research process, articles 

are evaluated on their effectiveness in addressing the research questions. This evaluation 

involves assessing articles across four dimensions outlined in Table 2.2. Each criterion is 

translated into a specific question, and a score is assigned accordingly: 0 if the question 

is not addressed, 0.5 if partially addressed, and 1 if fully addressed. The Table 2.13 

displays the quality assessment of the 24 articles, indicating their scores for each 

evaluation item and dimension.  

Although none of the articles reached the maximum score of 15, two studies attained 

a score of 14.5 for quality (Ju et al., 2021; Soliman et al., 2023). These exemplary studies 

should be considered as benchmarks for future research endeavors in the domain of HF 

prediction models. The average score across all articles was 12.44, indicating a relatively 

high level of quality.  

Among the specific research questions, “What are the scope and objectives?”, 

received the highest evaluation across the studies, with an average score of 22.75 out of 

a maximum of 24. Notably, within this dimension, criterion Q1.1, which pertains to the 

clear description and justification of objectives, stood out as the best criterion overall, 

with only one article falling short of the total score (Jang et al., 2023). In contrast, the 

dimension "What methodology is used?" not only received the lowest average score of 

19 but also housed the worst quality criterion (Q2.2). Across the studies, there is a lack 

of information regarding the data collection and preparation process, with only 54.2% 

(n=13) of articles achieving the maximum mark in this critical aspect. Additionally, in 

this dimension is also possible to see an insufficient explanation and justification for the 

variable selection (Q2.3).  

The third dimension, focused on the study results, closely followed the methodology 

dimension with an average score of 19.3, resulting in its placement as the second worst. 

Within the results dimension, there appears to be difficulty in clearly identifying the best-

performing model (Q3.3) and justifying the key variables (Q3.4). In the fourth and final 

dimension, which assesses the impacts of the studies and ranks as the second highest, an 

average score of 20.5 is observed. Within this dimension lies the second-best quality 

criterion (Q4.1). This indicates that articles present their contributions in a clear way. 

Despite its significance, the quality criterion Q4.3, regarding future recommendations, 
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obtained one of the lowest scores, with 20.8% (n=5) of articles lacking any such 

recommendations. 

To summarize, for comprehensive insights into the scope, objectives, and study 

impacts, recommended readings include studies achieving the maximum score in these 

dimensions, as well as those with an overall high score.  For the methodology dimension 

and in general, Tong et al. (2023) is particularly informative, while Ju et al. (2021)  and 

Rahman et al. (2023) stand out for their rigorous result assessments.  For researchers 

focused on HF decompensation prediction, Kerexeta et al. (2023), is an essential read, as 

it is the only study addressing this topic, which is the main concern of this investigation. 

Table 2.13: Assessment of Article Quality 

ID 

What are the 

scope and 

objectives? 

What methodology is used? What are the results? 
What are the 

study impacts? 
Total 

  Q1.1 Q1.2 Q2.1 Q2.2 Q2.3 Q2.4 Q2.5 Q3.1 Q3.2 Q3.3 Q3.4 Q3.5 Q4.1 Q4.2 Q4.3 - 

1 1 1 1 1 1 0.5 1 1 1 0.5 1 0.5 1 1 1 13.5 

2 1 0.5 1 1 0.5 1 1 1 1 1 1 1 1 1 1 14 

3 1 1 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 13 

4 1 1 1 1 1 0.5 1 1 1 1 1 0.5 1 1 1 14 

5 1 1 1 1 1 1 1 1 1 1 0.5 1 1 1 1 14.5 

6 1 1 0.5 1 1 1 1 1 1 1 1 1 1 0 0 12.5 

7 1 1 0.5 0.5 1 1 0 0 0 0 1 0.5 1 1 1 9.5 

8 1 1 1 1 1 0.5 1 0.5 1 1 1 1 1 0.5 1 13.5 

9 1 1 0.5 1 1 1 1 1 1 1 1 1 1 0.5 0 13 

10 0.5 1 1 0 1 1 0 0 1 0.5 0 0.5 1 1 1 9.5 

11 1 0.5 0.5 0.5 0.5 1 1 1 0.5 0.5 0 0.5 1 1 1 10.5 

12 1 1 1 1 0.5 1 1 1 1 1 1 1 0.5 0.5 1 13.5 

13 1 1 0.5 1 0.5 0.5 1 1 1 1 0.5 1 0.5 1 0 11.5 

14 1 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5 1 1 1 11 

15 1 1 1 1 0.5 1 1 1 1 0.5 0.5 0.5 1 0 1 12 

16 1 1 1 0.5 1 0.5 0 0.5 1 0 1 0.5 1 1 0.5 10.5 

17 1 1 1 0.5 1 0.5 1 1 1 1 0.5 0.5 1 1 0.5 12.5 

18 1 0.5 1 1 0.5 1 1 1 1 1 1 1 1 1 0 13 

19 1 1 1 0.5 0.5 0.5 1 0.5 1 0.5 1 1 1 1 1 12.5 

20 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1 14.5 

21 1 1 1 1 0.5 1 1 1 1 1 0.5 1 1 1 1 14 

22 1 1 1 1 1 1 0.5 0.5 1 0.5 0.5 1 1 1 1 13 

23 1 1 0.5 0 1 0.5 0.5 1 1 0.5 1 0.5 1 1 0 10.5 

24 1 1 0.5 0.5 0.5 1 1 1 1 1 0 1 1 1 1 12.5 

Total 23.5 22 20 17.5 18.5 19.5 19.5 19.5 22 18 18 19 23 20.5 18 - 
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2.4. Summary and Implications of Literature 

The SLR aims to advance scientific knowledge by identifying gaps, guiding future 

research, and shaping discussions on HF management, especially for HF decompensation 

prediction through ML. Despite ongoing research, only one model for HF 

decompensation prediction exists, highlighting the need for a robust, clinically 

interpretable model to enhance real-world applicability and prevent adverse outcomes. 

It is worth noting that previous studies have already developed highly predictive 

models for various HF outcomes, specifically for readmission (Rahman et al., 2023; 

Rizinde et al., 2023) and for mortality (Ju et al., 2021; Karakuş & Er, 2022). A smaller 

number of studies focused on constructing models for a CEP, yet they did not attain 

comparable high metrics. Unfortunately, the only article addressing decompensation 

reported only the AUC, which was relatively low (0.69), leaving this study without 

references for other important metrics.  Nevertheless, there is room for improvement by 

incorporating symptoms, as seen in Kerexeta et al. (2023), such as like shortness of breath 

(SOB) and paroxysmal nocturnal dyspnea (PND), along with non-clinical variables, such 

as autonomy and medication adherence, as recommended by Sarijaloo et al. (2021), which 

require more complex data collection. Awan et al. (2019a) and Najafi-Vosough et al. 

(2021) emphasize the importance of addressing class imbalance in clinical research, while 

attention to sample size is also widely acknowledged across studies as a critical limitation. 

Equally important is a careful and well-reported feature selection process, with this SLR 

showcasing diverse techniques for researchers to consider, as emphasized by (Awan et 

al. (2019b). 

XGBoost demonstrated promising performance in various studies (e.g., Kerexeta et 

al., 2023; Polo Friz et al., 2022), however, its interpretability is comparatively lower than 

other ML models. Integrating interpretability techniques is crucial, with some authors 

already employing them (e.g., Xu et al., 2023). External validation remains a critical gap, 

as few studies test models across diverse settings, leaving questions about their 

applicability and generalizability (e.g., Ju et al., 2021).  

Future efforts should focus on incorporating diverse data types, including clinical 

notes, to retrieve and integrate the previously mentioned variables. Transparent 

documentation of data collection and careful variable selection can enhance 

reproducibility, reliability, and practical utility, ultimately supporting external validation 

and advancing predictive model development in clinical practice. 
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3. Methodology  

 

This chapter outlines the procedures undertaken in the empirical part of the study, guided 

by the CRISP-DM methodology. The focus of this research is to develop a predictive 

model for HF decompensation, ensuring transparency, reproducibility, and scientific rigor 

through the systematic application of CRISP-DM. 

CRISP-DM is a widely used methodology in data mining. Its structured and iterative 

approach is designed to handle the complexities of analytics projects (Chapman et al., 

1999), making it suitable for a variety of industries, including healthcare applications 

(Felix et al., 2021; Martins et al., 2021). The methodology is organized into six key 

phases: business understanding, data understanding, data preparation, modelling, 

evaluation, and deployment. Each phase ensures that the analysis and model-building 

process remains aligned with the goals of this study.  

 

3.1. Business Understanding  

As outlined in the introduction, HF decompensation presents significant challenges in 

patient management and places increasing demands on healthcare systems (Bozkurt, 

2023; Greene et al., 2023; McDonagh et al., 2021). This research builds a case study from 

a sample of HF patients managed by the HF team at ULSASI, spanning from January 

2020 to April 2024. The ULSASI serves the cities of Amadora and Sintra, two of the most 

populous regions in Portugal, covering 6% of the national population.  

Table 3.1 provides details on the evolution of the number of followed patients and 

their respective appointments, as well as their outcomes over time, including day hospital 

(DH) admissions, emergency service (ES) visits, hospitalizations, and deaths. Over this 

period, the HF team, consisting of five cardiologists, managed 639 HF patients, starting 

with 139 in 2020 and growing by an average of 140 patients per year. The numbers from 

2020 and 2021 were affected by COVID-19 pandemic. As the impact of the pandemic 

lessened, 2022 and 2023 showed a clearer rise in patient numbers and healthcare use. DH 

admissions grew significantly (32% in 2022 and 82% in 2023), while ES visits increased 

by 11% in 2022 before declining by 4.7% in 2023, reflecting a greater tendency to manage 

decompensation cases without hospitalization criteria in the outpatient clinic instead of 

admitting all cases, regardless of their severity, as well as a more direct contact with the 

team without resorting to the emergency department. Hospitalizations remained stable, 
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while deaths increased, reaching the peak of 17 deaths in 2023. By 2024, 27.7% of the 

consultations and 76.5% of deaths recorded in 2023 have already been achieved in just 

four months, indicating that 2024 could surpass previous years in these areas. 

Table 3.1: Summary of HF Patient Metrics (January 2020 – 30 April 2024) 

 1 Jan 2020 2021 2022 2023 30 April 2024 Total 

Patients 139 
226 

(+133) 

309 

(+153) 

391 

(+147) 

236 

(+67) 
639 

Consultations 325 669 998 1 175 326 3 493 

DH Visits 127 217 287 523 214 1 468 

ES Visits 564 686 763 727 291 3 031 

Hospitalizations 134 237 243 242 92 948 

Deaths 6 9 16 17 13 61 

 

Note: The values in parentheses indicate the number of new patients that entered in each respective year. 

 

These trends at ULSASI are representative of what is occurring in similar 

healthcare settings worldwide. In the United States, over 1 million hospitalizations occur 

annually, accounting for 6.5 million hospital days (Ambrosy et al., 2014), and in 2020, 

HF contributed to 415,922 deaths (Bozkurt et al., 2023). In Germany, HF leads to 

approximately 440,000 hospitalizations each year and is the most common primary 

inpatient diagnosis (Dörr et al., 2021). 

To address these challenges, the primary business objective is to reduce 

hospitalizations and emergency visits by 20% through early intervention after the first 

indicators of imminent HF decompensation, a target set based on the recommendation of 

cardiologists, to improve patient health and reduce costs. With this goal, the research 

focuses on four key analytical objectives: O1) characterizing and defining HF 

decompensation which enables the creation of the prediction target; O2) developing a 

predictive model for HF decompensation; O3) identifying key factors influencing 

decompensation; O4) assessing patient profiles to identify those more or less prone to 

these events. To achieve the final two objectives, the model must be interpretable, 

providing clear insights into the factors driving decompensation risk. 

The first objective is considered successfully completed once consensus is reached 

among consulted cardiologists on the definition of HF decompensation, establishing a 

clear foundation for the prediction target. To ensure accurate identification of at-risk 

individuals, success is then defined by achieving a recall of at least 60 percent and an 
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AUC of 0.65 or higher. As the only available study on decompensation provided only the 

AUC (Kerexeta et al., 2023), these thresholds are set to ensure adequate detection of at-

risk patients while maintaining a balance in performance. Recall measures the model 

ability to identify patients who decompensated within 30 days after the consultation, 

while AUC measures the model overall performance in distinguishing between those who 

decompensated and those who did not. Prioritizing recall ensures that patients at risk of 

decompensation are identified in time for intervention, even if it means identifying some 

patients who are not actually at risk.  The third objective is complete when the most 

important variables of the best-performing model are identified, providing the necessary 

explainability. The fourth and final objective is achieved when patient profiles more and 

less prone to decompensation are identified with confidence levels above 80% and 

support of at least 50 cases. 

Is important to note that, in the final dataset, each row represents a consultation 

rather than an individual patient. This approach treats each consultation as a distinct event, 

capturing the variability in patient condition, symptoms, and background over time 

(Bayés-Genís et al., 2005; Bettencourt et al., 2004). By structuring the data this way, the 

number of cases increases from 639 to over 2,500, allowing the model to learn from 

multiple events per patient and providing a richer dataset for predicting diverse clinical 

scenarios (Kerexeta et al., 2023; Sharma et al., 2022).The inclusion criteria specify that 

patients must have a confirmed HF diagnosis and laboratory results available before each 

consultation, with further details provided in the following chapter. To ensure clinical 

rigor, two cardiologists provide guidance throughout the investigation, validating the 

clinical relevance of the data and findings. Supporting this analysis, the investigation 

utilizes Excel, SPSS Statistics (version 29.0), and SPSS Modeler (version 18.5). 

 

3.1.1. Defining HF Decompensation and Establishing the Target Variable 

As discussed in the introduction, the definition of HF decompensation has evolved over 

time and is not universally agreed upon. Beyond defining decompensation, it is crucial to 

understand how to characterize and identify it. To fulfill the first objective and, by doing 

so, create a reliable target variable, two cardiologists are consulted: the first provides 

initial insights on how decompensation could be assessed through the patient records, and 

the second expert is engaged to confirm and refine these viewpoints, given the complexity 

and controversy surrounding the topic. 
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Both experts agreed with the most recent definition of decompensation as 

presented by Bozkurt (2023) and Greene et al. (2023). According to this definition, 

decompensation is characterized by worsening of HF signs, symptoms and/or functional 

capacity requiring urgent medical attention, which includes not only unplanned hospital 

visits (in-patient admission, ES or DH visits), but also oral diuretic optimization and HF 

guideline directed medical therapy adjustment in a scheduled, although urgent, 

appointment, or outpatient admission for endovenous diuretic or initiation of chronic 

inotropic therapy support. Hospitalizations for planned complementary exams or 

procedures are excluded. Diuretic therapy optimization, indicating 

decompensation/worsening HF, is identified in the consultation records as the initiation 

or increase in the dosage of furosemide. Outpatient inotropic therapy, indicating 

decompensation/worsening HF, is identified by the initiation of intermittent pulses of 

levosimendan. These are outlined procedures in the clinical guidelines to treat 

decompensated HF episodes (McDonagh et al., 2021).  

The final target variable is determined by a conditional formula that confirms a 

decompensation event if any of these criteria are met within the 30-day follow-up period, 

thereby classifying the patient as decompensated. The target is defined as binary: 1 if the 

patient is decompensated within 30 days, and 0 if stable. A 30-day follow-up period is 

selected to ensure timely detection and intervention, consistent with guidelines for 

monitoring decompensated HF patients (McDonagh et al., 2021).  This timeframe is also 

the most used for assessing various outcomes in this domain, as observed in the SLR.  

Thus, the analytical objectives translate into a classification problem in which the 

aim is to classify patients as being prone to HF decompensation or not. To address this, 

supervised learning algorithms are applied to learn from labeled data, identifying patterns 

and relationships that can generalize to new, unseen cases (Johnson et al., 2018).  

 

3.2.  Data Understanding and Preparation 

This chapter covers the second and third phases of the CRISP-DM methodology. Data 

understanding involves exploring, describing, and assessing the quality of the data, while 

data preparation focuses on selecting, cleaning, and transforming it into a single dataset 

for modeling. These phases are combined because the iterative nature of CRISP-DM 

allows revisiting data understanding after preparation, ensuring the analysis is aligned 

with the study objectives. 
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The HF team uses several platforms for patient management, with Soarian being 

the main system for storing patient data and the sole source used for this analysis. Due to 

the design of the software, which primarily supports individual patient management, 

collaboration with the hospital IT team is necessary to collect data from multiple patients 

simultaneously.  

For this analysis, three Microsoft Excel files are extracted, each containing 

information on patients who were followed in cardiology outpatient consultations. The 

inclusion criteria are defined as patients aged 18 years or older, with a diagnosis of HF 

according to the "International Classification of Diseases, Tenth Revision" (ICD-10) main 

diagnosed code defined in the cardiology appointment 4 (World Health Organization, 

2019). The data from these files is summarized in Table 3.2, which outlines the different 

datasets and their corresponding row counts. The Table 3.3 summarizes the different data 

sources used in this analysis, highlighting the key fields, the type of information provided 

by each source, and the encountered challenges. Additionally, all tables contain various 

identifiers such as "is primary," "code," "doctor code," "service," and "visit type," which 

are not relevant to the analysis and are discarded.  

 

Table 3.2: Summary of Datasets and Corresponding Row Counts 

Category Dataset Description Rows 

Consultations 

Annual consultation counts per patient 639 

Patient details per consultation 3,493 

Consultation Records 55,596 

Hospital Admissions 

Discharge summaries 948 

ES and DH Visits per Patient 609 

ES summaries by visit 6,460 

DH summaries by visit 61 

Lab Results Laboratory results per semester 277,027 - 636,143 

 

 

 

 

 

 

 
4 Appendix B lists the ICD-10 codes for HF diagnoses, characterizing the patient sample used in this study. 
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Table 3.3: Key Information and Challenges Across Data Sources 

Data Source Key Fields Type of information Challenges 

Consultation 

Records 

Process ID, Sex, 

Birth date, Date, 

Registration, 

Evaluation 

Patient past history, 

hospitalizations, prior lab results, 

symptoms, NYHA classification, 

treatment updates, follow-up plan 

Registration and evaluation are 

composed by unstructured texts 

with inconsistent terminology 

and misspellings 

Hospital 

Admissions 

Process ID, 

Discharge type, Dates 

(from ES, DH, and 

discharge records), 

discharge clinical 

notes 

HF-related admissions, discharge 

outcomes, hospitalization 

patterns, death occurrences 

Discharge clinical notes are 

unstructured text; Discharge 

records include unrelated 

procedures as hospitalizations 

(e.g., device implantation) 

Laboratory 

Results 

Process ID, Date, 

Test name, Test value 

52 different lab test values, trends 

over time 

Each row represents a single 

lab result 

 

To ensure data quality, it is crucial to confirm that all patients, identified by the 

process ID, have both consultation and lab records, as these are essential for modeling. 

Two discrepancies are identified: 1) a mismatch between the number of rows in the 

"Patient details per consultation" and "Consultation Records" tables, due to the extraction 

including all cardiology patients (13,000) instead of just the 639 HF patients; and (2) out 

of the 639 intended patients, only 584 have associated lab results. 

To maximize data quality, two expert cardiologists help identify key information 

from consultations and compile a dictionary of terminology, acronyms, and 

abbreviations. This guides the extraction and structuring of key data into organized 

formats, ensuring accurate data capture for analysis. Despite these efforts, some critical 

information remains difficult to capture due to variations in its recording. For example, 

patient weight and furosemide dosage are too inconsistent in format (e.g., “lost 3 kg” vs. 

total weight) and vague terms (e.g., “1 pill/ 2xday”, “1+1/2”) to be reliably extracted with 

Excel text manipulation formulas. Additionally, due to the challenges presented by the 

“discharged clinical notes” field (Table 3.3), hospitalizations are tracked using ES records 

to verify whether the discharge destination indicates hospitalization, ensuring that 

hospitalization for routine procedures are excluded. Lastly, duplicate records are 

removed, terminology is standardized, and the reasons behind missing data are 

investigated. Verification ensures that the data only concerns the time frame from January 

2020 to April 30, 2024, for consistency across the different datasets. These steps are 
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essential for maintaining dataset integrity, ensuring it remains reliable for accurate 

analysis and decision-making. 

The data preparation process is divided into three categories of information, each 

cleaned and organized in separate Excel files before being compiled into a consolidated 

table for analysis. Various types of formulas (e.g., logical combined with text functions) 

are created to structure data from consultation records and hospital admissions, while 

Excel Power Query is used for laboratory results (Table 3.8 provides examples of the 

formulas employed in this process). 

From the data understanding phase, 25 final columns are created from consultation 

records, capturing various aspects of patient information. These include demographic 

factors (e.g., race), lifestyle factors (e.g., autonomy, smoker status), implantable devices 

(e.g., implantable cardioverter-defibrillator (ICD) device), comorbidities (e.g., diabetes 

mellitus (DM), hypertension (HTN)), symptoms (e.g., Shortness of Breath (SOB), 

paroxysmal nocturnal dyspnea (PND)), and functional status (New York Heart 

Association (NYHA) classification). Additionally, the medications column tracks 

changes such as starting, stopping, or adjusting furosemide and levosimendan, while 

consultation history records the number of consultations in the last 6 months 

(Consult_6m) and in the last 12 months (Consult_12m) (McDonagh et al., 2021).  

The creation of variables from unstructured consultation text presents several 

challenges, particularly when dealing with inconsistent terminology, acronyms, and 

abbreviations. For instance, extracting race requires multiple steps to account for 

misspellings, indirect references, and formatting inconsistencies (e.g., "light-skinned," 

"Caucasian," or references like "native of"). Symptoms are similarly challenging, as the 

text often references the absence of symptoms rather than their presence. For example, 

doctors may note "no dyspnea" or "without orthopnea," and formulas must detect these 

phrases accurately. When multiple symptoms are listed as absent, it becomes challenging 

to differentiate them accurately. In these cases, ChatGPT is used to confirm whether the 

text refers to the presence or absence of symptoms. To ensure reliability, a cardiologist 

reviews a random sample of 30 cases to confirm the accuracy of the extracted variables, 

finding that 29 out of 30 cases were correct. Lastly, variables are created to capture 

variations from previous consultations, such as changes in symptoms and sings, resulting 
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in the addition of 12 past-related variables 5. The variables collected in this phase and 

included in the modeling process are shown in Table 3.4. 

 

Table 3.4: Excerpt from the data dictionary of consultation records variables for modeling 

Variable Description Type Units 
Distinct Values 

NR 
Descriptive 

Sex Patient gender N - 
V:2 

NR:0 

HF: Male (61.3%); LF: Female 

(38.7%) 

Smoker Smoker status N - 
V:3  

NR:0 

HF: Never smoked (62.0%); 

LF: Smoker (16.5%) 

ICD 
Implantable Cardioverter-

Defibrillator 
N - 

V:2 

NR:0 

HF: No (89.1%); LF: Yes 

(10.9%) 

NYHA_cod 

New York Heart 

Association Functional 

Classification 

O - 
V:7 

NR:0 
HF: 2 (41.5%); LF: 4 (1%) 

Symptoms Number of symptoms DQ Symptoms 
V:4 

NR:0 

Min: 0; Mx: 4; M: 0.24; SD: 

0.593 

Consult_6m 
Number of consultations in 

the past 6 months. 
DQ Consultations 

V:8 

NR:0 

Min: 0; Max: 7; M: 0.78; SD: 

0.982 

Notes: DQ: Discrete Qualitative; HF: Highest Frequency; LH: Lower Frequency; M: Mean; Max: Maximum; Min: 

Minimum; N: Nominal; NR: No replies; O: Ordinal; SD: Standard Deviation; V: Number of distinct values. 

 

From the hospital admissions data, 10 variables are calculated to create a historical 

record of patient visits and hospitalizations. These calculations focus on key fields like 

admission dates to capture important metrics, such as the total number of visits over 

various time periods (e.g., number of ES from January 2020 until the consultation 

(ES_2020_Now) or in  the last six months (ES_6m)), whether the patient has ever been 

hospitalized (Previously_Hospitalized), the length of stay for the most recent 

hospitalization (LOS_Last), and the average number of days hospitalized 

(Avg_Time_Hosp) , among others (Table 3.5) 

 

 

 

 

 

 
5 Examples of these variables are presented in appendix C. 
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Table 3.5: Data dictionary of hospital admissions variables for modeling 

Variable Description Type Unit 
#Values  

NR 
Descriptive 

ES_2020_Now 
Emergency visits from 

2020 to consultation day 
CQ ES visits 

#2008 

NR:0 

Min: 0; Mx: 

29; M: 3.84; 

SD: 4.27 

DH_2020_Now 
Day Hospital visits from 

2020 to consultation day 
CQ DH visits 

#2008 

NR:0 

Min: 0; Mx: 

104; M: 1.59; 

SD: 5.87 

ES_6m 
Emergency visits in the last 

6 months 
CQ ES visits 

#2008 

NR:0 

Min: 0; Mx: 

12; M: 1.16; 

SD: 1.66 

DH_6m 
Day Hospital visits in the 

last 6 months 
CQ DH visits 

#2008 

NR:0 

Min: 0; Mx: 

26; M: 0.46; 

SD: 1.89 

Hosp_2020_Now 
Hospitalizations from 2020 

to consultation day 
CQ Hospitalizations 

#2008 

NR:0 

Min: 0; Mx: 9; 

M: 1.13; SD: 

1.34 

Hosp_6m 
Hospitalizations in the last 

6 months 
CQ Hospitalizations 

#2008 

NR:0 

Min: 0; Mx: 5; 

M: 0.41; SD: 

0.69 

Previsously_Hospitalized_12m 

Whether the patient was 

previously hospitalized in 

the last 12 months 

N - 
#2008 

NR:0 

HF: No 

(53.5%); LF: 

Yes ( 46.5%) 

Previsously_Hospitalized 
Whether the patient was 

ever hospitalized 
N - 

#2008 

NR:0 

HF: Yes 

(63.9%); LF: 

No (36.1%) 

Avg_Time_Hosp 
Average duration of 

hospitalizations 
CQ Days 

#2008 

NR:0 

Min: 0; Mx: 

78; M: 4.50; 

SD: 8.00 

LOS_Last 
Most recent hospitalization 

length of stay 
CQ Days 

#2008 

NR:0 

Min: 0; Mx: 

92; M: 4.35; 

SD: 8.29 

Notes: CQ: Continuous Quantitative; HF: Highest Frequency; LH: Lower Frequency; M: Mean; Max: Maximum; Min: 

Minimum; N: Nominal; NR: No replies; SD: Standard Deviation; # Number of valid replies  

 

The laboratory results are divided into six Excel sheets due to the volume of data, 

and the columns are not initially organized for analysis. To address this, Power Query in 

Excel is used to consolidate and restructure the data by patient and date of analysis, 

expanding it to include 52 different lab results as separate columns. Key adjustments, 

such as transposing columns, removing duplicates, changing data types, and handling null 

values (e.g., “sample not collected” or “not performed”), are applied consistently across 

all tables before merging them into a single dataset.  

To build a comprehensive historical record, additional variables are created from 

the lab results. This includes capturing values from up to four previous analyses for each 

test and calculating variations between them. Metrics such as maximum, minimum, 

average, standard deviation, and coefficient of variation are computed for each lab result 

6. Binary variables are also introduced to indicate clinically significant variations, such as 

 
6 Examples of these variables are presented in appendix D 
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whether the reduction in NT-proBNP is less than 30% (Bayés-Genís et al., 2005; 

Bettencourt et al., 2004), and for creatinine, whether the value has doubled or increased 

by 0.3 mg/dL or more (KDIGO, 2024). Additionally, since glomerular filtration rate 

(GFR) values were only available from May 2021, they are calculated using the CKD-

EPI Creatinine Equation (2021) (Inker et al., 2021) for use in the final analysis. In total, 

579 variables are created from the laboratory data, allowing for a detailed historical 

perspective and the evaluation of clinically relevant trends over time. Table 3.6 provides 

the data dictionary for laboratory results, focusing only on variables selected later for 

modeling. 

Table 3.6: Excerpt from the data dictionary of laboratory results variables for modeling 

Variable Description Type Units 
#Values  

NR 
Descriptive 

Hb Hemoglobin CQ g/L 
#1902 

NR:106 

Min: 7; Mx: 20.3; 

M: 13.31; SD: 2.00 

RBC Reed Blood Count CQ X 10^12/L 
#1902 

NR:106 

Min: 1.77; Mx: 7.03; M: 

4.42; SD: 0.70 

Hct Hematocrit CQ % 
#1902 

NR:106 

Min: 21.9; Mx: 61.3; M: 

40.94; SD: 5.79 

WBC White Blood Count CQ X 10^9 / L 
#1902 

NR:106 

Min: 2; Mx: 30.5; 

M: 7.59; SD: 2.56 

NT-proBNP 

N-terminal pro B-

type Natriuretic 

Peptide 

CQ pg/ml 
#1266 

NR:742 

Min: 101; Mx: 72585; M: 

3646.09; SD: 6060.91 

Na Sodium CQ mmol/L 
#1869 

NR:139 

Min: 124.7; Mx: 151.1; M: 

139.68; SD: 3.23 

K Potassium CQ mmol/L 
#1834 

NR:174 

Min: 2.68; Mx: 5.99; M: 

4.62; SD: 0.52 

Urea Urea CQ mg/dL 
#1815 

NR:193 

Min: 11.9; Mx: 293.6; M: 

59.36; SD: 35.53 

GFR_calc 
Glomerular 

Filtration Rate 
CQ mL/min./1 

#1906 

NR:102 

Min: 6; Mx: 132; 

M: 64.48; SD: 26.04 

Notes: CQ: Continuous Quantitative; HF: Highest Frequency; LH: Lower Frequency; M: Mean; Max: Maximum; Min: 

Minimum; NR: No replies; SD: Standard Deviation; # Number of valid replies  

 

The target variable is created to identify decompensation events, as previously 

mentioned, which occur when a patient requires an unplanned medical visit or when 

therapeutic adjustments are prescribed in a scheduled visit. These events are indicated by 

hospital admissions, including ES visits, DH visits, or hospitalizations, as well as therapy 

optimization, such as starting or increasing furosemide or initiating levosimendan cycles. 

To capture these events, 5 columns are created to track hospital admissions and therapy 

changes within 30 days after each appointment. The target variable (Table 3.7) is defined 

using the formula provided in Table 3.8, where a “yes” (indicating any decompensation 
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event within 30 days) is coded as 1, and a “no” (indicating no decompensation event) is 

coded as 0. 

Table 3.7: Target variable characterization 

Variable Description Type Nº Categories Descriptive 

D_30d 
Whether the patient decompensated 

within 30 days 
N 

#2 

NR:0 

HF: No (82,9%); LF: Yes 

(17,1%) 

 

Table 3.8: Examples of formulas used for structuring data and creating variables 

Variable Formula 

Smoker Status 

=IF(OR(ISNUMBER(SEARCH("ex-fumador";[@[Registo_Consulta]])); 

ISNUMBER(SEARCH("fumador";[@[Registo_Consulta]])); 

ISNUMBER(SEARCH("tabagismo";[@[Registo_Consulta]]))); 1; 0) 

DM 

=IF(OR(ISNUMBER(SEARCH("DM";[@[Registo_Consulta]])); 

ISNUMBER(SEARCH("Diabetes tipo 2";[@[Registo_Consulta]])); 

ISNUMBER(SEARCH("Diabetes mellitus";[@[Registo_Consulta]]))); 1; 0) 

Furosemide 

=IF(OR(ISNUMBER(SEARCH("aumentar furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("aumenta furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("iniciar furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("reiniciar furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("aumentar lasix";[@Avaliacao2])); 

ISNUMBER(SEARCH("iniciar lasix";[@Avaliacao2])); 

ISNUMBER(SEARCH("reiniciar lasix";[@Avaliacao2]))); 1; 

IF(OR(ISNUMBER(SEARCH("reduz furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("mantém furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("suspende furo";[@Avaliacao2])); 

ISNUMBER(SEARCH("reduz lasix";[@Avaliacao2])); 

ISNUMBER(SEARCH("mantém lasix";[@Avaliacao2])); 

ISNUMBER(SEARCH("suspende lasix";[@Avaliacao2]))); 2; 0)) 

ES_2020_Now 

=COUNT(FILTER(Hospital_Admissions.xlsx!ES[Data_admissao]; 

(Hospital_Admissions.xlsx!ES[N_processo]=[@[Process_ID]])*(Hospital_Ad

missions.xlsx!ES[Data_admissao]<[@Date]); "")) 

Hosp_2020_Now 

=COUNT(FILTER(Hospital_Admissions.xlsx!ES[Date_admission]; 

(Hospital_Admissions.xlsx!ES[processo_ID]=[@[Process_ID]])*(Hospital_A

dmissions.xlsx!ES[Date_admission]<=[@Date])*(Hospital_Admissions.xlsx!

ES[Type_discharge]="Serviço de Internamento"); "")) 

D_30d 
=IF(OR([@[Es_Hosp_30d]]>0;[@[ES_30d]]>0;[@[DH_30d]]>0;[@[TO_Fur

o_30d]]>0;[@[TO_Levo_30d]]>0);1;0) 

  

The data preparation process integrates all relevant variables into a single dataset, 

resulting in a data model with 626 columns and 2,008 rows. Given this extensive number 

of variables, a feature selection process is necessary to reduce complexity and maintain a 

manageable model. 

 

3.2.1. Feature Selection  

To improve model performance and focus on the most relevant variables, a feature 

selection process is applied. Given the large number of variables, they are divided into 

three dimensions: Patient Profile, Clinical Presentation, and Laboratory Results to clarify 
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the role of each variable in the analysis. This process involves exploratory data analysis, 

using bivariate techniques, including correlation analysis and LR, and multivariate 

model-based techniques. 

A bivariate analysis is performed using LR to get familiar with the primary 

variables and understand their impact on HF decompensation (Rahman et al., 2023).  LR 

models the probability of an outcome based on predictor variables. It uses the logistic 

function to constrain probabilities between 0 and 1 and is valued for its interpretability 

and ability to estimate the effect of each variable on the outcome, making it especially 

useful for binary classification tasks (Cox, 1958). Variables are considered significant at 

the 0.1 level, as this facilitates detecting additional relationships. Pearson correlation and 

the Variance Inflation Factor (VIF) are used to check for multicollinearity 7. Table 3.9 

shows the significant variables from the LR.  

Table 3.9: Bivariate LR results for target (D_30d): significant variables across patient profile, clinical 

presentation, and lab results 

  Patient Profile  Clinical Presentation Lab Results 

Independent Variables  Sig  Exp(B) Sig  Exp(B) Sig  Exp(B) 

Sex: Female (Male=0) 0.017 1.332 - - - - 

Autonomy: Independent (Dependent=0) 0.038 0.635 - - - - 

Smoker: Smoker (Never smoked=0) 0.052 0.714 - - - - 

Smoker: Ex-Smoker (Never smoked=0) 0.046 0.735 - - - - 

ICD: Yes (No=0) 0.047 1.416 - - - - 

CRT-P: Yes (No=0) 0.064 0.38 - - - - 

ES_2020_Now <0.001 1.073 - - - - 

ES_6m <0.001 1.301 - - - - 

DH_6m <0.001 1.343 - - - - 

DH_2020_Now <0.001 1.073 - - - - 

Hosp_2020_Now 0.025 1.096 - - - - 

Hosp_6m <0.001 1.55 - - - - 

Previsously_Hospitalized_12m: Yes (No=0) 0.055 1.255 - - - - 

Avg_Time_Hosp 0.092 1.011 - - - - 

LOS_Last 0.073 1.012 - - - - 

Consult_6m 0.03 1.13 - - - - 

JVD: Yes (No=0) - - 0.012 2.738 - - 

PND: Yes (No=0) - - 0.032 1.951 - - 

Orthopnea: Yes (No=0) - - 0.023 1.621 - - 

Symptoms - - 0.006 1.279 - - 

NYHA_Cod: 3 (1=0) - - 0.019 1.752 - - 

NYHA_Cod: 4 (1=0) - - 0.003 5.304 - - 

Hb - - - - <0.001 0.815 

RBC - - - - <0.001 0.638 

Hct - - - - <0.001 0.936 

WBC - - - - 0.049 0.952 

N-TproBNP - - - - <0.001 1 

Na - - - - 0.002 0.943 

Var3_30_NTproBNP: Reduction < 30% (Reduction >=30% =0) - - - - 0.004 1.651 

Var1_0.3_Cr: Increase >= 0.3 (Increase <0.3 =0) - - - - 0.079 1.463 

 

 
7 See appendix E 
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In addition, Principal Component Analysis (PCA) is performed to explore the 

possibility of reducing the dimensionality of the dataset (Wold et al., 1987). However, 

the reduction in dimensionality is not substantial enough to justify the loss in 

interpretability. Therefore, PCA is not applied further 8.  

The Figure 3.1 shows the process of feature selection for multivariate modeling. 

First, models are tested to determine whether to use all variables or selected ones from 

each dimension. Laboratory Results are guided by the input of the cardiologists and SLR 

findings, while Patient Profile and Clinical Presentation use algorithmic feature selection 

methods. Once the variables are chosen, historical data, such as previous symptoms and 

descriptive statistics from laboratory results (e.g., max_Hb, SD_Htc), are tested to see if 

their addition improves model performance. If not, the previously chosen variables are 

retained. While recall and AUC are prioritized, simplicity is also important, and fewer 

variables are chosen when performance is similar to avoid adding unnecessary 

complexity that could affect the model interpretability.  

 

Figure 3.1: Feature Selection Process for Predicting HF Decompensation 

 

ML algorithms, such as DT-based models, XGBoost, and NN, are used for feature 

selection. These models are capable of handling correlated variables and help uncover 

new insights, selecting the most relevant predictors for HF decompensation (Chowdhury 

 
8 The outputs of the PCA with the best results are provided in appendix F. 
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et al., 2021; De Veaux & Ungar, 1994). The descriptions of each algorithm are presented 

in Table 3.10. 

Table 3.10: Description of algorithms applied in the study (feature selection, modeling, and interpretability) 

Algorithm Description 

XGBoost 

A gradient boosting algorithm that builds decision trees iteratively, optimizing the model 

by correcting errors of previous trees. It is highly efficient due to the use of second-order 

gradients and regularization, making it powerful for classification tasks (Chen & Guestrin, 

2016). 

CHAID 

A DT algorithm that uses chi-square tests to determine the best splits in the data. It 

identifies the most statistically significant associations between the target variable and 

predictors by iteratively partitioning the data into subgroups. CHAID does not require 

pruning, as it stops splitting when no significant association can be found (Kass, 1980). 

RT 

An ensemble learning method that builds multiple decision trees using random subsets of 

data and features. It aggregates the predictions of individual trees to improve accuracy and 

reduce overfitting, making it robust for classification tasks (Breiman, 2001). 

C5.0 

An improved version of the C4.5 decision tree, designed for classification. It builds the 

tree by splitting data based on the most informative features. It is robust to missing values 

and large input features and supports boosting, pruning, and handling noisy data. In 

addition, the model rules are straightforward and easy to interpret (Quinlan, 1993; IBM, 

n.d.). 

NN 

Modeled after the human brain, consisting of layers of neurons that learn complex patterns. 

Each neuron processes inputs and passes the result to the next layer. Through 

backpropagation, the network adjusts weights to minimize errors, making it useful for 

classification tasks (Bishop, 2006). 

 

To improve the performance of the selected models, several parametrization 

strategies are applied. Bagging and boosting, both ensemble techniques, are used to 

enhance predictive accuracy. Bagging improves model stability and generalization by 

creating multiple subsets of the data through bootstrapping (random sampling with 

replacement) and averaging predictions to reduce variance and prevent overfitting 

(Breiman, 1996). Boosting, in contrast, builds models sequentially, with each new model 

focusing on correcting the errors of the previous one. By assigning more weight to 

misclassified instances, boosting reduces bias and increases overall accuracy (Ganaie et 

al., 2022). 

Additionally, parameters like maximum depth and number of cases in parent and 

child nodes are adjusted to optimize performance. Maximum depth controls the length of 

the decision tree, with deeper trees making the model more complex but potentially 

overfitting the data. The number of parent and child nodes controls the growth of the tree, 

which consequently impacts the complexity and overfitting of the model. In XGBoost, 

parameters like scale pos weight help address class imbalance, giving more weight to the 
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minority class (IBM, n.d.). For NN algorithms, the number of layers is adjusted, where 

increasing layers allows the network to capture more complex patterns (Austin et al., 

2022). 

In this context, misclassification costs are specifically applied to improve recall, 

assigning higher costs to false negatives. This ensures that the model prioritizes 

minimizing false negatives, which are critical in health-related tasks. Since the number 

of patients who suffer decompensation (class 1) is lower and the sample size is relatively 

small, a balancing technique using boost (Rizinde et al., 2023; IBM, n.d.) is applied to 

ensure the model does not favor the majority class, improving generalization and accuracy 

for minority class predictions. 

The Auto Classifier (IBM, n.d.), which has built-in cross-validation, is used to 

automatically test various models and compare them. It allows for adjustments to model 

parameters; however, for quicker performance, the parameters are left in their default 

mode. The output displays model details, including different parameterizations, chosen 

inputs, and predictor importance, ranking models based on performance and saving the 

best ones for further analysis or scoring. Detailed performance specifications for the best 

models of each algorithm across all dimensions are presented in Table 3.11 and Table 

3.12. 

Table 3.11: Feature selection: parameterization of the best models for each algorithm by dimension (Part 

1) 

 PP LR CP PP LR CP PP LR CP 

Algorithm  XGBoost CHAID RT 

Ensembles - - - Bagging Bagging Bagging - - - 

Maximum tree depth  18 18 18 5 12 3 10 10 5 

Records in parent branch  - - - 2 30 2 - - - 

Records in child branch  - - - 1 15 1 10 10 1 

Misclassification costs - - - Yes Yes No Yes Yes No 

 

Table 3.12: Feature selection: parameterization of the best models for each algorithm by Dimension (Part 

2) 

 PP LR CP PP LR CP 

Algorithm  C5.0 NN 

Ensembles Boosting - - - Bagging Boosting 

Maximum tree depth  - - - - - - 

Records in parent branch  - - - - - - 

Records in child branch  1 - - - - - 

Misclassification costs Yes Yes No - - - 
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Recalling the selection process, 1 includes all variables, 2 applies feature 

selection, and 3 adds past variables for Clinical Presentation and Lab Results. Comparing 

1 and 2 for the Patient Profile, 2 shows better overall performance, with even the worst 

model in 2 performing better than the worst in 1. Although XGBoost drops in 

performance, models CHAID (AUC 0.610 to 0.653, recall 53.78% to 58.82%), RT (AUC 

0.611 to 0.654, recall 50.42% to 56.30%), and C5.0 (AUC 0.611 to 0.628, recall 50.42% 

to 62.18%) show clear improvements. In the Clinical Presentation dimension, both the 

worst and best models in 2 show modest improvements over 1, while 3 results in worse 

performance. For Lab Results, the best model in 2 performs similarly to 1, with a slightly 

higher recall, making 2 the preferred choice for its simplicity. In 3, recall falls below 50%, 

confirming that adding extra variables does not improve performance.  

 

Table 3.13: Feature selection: results of best and worst algorithms (Part 1) 

Dimensions Patient Profile  Clinical Presentation 

Selection 1 2 1 2 3 

Metrics 
Worst  Best Worst  Best Worst  Best Worst  Best Worst  Best 

RT XGBoost C5.0 XGBoost RT Auto CHAID Auto RT Auto 

Training 
Recall 85,78% 100% 91,67% 99,54% 41,33% 69,98% 42,71% 74,07% 55,25% 54,10% 

AUC  0,893 0,999 0,901 0,991 0,568 0,570 0,579 0,570 0,645 0,658 

Test 
Recall 50,42% 100% 62,18% 95,80% 36,13% 73,95% 38,66% 73,95% 34,45% 35,29% 

AUC  0,611 0,995 0,628 0,946 0,523 0,542 0,555 0,558 0,492 0,548 

 

Table 3.14: Feature selection: results of best and worst algorithms (Part 2) 

Dimensions Lab Results 

Selection 1 2 3 

Metrics 
Worst  Best Worst  Best Worst  Best 

NN XGBoost C5.0 XGBoost RT XGBoost 

Training 
Recall 74,82% 100% 90,88% 100% 95,16% 100% 

AUC  0,768 0,997 0,855 0,998 0,945 0,987 

Test 
Recall 53,78% 100% 54,62% 100% 48,74% 100% 

AUC  0,600 0,973 0,573 0,973 0,586 0,923 

 

In total, 25 variables were selected, with 13 from the Patient Profile, 10 from Lab 

Results, and only 2 from the Clinical Presentation. After the selection process, the most 

important variables from each dimension are identified, with the top 5 presented in Table 

3.15 based on the feature importance of the best-performing algorithms. Interestingly, in 

the Patient Profile, the top 5 variables are primarily related to hospital interactions and 

the presence of an ICD. For the Clinical Presentation, only two variables were selected, 
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NYHA classification and number of symptoms, making them the most important for this 

dimension. As for Lab Results, key biomarkers like hemoglobin (Hb), hematocrit (Hct), 

and NT-proBNP, which are often associated with heart function and overall health status, 

stood out as the most important variables. 

 

Table 3.15: Top 5 most important variables by dimension 

  

3.3. Modelling 

In this phase, various modelling techniques are selected and applied with consideration 

of both business and analytical objectives.  

The same five algorithms presented earlier are once again chosen for their balance 

between interpretability and strong performance in health-related tasks (e.g., (Rahman et 

al., 2023; Sharma et al., 2022a). DT-based algorithms, such as Chi-squared Automatic 

Interaction Detection (CHAID) (Kass, 1980), C5.0 (Quinlan, 1993), and Random Trees 

(RT) (Breiman, 2001), offer high interpretability, while models like XGBoost (Chen & 

Guestrin, 2016) and NN (MLP) (Bishop, 2006).are included for their strong predictive 

capabilities based on findings from previous studies (Awan et al., 2019a; Awan et al., 

2019b; Beecy et al., 2020). The Auto Classifier is also used, as it tests the same algorithms 

but with different built-in parameterizations.  

The DT-based algorithms are crucial in achieving analytical objectives due to their 

interpretability. They not only help identify the most important variables and patient 

profiles but also aid in understanding how more complex models like XGBoost, NN, and 

the Auto Classifier operate. By using DT to explain the results of these less interpretable 

models, insights can be gained without sacrificing accuracy, allowing a balance between 

predictive power and model clarity (Ahmad et al., 2018). 

First, various models are created using the entire sample with the 25 selected 

variables, applying different parameterizations for each algorithm. To maximize 

performance, an additional model is created by splitting the sample into two groups: one 

with cases that have no missing values and one with cases containing missing values. All 

models are tested on both groups, and the two strongest models from each group are 

selected. These models are then combined to create the comprehensive final model. For 

Dimension Model Most Important Variables (Top 5) 

Patient Profile C5.0 Consult_6m ICD ES_6m DH_2020_Now DH_6m 

Clinical Profile Auto (RT) NYHA_cod Symptoms - - - 

Lab results CHAID Hb Hct RBC NT-proBNP GFR_calc 
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example, XGBoost performs well but excludes cases with missing values, which makes 

splitting the sample necessary. This procedure not only enhances model performance but 

also provides insights into how the models behave with complete cases and those 

containing missing values, which reflect a more realistic scenario of the data available at 

the moment. By analyzing both groups separately, it helps to determine whether the 

variables with missing values are essential for future improvements, allowing for better 

decision-making on whether retrieving these variables should be prioritized. The best 

parametrizations for each algorithm across the three sample groups (complete, with nulls, 

and without nulls) are detailed in Table 3.16 and Table 3.17. 

 

Table 3.16: Parameterizations of the best models for each algorithm by sample type (complete, with nulls, 

without nulls) (Part 1) 

Sample C W/o Nulls C W/Nulls W/o Nulls C W/Nulls W/o Nulls 

Algorithm XGBoost CHAID RT 

Ensembles - - - Bagging Bagging - - - 

Maximum tree depth 12 12 5 4 5 5 4 6 

Records in parent branch - - 2 2 2 - - - 

Records in child branch - - 1 1 1 10 10 10 

Misclassification costs - - Yes Yes Yes No Yes No 

Notes: C: Complete; W/Nulls: With nulls; W/o Nulls: Without nulls 

 

Table 3.17: Parameterizations of the best models for each algorithm by sample type (complete, with nulls, 

without nulls) (Part 2) 

Sample C W/ Nulls W/o Nulls C W/ Nulls W/o Nulls 

Algorithm C5.0 NN 

Ensembles - - - - - Bagging 

Maximum tree depth - - - - - - 

Records in parent branch - - - - - - 

Records in child branch 12 - 10 - - - 

Misclassification costs Yes Yes Yes - - - 

Notes: C: Complete; W/Nulls: With nulls; W/o Nulls: Without nulls 

 

3.4. Evaluation  

In the evaluation phase, the models are assessed to ensure they meet the objectives. This 

includes comparing evaluation metrics, selecting the best model, and subsequently 

analyzing prediction errors. Techniques such as sensitivity analysis and logistic 

regression are applied to ensure the interpretability of the chosen model.  

The holdout method with a 70-30 split is used to validate the models, meaning 

70% of the data is used for training, while the remaining 30% is reserved as unseen data 
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for testing. For the Auto Classifier and, sometimes, for C5.0, the holdout is combined 

with 5-fold cross-validation, where the data is split into 5 subsets, and the model is trained 

and tested 5 times, each time using a different subset as the test set while the others are 

used for training. This combination, frequently seen in the SLR (e.g., Özbay Karakuş & 

Er, 2022; Tong et al., 2023), ensures robust validation. However, not all models allow 

this level of parameterization. 

To evaluate the quality of the models, several standard metrics (Rahman et al., 

2023; Rizinde et al., 2023) are selected, based on the confusion matrix (Table 3.18). These 

include specificity, recall, accuracy, F1 score, and precision, with their formulas and 

descriptions presented in Table 3.19. In this context, the positive class refers to a patient 

decompensating in the 30 days following the consultation. 

Table 3.18: Confusion matrix 

 Predicted Class 

Actual Class Stable Decompensation Event 

Stable TN (True Negative) FP (False positive) 

Decompensation Event FN (False Negative) TP (True positive) 

  

Table 3.19: Metrics for evaluation 

Metric Formula Explanation 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

True Negative Rate, measures the proportion of actual 

negatives that are correctly identified. 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True Positive Rate, measures the proportion of actual 

positives that are correctly identified. 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Overall correctness, measures the proportion of correct 

predictions (both true positives and true negatives). 

F1 score 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Harmonic mean of precision and recall, providing a balanced 

measure of model performance. 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Positive Predictive Value, measures the proportion of 

positive results that are true positives. 

 

 In addition, AUC is used, derived from the Receiver Operating Characteristic 

(ROC) curve. The ROC curve represents the trade-off between the true positive rate 

(recall) and the false positive rate (1 - specificity) across different classification 

thresholds. AUC measures the overall ability of the model to distinguish between the 

positive and negative classes. An AUC value ranges from 0 to 1, where 1 indicates perfect 

classification, and 0.5 suggests the model performs no better than random guessing (Davis 

& Goadrich, 2006). This metric was the most reported in the SLR, showing its importance 
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in model evaluation. The evaluation metrics are applied to both the training and test sets 

to detect overfitting or underfitting. Overfitting occurs when the model performs well on 

training data but poorly on test data, while underfitting means the model performs poorly 

on both (Ying, 2019). Based on these results, parameterizations can be adjusted to 

improve overall model performance. 

After identifying the best model, which meets the success criteria mentioned earlier 

in the business understanding phase, with a strong emphasis on recall and AUC, the cases 

where predictions were incorrect are reviewed to understand the causes of 

misclassification and identify potential areas for model improvement. Following this, two 

additional objectives are pursued: identifying the most important variables in the model 

and determining the profile of patients more prone to decompensation, with a confidence 

level of 80% and a support of at least 50 cases. This analysis provides valuable insights 

for healthcare professionals, helping them manage patients more effectively and prioritize 

interventions where needed. 

 

3.4.1. Interpretability  

To ensure the model is suitable for real clinical application, interpretability is essential 

(Ahmad et al., 2018). Three steps are taken to ensure this: creating a decision tree for a 

global explanation of a less interpretable model, conducting a sensitivity analysis of the 

model, and using LR to assess the impact of variables on the outcome. 

Firstly, a DT is applied to approximate the behavior of the less interpretable 

model. This tree replicates the decision-making process of the model while maintaining 

a simpler and more interpretable structure. By ensuring comparable metrics, the decision 

tree faithfully mirrors the predictions of the original model in this classification task, 

providing a global explanation that balances accuracy with interpretability (Ahmad et al., 

2018). 

Additionally, a sensitivity analysis is conducted using heatmaps based on the score 

(probability of positive) of the model to evaluate how changes in key variables influence 

the predicted scores. The score ranges from 0 to 1, where a higher score indicates greater 

confidence in a positive classification. The use of the score, rather than simply observing 

binary predictions, allows for a more comprehensive understanding of the behavior of the 

model. This approach offers deeper insight into the robustness of the model by visually 

illustrating the influence of predictors (Kerexeta et al., 2023). 
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To gain a deeper understanding of the impact of the predictors on HF 

decompensation, a LR analysis is conducted (Kerexeta et al., 2023), generating 

coefficients and odds ratios to quantify the influence of each variable on the target and 

assess their statistical significance. The LR analysis builds on insights from the feature 

selection process. Correlated variables are reduced by keeping those with greater 

statistical and clinical significance (e.g., Hb was kept over Reed Blood Count (RBC) and 

Hematocrit (Hct)). Significant variables are analyzed through forward stepwise and enter 

methods (Laureano, 2020), following the same structured approach as the feature 

selection process by dividing this analysis by dimension. Two final regressions are 

performed: one including all variables that remain significant after the forward stepwise 

process, and another using the same significant variables but excluding past-dependent 

ones (e.g., ES_6M, Var1_0.3_Cr) for applicability to new patients. Control variables, 

such as Age, DM, and GFR, are included regardless of significance, although they are 

consistently removed stepwise 9.  

 

3.5. Deployment  

The deployment phase of the CRISP-DM methodology is characterized by the application 

of insights gained from this investigation for academic and professional use. The 

development of this investigation itself represents a form of deployment, laying the 

groundwork for future applications.  

In this context, deployment is reflected in the elaboration of an article based on the 

SLR of this investigation, which was presented at a healthcare informatics track at a 

scientific conference, and in this document, which presents the entire process and 

interpretations of the study. Both documents, the article and this thesis, are shared with 

healthcare professionals at the HF department, highlighting the study results. 

Additionally, the Excel formulas and Power Query scripts used to structure the data are 

provided to the doctors, enabling them to apply these methods in their practice. However, 

the implementation of the model in the decision-making process of the HF department 

was not feasible within the one-year development of this investigation. Additional time 

is required to ensure effective integration and to assess whether the business objectives 

outlined in the study are met. The model is available for the department to consider its 

implementation, with the potential to enhance the management of HF patients. 

 
9 Full results from all regressions are presented in appendix G. 
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4. Results and Discussion 

 

This chapter presents the results obtained through the applied methodology, providing 

interpretations aligned with the study objectives and discussing their broader significance 

and implications. The sample is composed of 17.13% positive cases (n=344), where 

patients experience HF decompensation within 30 days of their HF consultation, and 

82.87% negative cases (n=1664), representing stable patients who do not decompensate 

in that timeframe. 

 

4.1. Predictive Models for HF Decompensation 

To address the first objective, multiple predictive models are developed following the 

outlined methodology. Given the nature of the models, different approaches are applied 

to ensure robust results and enable a thorough evaluation. This section presents the results 

for both the complete dataset and the combined model, integrating predictions from cases 

with and without null values. Several experiments are conducted for each of the five 

algorithms, adjusting parameters and samples to optimize performance and avoid 

underfitting or overfitting. The best models are identified based on the success criteria 

defined for the first analytical objective. The parameter settings for each model were 

detailed previously. Results for the models using divided samples, which are not part of 

the combined model, are not presented here 10. 

 

4.1.1. Evaluation of the Models and Selection of the Best-Performing One 

The results of the best models, by algorithm, for the complete sample, as well as the two 

best for each divided sample (with nulls and without nulls) and the combined model, are 

shown in Table 4.1. The best model is selected based on a recall threshold of at least 60% 

and an AUC of 0.65 or higher in the test sample. For the complete sample, ignoring 

XGBoost due to its exclusion of null cases, the focus is on CHAID, RT, C5.0, and NN. 

The overall behavior of the models indicates some overfitting, as the training metrics 

outperform the test set substantially. Notably, C5.0 exhibits the best recall (85%) and 

AUC (0.903) on the training set, but RT stands out with the highest recall on the test set 

(58.82%) and an AUC of 0.666. None of these models fully meet both success criteria, 

although RT comes closest.  In terms of other metrics, the models generally show higher 

 
10 See appendix H 
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specificity, suggesting better performance in correctly identifying stable patients, but 

overall precision remains low, indicating some difficulty in accurately predicting 

decompensation cases. 

Due to these limitations, a combination of the best models from the divided 

samples is explored. XGBoost (for the sample without nulls) and RT from Auto Classifier 

(for the sample with nulls) individually provide the best performance metrics in their 

respective samples. This combined model achieves high metrics, such as 96.94% 

specificity, 81.40% recall, and an AUC of 0.964, outperforming all other models. While 

this approach limits interpretability due to the nature of both XGBoost and Auto 

Classifier, the significantly improved performance justifies the choice of prioritizing 

accuracy over transparency in this case. 

Table 4.1: Results of the Best Predictive Models for HF Decompensation per Sample 

Metrics 

Complete 
With 

Nulls 

Without 

Nulls 
Combined 

XGBoost CHAID RT C5.0 NN RT* XGBoost 
XGBoost + 

RT* 

T
ra

in
in

g
 

S 97.27% 76.68% 73.14% 80.14% 76.25% 97,13% 96.95% 96.47% 

R 100.00% 75.46% 64.29% 85.82% 69.07% 84,07% 100.00% 91.12% 

A 98.60% 76.09% 68.84% 82.89% 72.78% 90,22% 98.49% 93.81% 

F1  98.59% 75.42% 66.73% 82.92% 71.04% 90,09% 98.52% 93.61% 

P 97.21% 75.39% 70.32% 80.21% 73.12% 0,9704 97.08% 96.23% 

AUC  1.000 0.856 0.744 0.903 0.813 0,955 1.000 0.977 

T
es

t 

S 97.51% 70.75% 69.37% 73.91% 69.96% 97,17% 93.71% 96.94% 

R 100.00% 54.62% 58.82% 57.14% 55.46% 60,00% 100.00% 81.40% 

A 97.88% 67.68% 67.36% 70.72% 67.20% 91,27% 94.63% 94.32% 

F1  93.33% 39.16% 40.70% 42.63% 39.17% 68,57% 84.51% 82.84% 

P 87.50% 30.52% 31.11% 34.00% 30.28% 82,61% 73.17% 84.34% 

AUC  0.998 0.679 0.666 0.691 0.695 0,907 1.000 0.964 

 

Supporting the table of results are the gain charts for the best models of the complete 

sample and the combined model, shown in Figure 4.1  and Figure 4.2 , respectively. In 

terms of gain, the combined model achieves a gain of 87.2% for the top 40% of patients, 

compared to C5.0 with 71.4% and RT with 53.6%. This means that when selecting the 

top 40% of patients most prone to decompensate, the combined model identifies 87.2% 

of the positive cases, improving over the other models 11. 

 
11 . Additionally, the ROC curves, which visualize the previously discussed AUC values, are available in 

the Appendix I. 
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Figure 4.1: Gain charts of the best models by algorithm (Complete Sample) 

 

Figure 4.2: Gain charts of the combined model 

The error analysis emphasizes how the model performance varies between categories 

within each predictor. Focusing on these differences helps identify specific groups where 

misclassifications occur more frequently, highlighting patterns for model refinement.  

For the variable Symptoms the model shows an error rate of 6.6% when there are no 

symptoms (0), 5.5% for 1 symptom, and only 1.2% for 3 symptoms, making no errors 

when there are 2 or 4 symptoms (Figure 4.3).  

 

Figure 4.3: Error Distribution by Number of Symptoms 
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In contrast, when examining a continuous variable, the Cr distribution (Figure 4.4) 

reveals more outliers for correct predictions, indicating that cases with higher Cr values 

are predicted more accurately. The model struggles more with lower Cr values, though 

the median remains similar between correct and incorrect predictions. 

 

Figure 4.4: Cr-distribution by type of decision 

As for the remaining variables, the analysis indicates consistent patterns across 

different categories.12 In the clinical presentation dimension, the NYHA classification 

displays a similar pattern to symptoms, with higher misclassification rates when NYHA 

is not documented (8% error rate) and for Class 1 (7.2%), suggesting that undocumented 

or lower classifications are more prone to error. Laboratory variables such as NT-proBNP 

and WBC follow a similar trend to Cr, where higher values generally improve accuracy, 

with WBC displaying the fewest outliers among them. However, Na behaves differently, 

showing better accuracy with lower values. Other lab results exhibit no significant 

differences between correct and incorrect predictions. All continuous hospital admission 

variables show a similar pattern, where higher values lead to more accurate predictions, 

while lower values are associated with increased difficulty. This trend is most evident 

with DH_2020_Now and DH_6m, where the distribution of errors is centered around 

lower values of DH visits. Lastly, binary variables, including sex, the presence of an ICD, 

and previous hospitalizations within the last year, do not show significant performance 

differences, as their distributions reflect no major impact on prediction accuracy. 

However, the smoker status variable reveals a trend where the model achieves more 

accurate predictions in cases where the patient is a current smoker. 

 
12 Appendix J provides distribution graphs for the majority of these variables, illustrating differences in 

model accuracy by error distribution across categories. 



49 

 

4.2. Most Important Predictors  

To address the third analytical objective of identifying the most important variables that 

predict HF decompensation, DT-based algorithms are created to mimic the behavior of 

the combined model, effectively opening the “black box”. The C5.0 algorithm, selected 

for its interpretability, achieves the highest metrics: 91.03% specificity, 93.73% recall, 

92.12% accuracy, 90.62% F1 score, 87.71% precision, and an AUC of 0.943. These 

strong results allow for a confident understanding of the predictions of the combined 

model. Therefore, the predictor importance of the C5.0 algorithm is analyzed (Figure 4.5), 

and Figure 4.6 presents the top 10 most important predictors from the best-performing 

model for the complete sample (RT).   

The combined model highlights an even distribution between laboratory results and 

patient profile factors, with hospital admissions such as ES_6m (0,1359) and 

Hosp_2020_Now (0,0866) playing a dominant role. Laboratory variables play a key role 

in predicting HF decompensation, with Cr and Na ranking among the top three predictors, 

showing high importance values (0.1004 and 0.0951, respectively). Other markers, such 

as WBC and RBC, also rank within the top 10 predictors, with values of 0.0678 and 

0.0577, respectively, further highlighting the support on laboratory indicators for accurate 

predictions. 

 

Figure 4.5: Top 10 - Variable Importance for the combined model 

In contrast, the complete model includes clinical presentation variables, which are 

entirely absent in the combined model. NYHA_cod, for example, is the top predictor in 

the complete model (1), signaling the relative importance of clinical symptoms in 
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identifying decompensation risk. Laboratory variables like Hb, Hct, and NT-proBNP are 

present in the complete model but only appear starting from the fourth place in the 

predictor relative importance list (0.79, 0,71 and 0.48, respectively). Both models 

emphasize unplanned hospital visits, particularly ES visits. However, the complete model 

also highlights the importance of DH visits, while the combined model focuses more on 

hospitalizations. This illustrates how each model prioritizes different factors in managing 

HF.  

 

Figure 4.6: Top 10 – Variable by Relative Importance for the complete sample 

 

4.2.1. Sensibility Analysis 

To provide more insight and enhance the explainability of the combined model, a 

sensitivity analysis is conducted, focusing on NT-proBNP, GFR, and Na, due to their 

strong influence in the models and clinical significance according to the HF experts and 

literature. NT-proBNP is a key biomarker for HF diagnosis and monitoring, while GFR 

is preferred over absolute Cr level, because of the inclusion of specific patient variables 

in its equation, as patient sex, age, and creatinine levels, providing a more accurate 

assessment of renal function. Na, crucial for maintaining electrolyte and volume balance, 

offers valuable information about the fluid volume status of the patient.  The goal is to 

explore how these variables relate with ES_6m, the most significant predictor in the 

combined model. 

The continuous variables are transformed into nominal categories (bins). ES_6m is 

categorized in two ways: one that compares no emergency service visits in the last six 

months with at least one, and another that divides the visits into three groups for a more 

in-depth comparison. GFR and Na follow standard clinical reference ranges (Figure 4.7 
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and Figure 4.8, respectively), while for NT-proBNP, less than 300 pg/mL is used as the 

clinical reference, and 3646 pg/mL, the average value in the sample, differentiates the 

middle and upper risk categories (Figure 4.9).  

The heatmap bellow shows that the highest risk of decompensation (mean score 0.9) 

is observed for patients with a low GFR (below 30 mL/min./1.) and five or more ES visits, 

indicating that renal dysfunction coupled with frequent hospitalizations increases the 

chances of HF decompensation. In contrast, the lowest risk (mean score 0.3) is seen in 

patients with GFR above 90 mL/min./1. and fewer than two visits.   

 

Figure 4.7: HF Decompensation Score by GFR levels and ES visits 

When comparing Na (Figure 4.8) and NT-proBNP (Figure 4.9), both markers show 

increased decompensation risk when their values are elevated, but sodium presents a 

higher risk. Patients with Na levels above 145 mmol/L and more than one ES visit face a 

higher mean score of 0.7. In comparison, NT-proBNP levels above 3646 pg/mL, under 

similar conditions, result in a slightly lower score of 0.6. On the lower end, patients with 

normal Na levels (135-145 mmol/L) and NT-proBNP levels below 300 pg/mL, combined 

with fewer than one ES visit, remain in the low-risk category (mean score 0.3). 

 

Figure 4.8: HF Decompensation Score by Na and ES visits 
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(1) 

(2) 

 

Figure 4.9: HF Decompensation Score by NT-proBNP and ES visits 

 

4.2.2. Variable Impact through Logistic Regression 

To assess the impact of key variables identified in the predictive models, two LR analyses 

are performed to predict HF decompensation probability, as outlined in the evaluation 

subchapter of the methodology. The first model (equation 1) includes all significant 

variables, while the second (equation 2) excludes past variables, providing insights for 

new patients. By analyzing the coefficients and odds ratios, the contribution of each factor 

to HF decompensation risk becomes clearer 13.  

While NT-proBNP and unplanned visit-related variables (ES_6m and 

DH_2020_Now) are included in the LR because of their significance (p-value of 0.002, 

<0,001 and <0,001, respectively), their specific impact is not detailed in this analysis. 

This is because NT-proBNP has an odds ratio close to 1 (1.003), indicating that one-unit 

increase of NT-proBNP has minimal effect likely due to its high variability, and the 

impact of unplanned visits is considered more intuitive and thus not shown. 

Therefore, the focus is on Hb and clinical status indicators (such as PND presence, 

NYHA classification above 1, and a Cr increase equal or superior to 0.3 mg/dL) that are 

identified as significant, both statistically (p-value <0,1) and clinically.  

 

1) 𝑃(𝐷𝑒𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 30 𝑑𝑎𝑦𝑠)

=  
1

1 + 𝑒
−(−0,151+0,496𝐼𝐶𝐷(1)+0,684𝑃𝑁𝐷(1)+0,262𝐸𝑆6𝑚+0,12𝐷𝐻2020𝑁𝑜𝑤

−0,147𝐻𝑏+0,614𝑉𝑎𝑟130𝐶𝑟(1)
−0,511𝑁𝑌𝐻𝐴(1)

 

 

2) 𝑃(𝐷𝑒𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 30 𝑑𝑎𝑦𝑠)

=  
1

1 + 𝑒−(0,182+0,372𝑆𝑒𝑥(1)+0,521𝐼𝐶𝐷(1)−0,151𝐻𝑏+0,003𝑁𝑇−𝑝𝑟𝑜𝐵𝑁𝑃−0,339𝑁𝑌𝐻𝐴(1))
 

 
13 See appendix G 
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The Figure 4.10 illustrates the impact of Hb variation on HF decompensation 

probability for the patients listed in Table 4.2, while Table 4.3Table 4.3 details how 

changes in Hb levels and clinical indicators influence these probabilities. The 

probabilities for patients 1_0 and 1_1 are derived from equation (1), whereas patients 2_0 

and 2_1 follow equation (2), where the first number indicates the equation and the second 

denotes the presence of clinical indicators (0 for none, 1 for presence)  

There is a clear negative relationship between Hb levels and the probability of HF 

decompensation within 30 days. For patient 1_0, without clinical status indicators, a 

reduction in Hb increases the decompensation probability by 25.3%, while an increase 

has a similar magnitude in the opposite direction (-21.3%). However, in the presence of 

clinical status indicators, as seen with patient 1_1, the effect of Hb changes is much 

smaller, with only a 10.8% increase for a reduction in Hb and an 11.6% decrease when 

Hb increases. Additionally, maintaining Hb at 13 but adding clinical status indicators 

nearly triples the probability of decompensation (196%), increasing from 0.208 to 0.616. 

This change moves patients from a lower-risk category to a moderate risk, where the 

model now indicates a higher chance of decompensation. This highlights how the 

combination of multiple factors such as PND, NYHA and specific variations on Cr and 

Hb significantly increases the overall risk of HF decompensation.  

For patients 2_0 and 2_1, the impact of Hb variations follows a similar pattern to that 

of patient 1_0. However, the difference between 2_0 and 2_1 is much smaller due to the 

presence of only one clinical status indicator (NYHA). The addition of NYHA above 1 

leads to a modest 28.6% increase in decompensation probability, keeping the patient in a 

low-risk category with a probability of 0.261.  

 

Figure 4.10: Impact of Hb Levels on 30-Day Decompensation Probability by Clinical Status 
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Table 4.2: Patient profiles and respective 30-day decompensation probability 

Patient  ICD* PND* ES_6m DH_2020_Now Hb Var1_0.3_Cr* NYHA_1* Sex* NTproBNP_scale Probability 

1_0 1 0 1 4 13 0 1 - - 0,208 

1_1 1 1 1 4 13 1 0 - - 0,616 

2_0 1 - - - 13 - 1 1 0,336 0,227 

2_1  1 - - - 13 - 0 1 0,336 0,261 

Note: * are binary and coded as 1 for a positive outcome. This means the impact is measured when conditions such as 

the presence of PND, having an ICD, being female, or having a NYHA classification of 1 are met. 

 

Table 4.3: Impact of Hb variation and clinical status indicators on 30-day decompensation probability 

 Hb Clinical Status Indicators 

Patient 13 to 11 13 to 15 Absent to Present 

1_0 25,3% -21,3% 
195,8% 

1_1 10,8% -11,6% 

2_0 25,2% -21,4% 
28,6% 

2_1 22,7% -20,0% 

 

Focusing on the remaining variables in the equations, the odds ratios and coefficients 

reveal that: being female, more emergency service visits in the past 6 months, more day 

hospital visits since 2020, higher levels of NT-proBNP, and having an ICD all positively 

influence the likelihood of decompensation. However, ICD is a preventive measure and 

is therefore expected to have a negative impact on decompensation. The positive 

association observed may reflect that patients more prone to decompensation are often 

those who receive the device. This underscores the importance of interpreting statistical 

findings within a clinical context 

 

4.3. Decision Rules to Support Patient Profiles  

The fourth and final objective, identifying profiles of patients more and less prone to 

decompensation after 30 days of the consultation, and those where the model struggles to 

classify, is now addressed. To offer a thorough comparison, decision rules that can 

support patient profiles are provided for both the complete model and the combined 

model, balancing explainability with detailed comparison. For each model, three profiles 

are presented: stable patients (low score), those who experience decompensation within 

30 days (high score), and cases where classification is uncertain (score around 0.5). 

 The rules for these profiles are derived from the C5.0 model for the combined 

data. Profiles are determined based on rules with a confidence level of at least 80% and 
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support of at least 50 consultations for less prone (classification of 0) and more prone 

(classification of 1) profiles. For the uncertain profiles, confidence ranges from 0.5 to 0.7, 

with support of more than 20 cases. For the complete model, the RT algorithm does not 

provide the same rule evaluation metrics as it lacks the support number, so rule accuracy 

is used instead. This metric is similar to confidence and follows the same success criteria 

as the combined model. 

Rules from the combined model (C5.0):  

• NYHA_cod = {0, 1, 2, 3, 4, 5} and DH_2020_NOW < 4 and Hosp_6m < 1 and 

ES_6m < 1 and Hb > 14.25 and Na ≤ 138.55, then 0 (support: 92; confidence: 

99.8%);  

• NYHA_cod = {0, 1, 2, 3, 4, 5} and DH_2020_NOW < 4 and Hosp_6m < 1 and 

ES_6m < 1 and Hb > 14.25 and WBC < 138.75 and Na > 138.75, then 0 (support: 

171; confidence: 98.4%); 

• DH_2020_NOW < 4 and Hosp_6m < 1 and ES_6m < 1 and Hb < 14.25 and 85.350 

< Urea < 172.5 and ICD = 0 and Hosp_2020_Now < 1 and Hct < 45.450 and 

Symptoms < 1 and NYHA_cod = 1, then 0 (support: 93; confidence: 96.8%); 

• NYHA_cod = {0, 1, 2, 3, 4, 5} and DH_2020_Now< 4 and Hosp_6m < 1 and 

ES_6m > 1 and DH_2020 < 2 and WBC < 6.650 and Cr > 1.035 and GFR_calc < 

74.5 and 1 < Consult_6m < 2, then 1 (support: 72; confidence: 81.9%); 

• NYHA_cod = {0, 1, 2, 3, 4, 5} and DH_2020_Now < 5 and Hosp_6m > 1 and 

ES_6m > 4, then 1 (support: 80; confidence: 82.5%); 

• NYHA_cod = {0, 1, 2, 3, 4, 5} and DH_2020_Now < 2 and 0< Hosp_6m < 2 and 

ES_6m > 1 and GFR_calc < 86.5 and ES_2020 < 13 and Urea < 113.5 and Smoker 

= 0 and Na < 143.450 and K > 3.860 and 6.65 < WBC < 10.5, then 1 (support: 74; 

confidence: 82.9%);  

• NYHA_cod = {0, 1, 2, 3, 4, 5} and Hosp_6m < 1 and ES_6m > 2 and 

DH_2020_Now ≤ 2 and WBC ≤ 6.65 and Cr > 1.035 and GFR_calc < 74.5 and 

Consult_6m ≤ 0 and Symptoms ≤ 3, then 0 (support: 21; confidence: 66.3%); 

• DH_2020_Now < 4 and Hosp_6m ≤ 1 and ES_6m ≤ 1 and Hb > 14.25 and ICD 

= 0 and Hosp_2020_Now ≤ 1 and Urea < 85.350 and NYHA_cod = {1, 0} and 

Hct < 45.45 and Symptoms > 2 and Previously_hospitalized_12m = 0, then 1 

(support: 39; confidence: 68.7%); 

• NYHA_cod = {0, 1, 2, 3, 4, 5} and DH_2020_NOW ≤ 4 and Hosp_6m > 2 and 

ES_6m < 4 and WBC > 4.95 and Sex = 0 and ES_6m > 3 and Hb ≤ 13, then 1 

(support: 39; confidence: 75.4%). 

 

Profiles from the complete model (RT):  

• Hb ≤ 12.5 and DH_6m ≥ 2, then 1 (rule accuracy: 95.5%); 

• DH_6m > 2 and Hct ≤ 48 and NYHA_cod = {0, 1, 2, 3, 4, 5}, then 1 (rule 

accuracy: 91.2%); 
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• DH_2020_NOW ≤ 5 and NT-proBNP > 5604 and ES_6m > 2 and DH_6m ≤ 0, 

then 1 (rule accuracy: 87.0%); 

• DH_2020_NOW ≤ 5 and NT-proBNP < 5604 and ES_6m ≤ 1 and Hb > 14.2, then 

0 (rule accuracy: 78.9%); 

• Hb > 13 and DH_6m ≤ 0 and NT-proBNP ≤ 3358 and ES_6m ≤ 1, then 0 (rule 

accuracy: 76.1%); 

• DH ≤ 2 and Hct > 38.6 and ES_6m < 1 and NYHA_cod < 2, then 0 (rule accuracy: 

76.7%); 

• DH_2020_NOW ≤ 5 and ES_6m > 1 and ES_2020_NOW > 5 and NT-proBNP < 

2195, then 1 (rule accuracy: 51.9%); 

• Hb > 12.5 and ES_6m > 1 and ES_2020_NOW ≤ 4 and GFR_calc ≤ 98, then 0 

(rule accuracy: 52.1%); 

• Hb ≤ 13 and DH_6m ≤ 2 and hosp_6m ≤ 1 and LOS_last ≤ 5, then 0 (rule 

accuracy: 53.8%); 

From the presented decision rules, it is evident that demographic variables are largely 

absent, with Sex being the only one included, appearing just once. NYHA also features 

frequently but only to distinguish from the most severe cases, as no rules are created for 

cases where NYHA_cod is 7, corresponding to a NYHA class of 4. Instead, the rules are 

primarily composed of lab results and hospital admission variables, with symptoms 

appearing a smaller number of times. It is important to note that the RT model achieved 

high rule accuracy for profiles more prone to decompensate but marginally missed the 

success criteria for rules associated with profiles less prone to decompensate, which is 

consistent with its previously observed evaluation metrics. In contrast, the combined 

model successfully meets all criteria, thereby fulfilling the final analytical objective. The 

translation of these rules into patient profiles is provided in the next subchapter, 

Discussion and Practical Implications. 

 

4.4. Discussion and Practical Implications 

In recent years, there has been a growing focus on developing ML models for HF, 

primarily targeting outcomes like readmission and mortality. Despite this progress, there 

has been limited attention specifically on HF decompensation, a concept whose definition 

remains debated, making further research essential. In the health domain, the need for 

interpretability ML models is crucial to ensure that models can be understood and trusted 

by clinicians, ultimately leading to better decision-making. Addressing these needs, this 

study contributes to the understanding of HF decompensation by developing an ML 

model focused on a 30-day timeframe, exploring key predictive factors and their influence 

on HF decompensation risk.  
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The study conducted by Kerexeta et al. (2023) has already made steps in this direction 

by developing a predictive model for HF decompensation within 7 days, relying on 

telemonitoring data. In contrast, this study uses a dataset of 584 patients followed in HF 

outpatient consultations, incorporating unstructured information such as consultation 

records, hospital admissions, and laboratory results, an approach not seen in the articles 

included in the SLR. Additionally, the longer 30-day follow-up period used here provides 

a more extended view of HF decompensation risk. 

The methodology applied is CRISP-DM, a framework not used in any of the 

reviewed studies. During the business understanding phase, the first objective is 

addressed by defining HF decompensation through expert input and aligning it with 

definitions from Bozkurt (2023) and Greene et al. (2023). From the data understanding 

and preparation stages, over 600 variables are initially created, classified into three 

dimensions: patient profile, laboratory results, and clinical presentation. Additionally, the 

target variable is created by combining ES and DH visits, hospitalizations, and therapy 

optimizations, all occurring within 30 days after one consultation. DH visits represent an 

additional type of unplanned hospital visit, not included in the Kerexeta et al. (2023) 

study. Therapy optimization is defined as the initiation or increment of furosemide and 

the initiation of levosimendan intermittent cycles. The feature selection process, 

following an approach similar to Rahman et al. (2023) and Sarijaloo et al. (2021), refines 

the variables within the three dimensions, resulting in 26 key factors for the modeling 

phase. The iterative nature of CRISP-DM proves essential, allowing for constant 

adjustments during data preparation and understanding, ensuring a robust final model and 

a clear pathway for future replication (Chapman et al., 1999). Several techniques are 

applied, including descriptive techniques, exploratory analyses, and predictive analyses 

through ML with supervised learning, all guided by both the literature and the need to 

meet the analytical and business objectives. 

The results presented in this chapter highlight that the combination of models 

resulting from the division of samples based on null values, specifically XGBoost and RT 

(via the Auto Classifier), delivers the best performance. Although this technique of 

sample division is not seen in the literature, the outstanding performance of XGBoost has 

already been demonstrated in multiple studies (Polo Friz et al., 2022; Rahman et al., 

2023), and its strong results in this context further reinforce its effectiveness. This model 

achieves all metrics above 80%, with a recall of 81.40% and an AUC of 0.964, surpassing 

the decompensation model of Kerexeta et al. (2023).  and the 30-day readmission models 
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(Polo Friz et al., 2022; Sabouri et al., 2023; Sharma et al., 2022), which are the most 

comparable to predict decompensation.  

This model functions as a 'black box' due to the combination of a simpler DT (RT) 

with a powerful ensemble method (XGBoost), which is non-interpretable by itself, 

making it necessary to enhance the interpretability of the overall model. These efforts 

include creating a DT algorithm (C5.0) to mimic the combined model, achieving strong 

metrics, with all above 90% except for precision at 87.7%. An error analysis is also 

conducted to improve performance and show how the model works, along with a 

sensitivity analysis of the most important variables and a LR to assess the impact of 

significant variables. For additional insights, the results of the RT model are presented as 

references, with metrics comparable to the literature but falling below the success criteria, 

specifically in terms of recall. 

The analysis of the most important variables from the combined model shows a 

strong emphasis on lab results and hospital interactions. Key predictors include Cr, Na, 

GFR, RBC, and WBC, aligning with findings in the literature (Okoye et al., 2023). In this 

analysis, WBC is used in place of NLR, a predictor mentioned in the literature but not 

collected by the hospital, and a known important indicator of inflammation, making it a 

reliable substitute. While the number of hospitalizations is often highlighted in the 

literature (e.g., Sharma et al., 2022; Xu et al., 2023), this study underscores the predictive 

value of the number of unplanned ES visits in the last six months, regardless of whether 

they led to hospitalization or not. This aligns with established scores like LACE and 

LaCE, where this variable is a core component, and supports the findings from Soliman 

et al. (2023). This indicates that even less severe decompensations, not requiring 

hospitalization, already reflect a higher risk for future decompensation. As such, this 

study allows for earlier intervention, at a less advanced stage when in-patient admission 

for optimization is not yet required. Although age is frequently noted in the literature as 

a predictor of HF outcomes, it does not emerge as significant in this analysis. Instead, lab 

results and healthcare interactions stand out as more critical factors in predicting 

decompensation. In the lifestyle-related variables, smoking is significant in both the 

combined and complete models, pointing to its potential impact on HF outcomes, but not 

previously mentioned by the literature. In the complete model, additional variables like 

Hb and Hct also emerge as significant, aligning with established research on HF 

management (Beecy et al., 2020). 
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The sensitivity analysis enhances the interpretability of the combined model by 

exploring how key clinical variables interact with ES_6m, the most significant predictor. 

Results show that sodium levels above 145, combined with more than one emergency 

visit, are classified by the model as prone to decompensation. For NT-proBNP, levels 

below 300 pg/mL are associated with the lowest score, while higher levels, especially 

when combined with frequent emergency visits, lead to significantly higher scores. 

Similarly, GFR below 30 mL/min./1., combined with more than five emergency visits, 

achieves a score of 0.90, highlighting the impact of renal function and healthcare 

interactions. 

The LR provides a clearer understanding of how the most significant variables 

directly influence the likelihood of decompensation, a technique also applied in the study 

by Kerexeta et al. (2023). By constructing two models, one without patient history 

variables and one with them, the regression results show that patient history, specifically 

the number of ES visits in the last 6 months and the number DH visits since 2020, is 

critical for predicting decompensation probabilities above 50%. Additionally, the 

regressions confirm the expected negative relationship between Hb and decompensation, 

as well as the significant impact of symptoms like PND, increased NYHA classification, 

and a Cr increase of 0.3 mg/dL or more on HF decompensation probability. 

The model identifies patients as less prone to decompensation with higher levels of 

hemoglobin (above 14.25 g/L) combined with low ES visits and hospitalizations. Patients 

with Hb below 14.5g/L remain less prone to decompensate when combined with absence 

or up to one symptom.  In contrast, profiles with more than one ES visit, combined with 

poor renal function (defined as creatinine levels above 1.035 mg/dL and GFR below 74.5 

mL/min./1.), are consistently identified as having a higher risk of decompensation. In 

cases where renal function is preserved but Na levels are reduced (below143 mmol/L), 

patients are still flagged as likely to decompensate. The combination of frequent 

healthcare interactions and deteriorating renal markers significantly drives this HF 

decompensation risk. For patients where the model is uncertain, conflicting clinical 

indicators complicate the accuracy of the outcome. These include low ES visits and 

normal WBC levels (between 6.66 and 10.5 X 10^9 / L) alongside poor renal function 

(GFR below 74.5 mL/min./1.), more than one symptom, or low Hb levels (below 13 g/L). 

Such cases reflect a conflict between risk and protective factors within the same profile, 

requiring closer evaluation and monitoring to clarify the decompensation risk of the 

patient. 
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In comparison, the complete model confirms many of these insights while 

incorporating additional variables. It highlights low Hb and Hct (below 12.5 g/L and 

below 48%, respectively) with frequent unplanned hospital visits as significant predictors 

of decompensation, with high levels of NT-proBNP (above 5604 pg/mL) further 

distinguishing those at risk. Interestingly, the model shows that NT-proBNP reduction, 

even with lower levels of Hb, indicates stability. For stable patients, the complete model 

aligns with the combined model by emphasizing higher Hb and Hct (above 13 g/L and 

above 38.6%, respectively), fewer hospital visits, and normal NT-proBNP, reinforcing 

the protective role of lack of anemia and minimal unplanned healthcare interactions. For 

uncertain profiles, both models struggle when hospital visits coexist with borderline lab 

values, particularly in renal function and hemogram parameters, complicating 

predictions. 

This analysis demonstrates that all four study objectives are achieved, offering a solid 

foundation for HF decompensation prediction, with Table 4.4 providing targeted 

recommendations for stakeholders to guide further research. 

Table 4.4: Recommendations to key stakeholders 

Recommendation Stakeholder 

Promote research on HF decompensation to refine its definition and identify 

consistent predictive factors over a 30-day period. 

Academics, Healthcare Policy 

Makers 

Establish a standard practice to always request key lab tests (e.g., Cr, Na, NT-

proBNP) to reduce missing values and improve predictive accuracy. 
Health care professionals 

Standardize the language and abbreviations in unstructured records, including 

non-clinical factors, to improve data extraction and insights into patient 

compliance. 

Health care professionals 

Apply the CRISP-DM methodology for replicability and iterative improvement 

in clinical ML model development. 

Researchers of Business 

analytics and health analytics 

Conduct cost-effectiveness analyses to support HF model implementation in 

routine clinical practice. 

Hospital Administrators, 

Healthcare Policy Makers 

Utilize the SLR, which summarizes existing knowledge on ML predictive 

models for HF outcomes, as a foundation for future research. 

Researchers of health 

analytics 

Implement online symptom self-reporting, enabling flexible management of mild 

cases and creating a valuable data source for research. 

Healthcare providers, 

patients, health IT developers, 

researchers. 

Raise public awareness about heart failure and the benefits of early intervention 

and regular check-ups to reduce HF risks. 

Public Health Organizations, 

Healthcare professionals, 

Media Channels 

Utilize this investigation as a practical example of applying predictive analytics 

in cardiology, integrating Business Analytics techniques to enhance patient 

outcomes in the Portuguese healthcare context. 

Business Analytics 

Professors, researchers 

Use this research as a practical example for identifying key factors in HF 

decompensation, supporting early interventions to reduce hospital readmissions 

and emergency visits. 

Professors and Healthcare 

professionals of cardiology 
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5. Conclusion 

 

HF affects millions of individuals worldwide, and as this syndrome progresses, 

decompensation events occur, significantly worsening the overall condition of the patient. 

These events are critical in the trajectory of HF, often leading to hospitalizations, reduced 

quality of life, and increased mortality risk. Due to this, HF places a significant burden 

on healthcare systems, contributing to increased spending. By anticipating these 

decompensation events, cardiologists can intervene earlier, reducing hospitalizations and 

ES visits, and ultimately alleviating the strain on healthcare resources.  

Given the significant impact of HF on patients and healthcare systems, along with 

the added strain that decompensation events create, this investigation aims to answer the 

question: How can a ML model for HF decompensation prediction enhance the 

management of HF patients? To achieve this, four objectives were established: to define 

HF decompensation, develop a predictive model for HF decompensation, identify the key 

factors influencing these events, and determine patient profiles more prone to 

decompensation as well as those less susceptible. To address this, an SLR was conducted 

to gather existing knowledge in this domain, focusing on study contexts, methodologies 

used, results, and the impact of each study, which resulted in the analysis of 24 articles. 

Building on the knowledge gathered from the SLR, the CRISP-DM methodology 

was applied to the data from 584 patients, resulting in 2008 cases, as the data was 

structured per consultation rather than per patient. The data passed through all phases of 

the methodology, with iterations between phases as needed. Each stage was guided by 

the objectives of the research, ensuring that data preparation and analysis are in line with 

the objectives of the study. Continuous contact with HF experts was crucial throughout 

all phases of the process, particularly during business understanding, where the first 

objective of defining decompensation was completed, and during data understanding and 

preparation, where unstructured consultation records underwent data mining. In addition, 

expert input was vital in analyzing the results, providing a clinical perspective to ensure 

that the conclusions were aligned with practical relevance, not based solely on statistical 

results. 

In this study, HF decompensation is defined as the combination of unplanned hospital 

visits (ES and DH visits and hospitalization) and scheduled HF appointments with 
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diuretic and/or outpatient inotropic therapy optimization, all occurring within 30 days 

after an HF appointment. 

For the construction of the ML model, several algorithms were tested, including DT 

models such as CHAID, C5.0, and RT, chosen for their interpretability. Less interpretable 

models like XGBoost and NN were also included, as they have demonstrated strong 

performance in previous studies, despite their lack of interpretability. The best-

performing model resulted from combining an XGBoost model, created for a sample 

without null cases, and a RT model for the sample with nulls. This combined approach 

achieved the best metrics, meeting the success criteria and surpassing existing models for 

decompensation and 30-day readmission.  

To open the "black box" of the best-performing model, a C5.0 DT was created to 

mimic its behavior. This was complemented by an error analysis, sensitivity analyses, and 

a LR analyses. Relying on feature importance from the C5.0 algorithm, the most 

significant variables were identified, successfully achieving the third objective. The key 

predictors include the number of emergency visits in the last six months, followed by Cr, 

Na, smoking status, and the number of hospitalizations from 2020 to the present 

consultation. The remaining top predictors are primarily related to hospital interactions 

and laboratory results. The sensitivity analysis provided insights into how clinical key 

variables, such as NT-proBNP, Na, and GFR, along with the number of emergency visits 

in the last six months, influenced the probability of the model classifying a patient as 

decompensated. Specifically, a GFR below 30 mL/min./1, combined with more than five 

ES visits in the last six months significantly increased the likelihood of classification as 

decompensated.  

Moreover, the LR analysis demonstrated that the presence of PND along with a 

NYHA classification above one and an increase over 0.3mg/dL in creatinine levels 

amplified the probability of decompensation by nearly 200%, compared with the absence 

of this indicators, ceteris paribus. It also highlighted the negative relationship between Hb 

levels and the likelihood of being classified as decompensated. Furthermore, the presence 

of historical variables, such as the number of ES visits in the last six months, proved 

essential for any model to achieve a reliable level of certainty in predicting 

decompensation.  

Regarding the identification of profiles, terminal nodes of the C5.0 were employed 

to establish three profiles for each type: those more prone to decompensation, those less 

prone, and those classified with uncertainty. The decision rules to support patient profiles 
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for both the more prone and less prone categories were created with confidence levels 

exceeding 80% and support greater than 50 consultations. In contrast, the uncertainty 

profiles were characterized by confidence levels closer to 50% and support above 20. The 

rules from the best-performing model in the complete sample, the RT model, were also 

presented for comparison, resulting in a total of 18 profiles. This process successfully 

fulfilled the last objective. 

With all objectives achieved, it is possible to answer to the research question “How 

can a ML model for HF decompensation prediction enhance the management of HF 

patients?” This thesis demonstrates that by creating two distinct models, XGBoost for 

cases without null values and RT for cases with nulls, and combining them, metrics 

exceeding 80% are consistently achieved. By applying a C5.0 algorithm alongside 

sensitivity analysis and LR analysis the black box model can be opened, allowing for the 

identification of the most important variables and HF patient profiles more prone and less 

prone to decompensation within 30 days after their consultation, contributing to the 

explainability (a pre-requisite). The implementation of this model in clinical practice can 

provide cardiologists with valuable insights to better identify high-risk patients, 

facilitating more targeted interventions, closer monitoring, and adjustments in therapy, 

ultimately leading to less HF decompensation episodes. This, in turn, leads to more 

efficient resource allocation and improves outcomes in the management of HF patients. 

 

5.1. Contributions  

This research presents advancements in the study of HF decompensation prediction 

through ML techniques, benefiting both the academic domain and healthcare 

professionals. By employing the CRISP-DM methodology, an approach not previously 

applied in existing literature, it demonstrates the effectiveness of this methodology in 

healthcare analytics. 

For future research on predicting HF outcomes, this study serves as a valuable 

starting point, with a SLR summarizing findings related to readmission, mortality, and 

combined endpoints predictions for HF patients. It identifies key insights across various 

dimensions, including scope and context, methodology, results, and study impacts. One 

work, based on this research, was presented at a conference on healthcare informatics 

track and is included in the proceedings, which are scheduled for publication, providing 

another resource for researchers and practitioners in the field. 



64 

The results significantly enhance the literature, as there is limited information on 

decompensation prediction. By extending the follow-up period from 7 days to 30 days, 

this study provides valuable insights for longer-term predictions. It utilizes clinical notes, 

healthcare interaction history, and previous lab results, which eliminates the need for 

costly telemonitoring devices. Conducting this research in the Portuguese context offers 

a fresh perspective on the application of predictive techniques for anticipating HF 

decompensation.  

The findings suggest that predicting decompensation can be complex, indicating that 

more interpretable models may not be adequate for such intricate outcomes that involve 

numerous variable interactions. This underscores the need to explore black box models, 

which, despite their complexity, can be enhanced with interpretability techniques 

presented in this study. Additionally, the feature selection process outlined here can be 

replicated, aiding in the reduction of model complexity by requiring only 25 variables. 

This approach demonstrates that extensive data collection is not necessary, thereby 

facilitating future investigations.  

Notably, this investigation demonstrates that a simple tool like Excel can be 

effectively used for data mining. Sharing the developed formulas and queries, along with 

recommendations for improving clinical note-taking to facilitate data extraction, can help 

the HF team streamline their data collection process, improving both the efficiency and 

quality of future data retrieval. As cardiologists are expected to conduct research 

independently, these insights can significantly reduce data collection time and enhance 

data quality. Another tool highlighted in this thesis is SPSS Modeler, a low-code platform 

with a visual programming interface that further enhances efficiency in data 

understanding, preparation, and modeling. Its user-friendly design supports rapid insights 

and empowers self-service data science by reducing the time needed for meaningful 

results 

 Furthermore, identifying the most important factors associated with HF 

decompensation, along with profiling patients as more prone or less prone to 

decompensation, will aid in refining patient management strategies. By identifying 

patients at higher risk, cardiologists can tailor their consultation plans. They may 

implement more frequent follow-ups for high-risk patients, while conducting telephone 

consultations for stable patients to reduce the need for in-person visits, thereby optimizing 

resources based on patient profiles. Additionally, meetings for case discussion can be 
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reduced to focus only on patients where the model indicates uncertainty, streamlining the 

process and improving efficiency.  

Ultimately, the insights gained from this research are valuable for all cardiologists 

and could be applicable to other pathologies characterized by stable phases interrupted 

by episodes of decompensation, even though the study focused on a specific condition in 

patients from a particular hospital. By integrating this domain with business analytics, 

this work seeks to generate greater interest in similar projects while ensuring that concerns 

about interpretability are addressed, without allowing these issues to hinder future 

research.  

 

5.2. Limitations and Future Research Recommendations   

Despite the strong results achieved by the model, several limitations should be 

acknowledged. The investigation faced challenges due to the large amount of information 

in an unstructured format, which significantly extended the data preparation phase. This 

complexity resulted in the exclusion of important information, such as prognosis-

modifying medication, specific medication dosages and the results from complementary 

exams like transthoracic echocardiograms and electrocardiograms, and it also impacted 

the quality of data concerning symptoms and signals. This compromised quality could 

have led to the reduced significance of these variables in relation to the outcome. 

Additionally, the presence of missing values led to the exclusion of crucial lab results, 

including albumin, cystatin C, ferritin and urinary sodium levels, with the feature 

selection process also discarding variables intended to provide historical context for lab 

results and symptoms. It is important to note that the formulas for data extraction were 

specifically created for the HF team in question, using Portuguese terminology that this 

team tends to use. Therefore, they should only be viewed as a guideline for how other 

hospitals might structure their data. 

Lastly, despite efforts to enhance interpretability, the complexity of decompensation, 

which is influenced by many factors and different combinations of predictors, makes 

more interpretable models less effective. Although some authors suggest using decision 

trees to interpret black box models, other tactics that could aid in this process were not 

available in the software used. 

There is significant potential for improvement in HF decompensation predictions. 

Future studies should build upon these findings and enhance model performance by 
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focusing on the following recommendations: 1) Utilization of large language models for 

data extraction to improve research efficiency; 2) Inclusion of guideline-directed therapy 

data to improve predictive accuracy, as low doses or absence due to intolerance correlates 

with higher readmissions; 3) Incorporation of non-clinical factors such as autonomy, 

socioeconomic status, and  patient perception of their own health to gain insights into 

patient compliance and its impact on HF progression; 4) Improvement of model 

interpretability by employing techniques such as Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive Explanations (SHAP) to clarify factors 

influencing predictions, aiding clinicians in decision-making; 5) Evaluation of the 

financial impact of implementing this model to understand its cost-effectiveness. 
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Appendix  

A: Most important variables from the SLR 

 

Most important variables: Demographics 

Demographics 
Study ID Total 

1 2 3 4 5 6 7 8 9 12 13 14 15 16 18 19 20 21 22 23 

Age  ✓ 

 

✓ 

 

✓ ✓ ✓ 

    
✓ 

  
✓ ✓ ✓ ✓ 

 

✓ 11 

Sex 
  

✓ 

            
✓ 

 

✓ 

  
3 

Weight 
       

✓ 

            
1 

Substance abuse 
              

✓ 

     
1 

Alcohol intake 
  

✓ 

                 
1 

Occupaction 
 
✓ 

                  
1 

Distric of Residence 
  

✓ 

                 
1 

Total population 
                  

✓ 

 

1 

Distance from home to a park 
                  

✓ 

 

1 

Admission Type 
 
✓ 

      
✓ 

          
✓ 3 

LOS 
  

✓ 

 

✓ 

   
✓ 

      
✓ 

    
4 

LOB 
                 

✓ 

  
1 

HF duration 
    

✓ 

               
1 

Discharged to home 
                  

✓ 

 

1 

Nº Hospitalizations 
    

✓ ✓ 

   
✓ ✓ 

         
4 

Nº of allied health visits (last 6 months) 
                   

✓ 1 

Nº VGP 
                 

✓ 

  
1 

History of HF 
                   

✓ 1 

Last Hospitalization 
               

✓ 

    
1 

Nº Hospitalizations for CHF/AHF 
                 

✓ 

  
1 

Nº ES visits (last 6 months) 
    

✓ 

               
1 

Time since last non-cardiovascular admission 
            

✓ 

       
1 

Long-term care residence status 
            

✓ 

       
1 

AHF 
             

✓ 

      
1 

BMI 
               

✓ 

    
1 

Type of HF 
 
✓ 

      
✓ 

           
2 

CFS 
      

✓ 

             
1 

CCI 
 
✓ 

  
✓ 

 

✓ 

             
3 

PNI 
                

✓ 

   
1 

NYHA 
     

✓ 

  
✓ 

           
2 

LACE score 
 
✓ 

                  
1 

BI  
               

✓ 

    
1 

Note: AHF: Acute Heart Failure; BI: Barthel Index; BMI: Body Mass Index; CCI: Charlson Comorbidity Index; CFS: 

Clinical Frailty Scale; CHF: Chronic Heart Failure; ED: Emergency Department; HF: Heart Failure; LACE: Length of 

Stay, Acuity of Admission, Comorbidity, Emergency Department Use; LOB: Length of Stay Beyond; LOS: Length of 

Stay; NYHA: New York Heart Association Functional Classification; PNI: Prognostic Nutritional Index; VGP: Visits 

to the General Practitioner. 
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Most important variables: Lab Results 

Lab Results 
Study ID 

Total 
1 2 3 4 5 6 7 8 9 12 13 14 15 16 18 19 20 21 22 23 

Albumin 
             

✓ 

      
1 

Basophil count 
        

✓ 

           
1 

BNP  
     

✓ ✓ 

             
2 

BUN  
              

✓ 

   
✓ 

 

2 

CK-MB  
              

✓ 

     
1 

Cholesterol 
   

✓ 

                
1 

Cr  ✓ 

     
✓ 

       
✓ 

   
✓ 

 

4 

DD  
        

✓ 

           
1 

GFR  
     

✓ 

     
✓ 

        
2 

Hb  ✓ ✓ 

       
✓ 

        
✓ 

 

4 

HCO3  
             

✓ 

      
1 

Htc 
        

✓ 

         
✓ 

 

2 

LFT ✓ 

                   
1 

MCV  
        

✓ 

           
1 

NLR  
 

✓ 

              
✓ 

   
2 

NT-proBNP  
    

✓ 

      
✓ 

 

✓ 

      
3 

Platelet 
        

✓ 

           
1 

PTT  
              

✓ 

     
1 

RBC  
   

✓ 

              
✓ 

 

2 

Na 
           

✓ ✓ ✓ ✓ 

     
4 

Uric acid ✓ 

  
✓ 

    
✓ 

           
3 

Notes: BNP: B-type Natriuretic Peptide; BUN: Blood Urea Nitrogen; CK-MB: Creatine Kinase-MB; Cr: Creatinine; DD: D-Dimer; 
GFR: Glomerular Filtration Rate; Hb: Hemoglobin; HCO3: Bicarbonate; Htc: Hematocrit; LFT: Liver Function Test; MCV: Mean 

Corpuscular Volume; Na: Sodium; NLR: Neutrophil to Lymphocyte Ratio; NTproBNP: N-terminal pro–B-type Natriuretic Peptide; 

PTT: Partial Thromboplastin Time; RBC: Red Blood Cell Count. 
 

Most important variables: Vital Signs; Symptoms and Comorbidities 
 

Study ID Total 

1 2 3 4 5 6 7 8 9 12 13 14 15 16 18 19 20 21 22 23 

Vital signs 
                    

- 

HR 
  

✓ 

    
✓ 

  
✓ 

  
✓ 

      
4 

DBP 
  

✓ 

  
✓ 

     
✓ 

 

✓ 

      
4 

SBP ✓ 

 

✓ 

  
✓ 

       
✓ 

      
4 

Symptoms 
                     

Well-being  
       

✓ 

             

Edema ✓ 

      
✓ 

            
2 

Orthopnea 
       

✓ 

             

Shortness of breath 
  

✓ 

                 
1 

Comorbidities  
                    

- 

Arrhythmia 
  

✓ 

                 
1 

COPD 
                 

✓ 

  
1 

DM  
        

✓ 

        
✓ 

  
2 

CKD ✓ 

   
✓ 

          
✓ 

   
✓ 4 

Depression 
                   

✓ 1 

Lung Disease 
             

✓ 

      
1 

Other CVD  
             

✓ 

      
1 

WRF ✓ 

                   
1 
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Notes: CKD: Chronic Kidney Disease; COPD: Chronic Obstructive Pulmonary Disease; CVD: Cardiovascular Disease; DBP: 

Diastolic Blood Pressure; DM: Diabetes Mellitus; HR: Heart Rate; SBP: Systolic Blood Pressure; WRF: Worsening Renal Function 

 

Most important variables: Treatments; TTE/ECG 
 

Study ID Total 

1 2 3 4 5 6 7 8 9 12 13 14 15 16 18 19 20 21 22 23 

Treatments 
                    

- 

Inotropic Support ✓ 

            
✓ 

      
2 

Dialysis ✓ 

                   
1 

Diuretic use  
             

✓ 

 

✓ 

  
✓ 

 

3 

at least 2 supplies of antineoplastic 

and immunomodulating agents in 

the last 6 months 

                   
✓ 1 

TTE/ECG 
                    

- 

 R-wave axis 
                  

✓ 

 

1 

QRS duration 
                  

✓ 

 

1 

QTc interval 
                  

✓ 

 

1 

Atrial rate 
                  

✓ 

 

1 

LVEDD 
   

✓ 

                
1 

LVEF 
            

✓ ✓ 

     
2 

RV Dysfunction ✓ 

                   
1 

TR ✓ 

                   
1 

LV GLS 
           

✓ 

        
1 

E/e' Ratio 
           

✓ 

        
1 

IVC diameter  
             

✓ 

      
1 

Mitral Valve SEM 
 

✓ 

                  
1 

Notes: E/e' Ratio: Ratio of early mitral inflow velocity to early diastolic mitral annular velocity; IVC: Inferior Vena Cava; LV GLS: 

Left Ventricular Global Longitudinal Strain; LVEDD: Left Ventricular End-Diastolic Diameter; LVEF: Left Ventricular Ejection 
Fraction; QTc interval: Corrected QT Interval; R-wave axis: Axis of the R-wave; RV: Right Ventricle; SEM: Systolic Ejection 

Murmur; TTE/ECG: Electrocardiogram/Echocardiogram; TR: Tricuspid Regurgitation. 

 

B: Annual Distribution of HF Diagnoses by ICD-10 Code  

ICD-10 HF Codes 2020 2021 2022 2023 2024 Total 

I50 - HF 159 154 127 95 28 563 

I50.1 - Left HF 149 470 751 901 224 2 495 

I50.20 - Systolic (congestive) HF, unspecified 4 27 47 43 10 131 

I50.22 - Chronic congestive (systolic) HF 5 7 25 26 17 80 

I50.23 - Chronic systolic (congestive) HF, 

exacerbated 
      1 3 4 

I50.30 - Diastolic (congestive) HF, unspecified   1 7 16 2 26 

I50.32 - Chronic congestive diastolic HF 2 2 6 7 1 18 

I50.33 - Chronic diastolic (congestive) HF, 

exacerbated 
      1   1 

I50.40 - Combined systolic (congestive) and 

diastolic (congestive) HF, unspecified 

    2 1 1 4 

I50.810 - Right HF, unspecified         1 1 

I50.812 - Chronic right HF       6 1 7 

I50.82 - Biventricular HF     1     1 

I50.89 - Other HF     10 42 25 77 

I50.9 - HF, unspecified 6 8 22 36 13 85 

Total  325 669 998 1 175 326 3 493 
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C: Past-Related Variables Created from Consultation Records 

• Variables indicating the presence of symptoms, signs, or treatment 

prescriptions at the last consultation, such as Last_JVD, Last_HJR, and 

Last_SOB, are coded as 1 if present and 0 otherwise. 

• Variables showing variation from the last consultation in symptoms and 

signs, such as Var1_SOB and Var1_PND, represent changes: 0 indicates no 

change, -1 indicates worsening, and 1 indicates improvement. For 

Var_Symptoms, values >0 indicate worsening, <0 indicate improvement, and 

0 indicates no change. 

 

D: Derived Laboratory Variables 

From each of the 52 original laboratory measurements, 11 additional variables were 

created, yielding a total of 572 new variables. An additional 7 binary indicators were 

generated specifically for NT-proBNP and creatinine. 

• Sequential Lab Values: Variables like Last1_Hb, Last2_Na, and Last3_Cr capture 

lab results from the last three consultations, allowing for trend analysis across 

recent measurements. 

• Statistical Summaries: For each original lab variable, five summary statistics were 

calculated. For example, Mx_Na, Mn_Hb, and AVG_Cr represent maximum, 

minimum, and average values, respectively, over the recorded period; SD_WBC 

and CV_K capture the standard deviation and coefficient of variation, reflecting 

variability in results. 

• Binary Indicators: Seven binary variables act as clinical flags for threshold levels 

in NT-proBNP and creatinine. For instance, Var1_30_NTproBNP is coded as 1 if 

NT-proBNP reduction from the previous lab result is below 30%, and 0 otherwise. 

Similarly, Var2_0.3_Cr is coded as 1 if creatinine increases by 0.3 mg/dL 

compared to the second-to-last measurement. 
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E:  Exploratory analysis  

Due to the number of variables, the presented correlation matrix includes only those 

variables identified as relevant in the bivariate analysis or considered clinically significant 

by experts. 

 

Correlation matrix of variables from the dimension Patient profile (Part 1) 

 

Correlation matrix of variables from the dimension Patient profile (Part 2) 
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Correlation matrix of variables from the dimension Lab Results  

 

 

Correlation matrix of variables from the dimension Clinical Presentation 

 

 

 

 

 

 

 



83 

 

Variance Inflation Factor of significant variables for the LR  

 

 

F: Outputs of the PCA with the best results  
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G: Logistic Regression Significant Variable Selection by Dimension and Overall Model 

 
Dimension Lab Results Patient Profile Clinical Profile  

Selection Method Enter Forward Stepwise  Enter Forward Stepwise  Enter Forward Stepwise  

Independent Variables Exp(B) P-value Exp(B) P-value Exp(B) P-value Exp(B) P-value Exp(B) P-value Exp(B) P-value 

Hb  0,849 <0,001 0,84 <0,001 - - - - - - - - 

NTproBNP_scale 1,032 0,004 1,032 0,003 - - - - - - - - 

Var3_30_NTproBNP 1,403 0,081 1,446 0,054 - - - - - - - - 

Var1_0.3_Cr (Increase>= 0.3) 1,66 0,065 1,737 0,041 - - - - - - - - 

WBC 0,78 0,99 - - - - - - - - - - 

Na 0,109 0,963 - - - - - - - - - - 

Sex (Female) - - - - 1,273 0,16 1,422 0,022 - - - - 

ICD (Yes) - - - - 1,807 0,01 1,672 0,022 - - - - 

ES_6M - - - - 1,257 <0,001 1,357 <0,001 - - - - 

DH_6M - - - - 1,168 0,006 1,1149 0,011 - - - - 

DH_2020_Now - - - - 1,045 0,007 1,049 0,004 - - - - 

Previsouly_Hosp_12m (Yes) - - - - 0,66 0,053 0,714 0,047 - - - - 

LOS_Last - - - - 1,02 0,019 1,02 0,016 - - - - 

CRT-P (Yes) - - - - 0,701 0,245 - - - - - - 

Consult_6m - - - - 0,932 0,345 - - - - - - 

Autonomy (Independent) - - - - 0,7 0,151 - - - - - - 

Smoker status (Smoker) - - - - 0,803 0,366 - - - - - - 

Smoker status (Ex-smoker) - - - - 0,778 0,245 - - - - - - 

ES_2020_Now - - - - 1,025 0,339 - - - - - - 

Hosp_2020_Now - - - - 0,874 0,123 - - - - - - 

Hosp_6m - - - - 1,37 0,066 - - - - - - 

JVD (Yes) - - - - - - - - 2,142 0,111 2,376 0,032 

NYHA_1  - - - - - - - - 0,617 0,002 0,666 0,004 

NYHA_2 - - - - - - - - 0,818 0,174 - - 

NYHA_3 - - - - - - - - 0,953 0,838 - - 

PND (Yes) - - - - - - - - 1,411 0,409 1,763 0,071 

Orthopnea (Yes)  - - - - - - - - 1,241 0,519 - - 

Symptpms - - - - - - - - 1,036 0,838 - - 

Nagelkerke R² 0,066 0,062 0,156 0,146 0,017 0,015 
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LR Model Specifications: Including and Excluding Historical Data 

 

LR LR with Historical Data LR without Historical Data 

Selection Method Enter 
Forward 

Stepwise 
Enter 

Forward 

Stepwise 

Independent Variables Exp(B) P-value Exp(B) P-value Exp(B) P-value Exp(B) P-value 

Hb  0,87 0,004 0,863 <0,001 0,84 <0,001 0,852 <0,001 

NTproBNP_scale 1,01 0,443 - - 1,037 0,041 1,035 0,002 

Var3_30_NTproBNP 1,282 0,216 - - - - - - 

Var1_0.3_Cr (Increase >= 0.3) 1,993 0,015 1,847 0,026 - - - - 

Sex (Female) 1,304 0,142 - - 1,446 0,03 1,415 0,038 

ICD (Yes) 1,731 0,028 1,642 0,039 1,766 0,018 1,769 0,017 

ES_6M 1,298 <0,001 1,3 <0,001 - - - - 

DH_6M 1,067 0,418 - - - - - - 

DH_2020_Now 1,101 0,002 1,128 <0,001 - - - - 

Previsouly_Hosp_12m (Yes) 0,875 0,476 - - - - - - 

LOS_Last 1,004 0,692 - - - - - - 

JVD (Yes) 1,498 0,444 - - 1,586 0,364 - - 

NYHA1 0,647 0,039 0,6 0,012 0,671 0,041 0,683 0,047 

PND (Yes) 1,889 0,135 1,982 0,098 1,605 0,248 - - 

Age 1,001 0,913 - - 0,997 0,627 - - 

DM (Yes) 1,029 0,868 - - 1,066 0,694 - - 

GRF 1,004 0,346 - - 1,003 0,394 - - 

Nagelkerke R² 0,176 0,168 0,074 0,069 

 

 

H:  Results of the Best Models for de Divided Samples 

 

Results of the Best Predictive Models For HF Decompensation For The Sample With Null 

 

 

 

 

 

 

 

 

 

 

 

 

Metrics 
Sample with Nulls 

XGBoost CHAID RT C5.0 NN RT (Auto) 

T
ra

in
in

g
 

S - 87.11% 77.78% 80.00% 84.30% 97,13% 

R - 91.43% 68.60% 94.60% 58.04% 84,07% 

A - 89.20% 73.38% 87.05% 71.58% 90,22% 

F1  - 89.10% 71.18% 87.58% 66.43% 90,09% 

P - 86.88% 73.96% 81.53% 77.64% 97,04% 

AUC  - 0.953 0.811 0.941 0.759 0,955 

T
es

t 

S - 80.36% 76.79% 75.71% 80.36% 97,17% 

R - 57.35% 54.41% 51.47% 54.41% 60,00% 

A - 75.86% 72.41% 70.98% 75.29% 91,27% 

F1  - 48.15% 43.53% 40.94% 46.25% 68,57% 

P - 41.49% 36.27% 33.98% 40.22% 82,61% 

AUC  - 0.714 0.675 0.643 0.729 0,907 
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Results of the Best Predictive Models For HF Decompensation (Sample Without Null) 

 

 

 

 

 

 

 

 

 

 

I: ROC Curves  

ROC Curve of the best models by algorithm (Complete Sample) 

 

ROC Curve of the combined model  

 

Metrics 
Sample without Nulls 

XGBoost CHAID RT C5.0 NN RT (Auto) 

T
ra

in
in

g
 

S 96.95% 83.16% 74.04% 71.60% 81.95% 94.12% 

R 100.00% 99.07% 92.90% 100.00% 91.30% 100.00% 

A 98.49% 91.45% 83.85% 86.45% 86.79% 97.17% 

F1  98.52% 92.35% 85.69% 88.52% 87.74% 97.35% 

P 97.08% 86.48% 79.52% 79.41% 84.44% 94.83% 

AUC  1.000 0.976 0.924 0.912 0.910 0.996 

T
es

t 

S 93.71% 68.98% 66.67% 63.43% 69.44% 96.30% 

R 100.00% 55.56% 55.56% 52.78% 58.33% 75.00% 

A 94.63% 67.06% 65.08% 61.90% 67.86% 93.25% 

F1  84.51% 32.52% 31.25% 28.36% 34.15% 76.06% 

P 73.17% 22.99% 21.74% 19.39% 24.14% 77.14% 

AUC  1.000 0.622 0.636 0.572 0.669 0.954 
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J: Error Analysis for Model Improvement  

 

Error Distribution by NYHA 

 

 

NT-proBNP-distribution by type of decision
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WBC-distribution by type of decision 

 

 

 

Na-distribution by type of decision 
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GFR_calc-distribution by type of decision 

 

 

Hct-distribution by type of decision 
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DH_2020_Now-distribution by type of decision 

 

 

 

 

DH_6m-distribution by type of decision 
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Error Distribution by Previously_Hospitalized_12m  

 

 

Error Distribution by Sex  

 

Error Distribution by ICD 

 

   

 


