
Collaborative Code Editing with Continuous Integration

Afonso Pinheiro Sampaio

Master’s in Computer Science and Engineering

Supervisor:
PhD André Leal Santos, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD Sancho Moura Oliveira, Associate Professor,
Iscte - Instituto Universitário de Lisboa

October, 2024

Department of Information Science and Technology

Collaborative Code Editing with Continuous Integration

Afonso Pinheiro Sampaio

Master’s in Computer Science and Engineering

Supervisor:
PhD André Leal Santos, Assistant Professor,
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
PhD Sancho Moura Oliveira, Associate Professor,
Iscte - Instituto Universitário de Lisboa

October, 2024

Acknowledgments

I have had a lot of support and help while working on this dissertation.
I would like to thank my supervisors, Professor André Santos and Professor Sancho

Oliveira, for all their support during the development of this dissertation.
I would like to thank my parents, Pedro and Cláudia, for all their support and for

giving me everything I could ever wish for during my academic journey.
Finally, I would like to thank my close friends for all their enthusiasm, support,

reassuring words during the hardest times and, most importantly, for believing in me.

i

Resumo

No desenvolvimento de software contemporâneo, a colaboração entre programadores é
um aspeto fundamental para a gestão e evolução de repositórios de código. Os sistemas
de controlo de versões, como o Git, facilitam a colaboração, permitindo a integração
de alterações independentes num ramo de desenvolvimento principal. No entanto, a
ocorrência de modificações paralelas dá frequentemente origem a conflitos de merge, os
quais podem perturbar os fluxos de trabalho e atrasar os prazos de desenvolvimento.
Embora ferramentas de automatização possam resolver alguns conflitos, a intervenção
manual é frequentemente necessária para resolver casos de alterações sobrepostas. Para
evitar a acumulação destes conflitos, foi proposta a prática da integração contínua como
forma de incentivar a integração regular do código, com o objetivo de melhorar a gestão
dos conflitos.

Esta tese propõe um protocolo de propagação de alterações de código que permite a
integração de práticas de integração contínua diretamente em ambientes de programação
colaborativa. Esta abordagem permite a deteção precoce de conflitos, tendo potencial
para simplificar o processo de merging. Foi desenvolvido o protótipo Javardair, com o
objetivo de validar esta abordagem para Java, empregando uma metodologia baseada em
transformações. Esta abordagem representa as modificações do código como transformações
estruturadas a um nível semântico com base numa árvore de sintaxe abstrata, em vez de
um nível textual. Isto permite identificar conflitos de forma mais precisa, uma vez que se
baseia na semântica do código e não apenas em comparações linha a linha, permitindo
também aplicar modificações de forma mais eficiente.

Palavras-Chave: Integração contínua, programação colaborativa, deteção de confli-
tos, transformações

iii

Abstract

In contemporary software development, collaboration among developers is a fundamental
aspect of the management and evolution of codebases. Version control systems such as
Git facilitate collaboration by enabling the integration of version branches into a primary
development branch. However, the occurrence of parallel modifications frequently gives rise
to merge conflicts, which have the potential to disrupt workflows and delay development
timelines. Although automated tools can address some conflicts, manual intervention is
frequently necessary to resolve instances of overlapping changes. In order to prevent the
accumulation of these conflicts, the practice of continuous integration has been proposed
as a means of encouraging frequent code integration, with the aim of improving conflict
management.

This dissertation proposes a protocol for propagation of code changes to facilitate
the integration of continuous integration practices directly into collaborative coding
environments. This approach enables the early detection of conflicts and streamlines the
merge process. The Javardair prototype was developed with the objective of validating
this approach for Java, employing a transformation-based methodology. In contrast
to conventional version control systems, this approach represents code modifications as
structured, semantic-level transformations within an abstract syntax tree instead of a
textual level. This facilitates a more precise identification of conflicts, as it is based on code
semantics rather than simple line-by-line comparisons and also enables a more effective
application of modifications.

Keywords: Continuous integration, collaborative coding, conflict detection, transfor-
mations

v

Contents

Acknowledgments i

Resumo iii

Abstract v

List of Figures ix

List of Tables xi

List of Acronyms xiii

Chapter 1. Introduction 1
1.1. Context and Motivation 1
1.2. Goals 1
1.3. Research Method 2
1.4. Document Structure 2

Chapter 2. Literature Review 3
2.1. Theorical Background 3
2.1.1. Merging Challenges 3
2.1.2. Continuous Integration 3
2.1.3. Model View Controller Architecture 4
2.1.4. Distributed Model View Controller 4
2.2. Collaborative Editing 5
2.2.1. Operational Transformations 5
2.2.2. Conflict-Free Replicated Data Type 5
2.3. Real Time Collaborative Coding Editors 6
2.3.1. Visual Studio Code Live Share 6
2.3.2. IntelliJ IDEA Code with Me 6
2.3.3. Jimbo 6
2.3.4. Collabode 6
2.3.5. CodeR 7
2.3.6. Comparison 7

Chapter 3. Approach 9
3.1. Motivating Example 9
3.1.1. Example 1 9

vii

3.1.2. Example 2 11
3.2. Protocol Architecture 12
3.2.1. Connecting to the server 13
3.2.2. Making a local change 13
3.2.3. Pushing changes 16
3.2.4. Force-pushing changes 17

Chapter 4. Implementation 21
4.1. Enabling Technologies 21
4.1.1. JavaParser 21
4.1.2. Jaid 22
4.1.3. Javardise 22
4.2. Implementation 23
4.2.1. User Interface 23
4.2.2. Messaging Format 23
4.2.3. Dealing with multiple clients 25
4.2.4. Encoding files 26
4.2.5. Transformations 26
4.2.6. Serialising Transformations 27
4.2.7. Applying Transformations 29
4.2.8. Conflict detection 30
4.3. Experiments 32

Chapter 5. Conclusion 35
5.1. Drawbacks 35
5.2. Benefits 36
5.3. Future Work 36

References 37

viii

List of Figures

3.1 Base version of Calculator.java. 9

3.2 Developer A version. 10

3.3 Developer B version. 10

3.4 Ideal merged version. 10

3.5 Conflicting changes after Developer A and Developer B commit their changes. 11

3.6 Developer A version. 11

3.7 Developer B version. 12

3.8 Conflicting changes after Developer A and Developer B commit their changes. 12

3.9 Base version. 13

3.10 Developer A establishing connection with the server. 14

3.11 Developer A version. 14

3.12 Developer B version. 14

3.13 Update action performed after local changes are made by Developer A. 15

3.14 Update action performed after local changes are made by Developer B. 15

3.15 Developer B version. 16

3.16 Update action performed after local changes are made by Developer B. 16

3.17 Push action performed by Developer A. 17

3.18 Developer B version after receiving the Propagate message. 17

3.19 Server version after accepting Developer A changes. 18

3.20 Push action performed by Developer B. 18

3.21 Every instance of Calculator.java. 18

3.22 Developer A version. 19

3.23 Developer B version. 19

3.24 Force Push action performed by Developer B. 19

4.1 Abstract Syntax Tree (AST) of a Java file (code of Figure 4.2). 21

4.2 Java source code with Universally Unique Identifier (UUID) comments attached. 22

4.3 Javardair component diagram. 23

4.4 Javardair interface. 24

4.5 Transformations window. 24
ix

4.6 Conflicts window. 25

4.7 Adding a new method to a Java file. 28

4.8 Java Contact class. 33

x

List of Tables

2.1 Comparison between existing collaborative tools and Javardair 8

4.1 Existing message types. 25

4.2 Tasks designed for each collaborator during experimentation. 34

xi

List of Acronyms

AST: Abstract Syntax Tree

VCS: Version Control System

UUID: Universally Unique Identifier

CI: Continuous Integration

MVC: Model View Controller

OT: Operational Transformation

CRDT: Conflict-Free Replicated Data Type

IDE: Integrated Development Environment

JSON: JavaScript Object Notation

CLI: Command Line Interface

RPC: Remote Procedure Call

SOA: Service Oriented Architecture

GUI: Graphical User Interface

xiii

CHAPTER 1

Introduction

1.1. Context and Motivation

In the contemporary era of software development, software products are developed and
maintained through the collaboration of a team of developers, typically affiliated with
a company or an open-source community. The facilitation and simplification of this
collaboration is made possible by the existence of Version Control System (VCS). VCS,
such as Git [9], permit teams to oversee the product’s development by enabling developers
to implement modifications independently and subsequently integrating them by merging
them with the primary development branch on a periodic basis.

Although the majority of commits proceed without incident, the simultaneous occur-
rence of parallel changes can result in overlapping scenarios, potentially leading to merge
conflicts. Caius et al. [2] observed that in 143 open-source projects, 20% of the merges
resulted in conflicts. Similarly, Kasi et al. [15] and Brun et al. [3] obtained comparable
results, with approximately 19% of the merges resulting in conflicts.

While automated merging tools can resolve certain issues, manual intervention is
necessary when changes overlap. The resolution process can be challenging, resulting
in potential delays as developers must be taken outside of their development process to
address and resolve the conflicts, which may disrupt the workflow, impact the efficiency of
the team, and affect the timelines for a project.

In order to circumvent the potential for unnoticed conflicts to accumulate, it has been
proposed that Continuous Integration (CI) [6] be introduced into teams practices [13].
The practice of Continuous Integration encourages teams to merge and check-in their work
on a regular basis, thereby providing a more robust mechanism for the management of
merge conflicts.

The implementation of CI serves to prevent teams from accumulating changes or
commits within a specific version control system. The practice of saving a batch of changes
and then committing them to the main version is discouraged, as it significantly increases
the likelihood of merging issues, especially on a large scale. However, developers frequently
avoid the merging process, prompting teams to avoid parallel work [12] and causing
developers to hasten their task in order to avoid assuming responsibility for the merge [4].

1.2. Goals

The principal aim of this dissertation is to devise and construct a protocol for propagation
of code changes that is capable of facilitating the early detection of conflicts in collaborative
coding environments, in accordance with the principles of continuous integration. The

1

objective is to develop a structured approach that enables the prevention of conflicts and
the seamless integration of change propagation into the collaborative coding experience.

We intend to develop a collaborative structured code editor that incorporates continuous
integration functionality as a proof-of-concept for the proposed architecture, Javardair.
The objective is to facilitate collaborative software development with seamless integration,
while mitigating the challenges associated with merging changes from the VCS.

RQ1a. What are the challenges associated with maintaining consistent and conflict-free
code integration in collaborative coding environments?

RQ1b. How can these challenges be effectively addressed?
RQ2. How can transformation-based conflict detection improve collaborative coding

in collaborative coding environments compared to traditional Version Control Systems?

1.3. Research Method

The methodology used in this dissertation was designed to identify and analyze relevant
literature pertaining to the research themes, namely, the use of continuous integration in a
collaborative code editor. A comprehensive search for articles was conducted on platforms
such as IEEE Xplore and Google Scholar.

Although no systematic literature review (SLR) was performed, the research was guided
by specific criteria to ensure that the quantity and quality of the collected information were
maintained. The literature review was divided into three distinct sections. The following
sections were included in the literature review: Collaborative Editing, Collaborative Code
Editors and Distributed Model View Controller architecture.

The methodology involved the following steps for each section: The initial phase of the
literature review began with a careful review of abstracts, serving as a preliminary filter.
Subsequently, the introductions and conclusions of the selected literature were examined
to ensure a better understanding. Publications that met both the relevance and depth
criteria proceeded to the next phase. The selected publications were then further analysed.

1.4. Document Structure

Subsequent to the present chapter, Chapter 2 presents a review of the state-of-the-art,
exploring the theoretical foundation, principal tools and methodologies related to collabo-
rative code editing and continuous integration. Chapter 3 introduces a communication
protocol as a proposed solution to the issues presented. Chapter 4 provides a detailed
overview of the implementation of the prototype proof of concept developed to demonstrate
the proposed approach in practice. Finally, Chapter 6 presents the conclusions, limitations,
and potential directions for future work.

2

CHAPTER 2

Literature Review

2.1. Theorical Background

2.1.1. Merging Challenges

In an empirical study conducted by Shane McKee et al. [20], a group of developers were
interviewed with the objective of gaining deeper insight into the implications of merging
conflicts in the software development environment. The investigation sought to ascertain
how software practitioners approach merge conflicts, the impact of unmet requirements
on conflict resolution complexity, and the effectiveness of tools in meeting practitioners’
needs concerning merging conflicts.

The study demonstrated that the majority of practitioners primarily assess the com-
plexity of conflicting lines of code, relying on their expertise within the specific conflict
node to estimate the difficulty of the conflict. It was found that many developers do not
employ tools or metrics to calculate complexity; instead, they rely on intuitive estimates
drawn from personal experience. Furthermore, there is a prevailing tendency to eschew
the utilisation of external tools.

In instances where a merge conflict escalates in complexity, developers frequently
choose to avoid resolution and revert changes. This disrupts the development flow and
may inadvertently result in the deletion of potentially crucial code. A significant challenge
for practitioners in resolving merging issues is the dearth of sufficient information at the
conflicting nodes, coupled with the risk of overlooking the impact on other nodes due to
isolated code changes.

2.1.2. Continuous Integration

Continuous Integration (CI) is a software development practice that encourages teams of
developers to engage in frequent merges and check-ins during the day, with each integration
verified by an automated build and automated tests [23].

Continuous Integration offers a number of potential benefits, including the early
detection of integration issues, which can reduce the likelihood of bugs, and future merge
conflicts. Additionally, it provides developers with the ability to receive prompt feedback
on the impact of their changes. Furthermore, CI ensures the consistency and reliability of
software builds.

In this practice, developers retrieve code from a shared repository, implement modifi-
cations in their local copies and then submit these modifications back to the repository.

3

Automated builds and tests are initiated after each submission to verify the code’s func-
tionality. In addition to regular submissions and automated tests, maintaining short build
times is also considered a key practice in Continuous Integration [6].

2.1.3. Model View Controller Architecture

The Model View Controller (MVC) architectural pattern is a software design paradigm that
is predominantly employed for the design and development of user interfaces. MVC divides
the application into three distinct types of components, each with a specific function. The
fundamental components of an MVC architecture are models, views and controllers [25].
The model constitutes the fundamental component of the application. In addition to
representing the data and business logic of the application, it also manages the data,
logic and the rules. It is independent of the user interface and the user input [21]. The
view represents the user interface and is responsible for displaying the data of the model.
Furthermore, the view receives input from the user and transmits it to the controller. It
should be noted that an application may comprise multiple views, including a Graphical
User Interface (GUI) view and a Command Line Interface (CLI) view [21]. The Controller
serves as an intermediary between the model and the view, processing user input received
from the view and updating the model in accordance with this input.

2.1.4. Distributed Model View Controller

The employment of the method-based MVC architecture within a distributed system gives
rise to the necessity of utilising Remote Procedure Call (RPC), which in turn results in
the components being tightly coupled [19]. The consequence of one system’s components
affecting all the other components following a change is the potential for flexibility problems
and a reduction in the re-usability of the components.

This issue can be addressed through the implementation of alternative solutions:

• Asynchronous Communication Patterns: The adoption of models such as
Message-Based or Publish-Subscribe [14,19] allows components to be independent,
thereby facilitating greater flexibility and improved re-usability.
• Micro-services Architecture: Addresses the coupling problem by dividing

the application into small, independent services. Each micro service operates
autonomously, thereby minimizing the impact of changes on other components
and improving overall flexibility.
• Service Oriented Architecture (SOA): Ensures that the MVC components

within each service remain isolated by breaking down the application into services,
each with its dedicated functionality, and facilitating communication through
APIs [28].

4

2.2. Collaborative Editing

2.2.1. Operational Transformations

Operational Transformation (OT) represents the most commonly employed methodology
for ensuring real-time consistency of shared data in collaborative applications [16,24].

The operational transformation process is of great consequence in the management of
collaborative environments, as it comprises two key components: the integration algorithm
and the transformation functions.

The integration algorithm is responsible for the reception, transmission and execution
of operations within the collaborative space. Concurrently, the transformation functions
are engaged when two operations, defined on the same state are combined. The operations
received undergo transformations based on local concurrent operations prior to execution.

David Sun et al. [24] propose an extension to the existing OT algorithms to facilitate
the concurrent execution of update operations alongside the existing insert and delete
operations in collaborative word processors.

Furthermore, the OT is divided into two layers: the high-level transformation control
algorithms, and the low-level transformation functions. The authors’ approach to extending
the OT to support update operations entails maintaining the existing high-level control
algorithms while introducing new transformation functions tailored to updates. This
strategy serves to reduce the overall complexity of the system and localise the extension,
thereby facilitating the integration of update operations into the collaborative framework.

Update operations do not affect the linear address space of the document, in contrast to
the other operations. Consequently, OT emerges as the preferred algorithm for collaborative
programming tools due to its effectiveness in maintaining consistency in shared data across
real-time collaborative applications.

However, the biggest drawback regarding OT is the fact that it requires a centralised
authority to mediate the edits, which not only restricts scalability but also prevents peer-
to-peer decentralised sharing and constrains the flexibility of branching and merging [18].

2.2.2. Conflict-Free Replicated Data Type

Conflict-Free Replicated Data Types (CRDTs) constitute a family of algorithms designed
for distributed systems, wherein multiple nodes need to update and replicate data without
the necessity for a centralized authority. The use of CRDTs permits the updating of data
in disparate nodes without the necessity for coordination or locking mechanisms, enabling
each update to happen independently [18]. In contrast to OT, CRDTs facilitate concurrent
operations in commutative manner, meaning that the order of applying operations is
inconsequential with respect to the final state.

The algorithms associated with CRDTs can be classified into two principal categories:
operation-based CRDTs and state-based CRDTs. Operation-based CRDTs represent data
as a sequence of operations that can be applied to an initial state to achieve the current
state. Each node independently processes the operations and merges them with its local

5

state [5]. In contrast, state-based CRDTs represent data as a shared state that can be
modified by different nodes. These nodes periodically exchange their states, and any
differences are merged to ensure consistency [5].

2.3. Real Time Collaborative Coding Editors

2.3.1. Visual Studio Code Live Share

Visual Studio Code’s “Live Share” is a collaborative development tool that enables develop-
ers to work together in real time without being in the same physical location, supporting
a diverse range of programming languages. In order for developers to utilise this tool, it is
necessary for them to install the relevant extension in Visual Studio Code.

Subsequently, one of the developers can initiate a Live Share session, which generates
a link that others can utilise to join the collaborative session. The initiator of the
session can then grant read-only or read-write access to the remaining of the participants.
Live Share offers a number of other significant features, including integrated terminal
sharing, debugging collaboration and also audio call integration, which collectively enhance
communication between developers [7].

2.3.2. IntelliJ IDEA Code with Me

IntelliJ IDEA “Code With Me” is a collaborative coding tool that enables real-time
collaboration, making it suitable for pair programming, code reviews and troubleshooting.
It employs the infrastructure of JetBrains to facilitate the collaboration between developers,
eliminating the need for a dedicated server. Additionally, “Code With Me” is designed to
operate across different operating systems [1].

2.3.3. Jimbo

Soroush et al. [8] designed Jimbo, a collaborative web Integrated Development Environment
(IDE), with the principal objective of improving the pair programming experience in both
educational and professional contexts. The use of three communication channels facilitate
issue resolution while maintaining a steadfast focus on the code. Furthermore, Jimbo has
elevated the visibility of code modifications through the integration of a notification system.
This system ensures that developers are promptly informed about relevant developments,
such as alterations to the code or comments within a thread.

Additionally, the platform prioritises fostering collaboration between developers and
designers through the incorporation of a live preview feature. To guarantee the consistency
of shared data during real-time collaboration, Jimbo employs operational transformation
algorithms, which play a crucial role in maintaining the integrity of the code when multiple
users are concurrently working on the same file.

2.3.4. Collabode

Max Goldman et al. [10,11] developed a collaborative web-based IDE for Java, Collabode,
with the objective of gaining insight into how a programming environment that supports
close collaboration can improve the quality of the development and collaboration. Collabode
6

is compatible with any editor, as it has been integrated with EtherPad, a tool that enables
real-time text editing.

The software utilizes the Eclipse platform to oversee the management of projects and to
facilitate the provision of standard IDE services, including syntax highlighting, continuous
compilation, compilation error and warning notifications, code formatting, refactoring and
execution.

To address the challenges associated with collaborative editing semantics, each de-
veloper is allocated an independent and persistent working copy of the program, while
Collabode maintains a disk version and a union version. The union version is the one
accessible to users, integrating the edits from all developers. The edits are only shared
with the disk version once the code is error free, ensuring that the disk version is always
free of compilation errors, and thus enabling programmers to execute the program with
minimal disruption.

2.3.5. CodeR

In their studdy, Aditya Kurniawan et al. [17] introduce CodeR, a collaborative coding web
application that supports C, C++ and Java programming languages. The objective of this
study is twofold: firstly, to address the issue of synchronization when multiple developers
are working on the same file and secondly, to improve the pair programming experience.

CodeR enables users to engage in real-time collaboration, including the execution
and display of results, via a terminal interface. CodeR incorporates Facebook tools for
authentication and collaboration, facilitating immediate communication and collaboration
among the users. The platform enables users to extend invitations to colleagues or other
contacts to collaborate on a given project, with communication features such as real-time
chat. Furthermore, the platform offers a user-friendly interface for managing files and
folders within the workspace, enabling users to perform fundamental operations such as
creation, deletion, renaming, moving, opening, downloading and uploading files.

CodeR employs an Operational Transformation algorithm to maintain data consistency
during the real time collaboration, guaranteeing the integrity of the code when multiple
users are working on a single file.

2.3.6. Comparison

This subsection presents a comparative analysis of the collaborative coding tools discussed
in this chapter, with a particular focus on their respective features, consistency management
methods and suitability for collaborative coding scenarios (Table 2.1). The objective is to
provide an objective assessment of the strengths and limitations of each tool.

7

T
a
bl

e
2.

1.
C

om
pa

ri
so

n
be

tw
ee

n
ex

is
ti

ng
co

lla
bo

ra
ti

ve
to

ol
s

an
d

Ja
va

rd
ai

r

C
ol

la
b
or

at
iv

e
T
oo

l
P

la
tf

or
m

P
ro

gr
am

m
in

g
L
an

-
gu

ag
e

S
u
p
p
or

t
K

ey
F
ea

tu
re

s
C

ol
la

b
or

at
io

n
M

od
el

C
on

si
st

en
cy

M
an

ag
em

en
t

A
d
va

nt
ag

es
D

ra
w

b
ac

ks

V
S

C
od

e
L
iv

e
Sh

ar
e

[7
]

D
es

kt
op

(V
S

C
od

e
E

xt
en

si
on

)
M

ul
ti

pl
e

L
an

gu
ag

es
D

eb
ug

gi
ng

co
lla

b-
or

at
io

n;
P
ai

r
pr

o-
gr

am
m

in
g;

C
od

e
re

vi
ew

s;
T
er

m
i-

na
l

sh
ar

in
g;

A
u-

di
o

ca
ll

in
te

gr
a-

ti
on

L
in

k-
ba

se
d

ac
ce

ss
w

it
h

re
ad

-o
nl

y
or

re
ad

-w
ri

te
pe

rm
is

-
si

on
s

T
ex

tu
al

ba
se

d
E

as
y

in
te

gr
at

io
n

in
to

ex
is

ti
ng

w
or

kfl
ow

s;
Su

p-
po

rt
s

m
ul

ti
pl

e
la

ng
ua

ge
s

L
ac

k
of

co
nt

ro
l

ov
er

co
de

co
ns

is
-

te
nc

y

In
te

lli
J

ID
E

A
C

od
e

W
it

h
M

e
[1

]

D
es

kt
op

(I
nt

el
liJ

ID
E

A
P

lu
g-

in
)

M
ul

ti
pl

e
L
an

gu
ag

es
D

eb
ug

gi
ng

co
lla

b-
or

at
io

n;
P
ai

r
pr

o-
gr

am
m

in
g;

C
od

e
re

vi
ew

s;
C

ro
ss

-O
S

su
pp

or
t

L
in

k-
ba

se
d

ac
ce

ss
w

it
h

re
ad

-o
nl

y
or

re
ad

-w
ri

te
pe

rm
is

-
si

on
s

T
ex

tu
al

ba
se

d
St

ro
ng

cr
os

s-
O

S
su

pp
or

t;
In

-
te

gr
at

ed
w

it
h

In
te

lli
J

ec
os

ys
te

m

L
ac

k
of

co
nt

ro
l

ov
er

co
de

co
ns

is
-

te
nc

y

Ji
m

bo
[8

]
W

eb
-b

as
ed

W
eb

de
ve

lo
pm

en
t

L
iv

e
pr

ev
ie

w
;
A

u-
di

o/
te

xt
ch

at
;N

o-
ti

fic
at

io
ns

D
ed

ic
at

ed
se

rv
er

O
pe

ra
ti

on
al

T
ra

ns
fo

rm
at

io
n

al
go

ri
th

m
fo

r
re

al
-

ti
m

e
co

ns
is

te
nc

y

Fo
cu

se
d

on
im

-
pr

ov
in

g
pa

ir
pr

og
ra

m
m

in
g;

L
iv

e
pr

ev
ie

w
im

-
pr

ov
es

de
si

gn
er

-
de

ve
lo

pe
r

co
lla

bo
-

ra
ti

on

L
im

it
ed

to
w

eb
te

ch
no

lo
gi

es
an

d
m

ay
no

t
su

pp
or

t
ge

ne
ra

l-
pu

rp
os

e
pr

og
ra

m
m

in
g.

C
ol

la
bo

de
[1

0,
11

]
W

eb
-b

as
ed

Ja
va

In
de

pe
nd

en
t

er
ro

r-
fr

ee
w

or
ki

ng
co

pi
es

;
C

on
ti

nu
-

ou
s

co
m

pi
la

ti
on

;
Sy

nt
ax

hi
gh

lig
ht

-
in

g

D
ed

ic
at

ed
se

rv
er

E
th

er
P
ad

in
-

te
gr

at
io

n
fo

r
re

al
-t

im
e

ed
it

in
g

an
d

er
ro

r-
aw

ar
e

in
te

gr
at

io
n

al
go

-
ri

th
m

pr
ev

en
ts

br
ok

en
bu

ild
s

P
re

ve
nt

s
pr

op
-

ag
at

io
n

of
co

m
-

pi
la

ti
on

er
ro

rs
;

en
ab

le
s

se
am

le
ss

ed
it

in
g

w
it

ho
ut

im
m

ed
ia

te
co

n-
fli

ct
.

L
ac

k
of

in
fo

rm
a-

ti
on

re
ga

rd
in

g
er

-
ro

rs
;C

on
fu

si
ng

in
-

te
rf

ac
e

C
od

er
[1

7]
W

eb
-b

as
ed

C
,C

+
+

,J
av

a
R

ea
l-
ti

m
e

ch
at

;
T
er

m
in

al
ex

ec
u-

ti
on

;
F
ile

/f
ol

de
r

m
an

ag
em

en
t

D
ed

ic
at

ed
se

rv
er

O
pe

ra
ti

on
al

T
ra

ns
fo

rm
at

io
n

al
go

ri
th

m
fo

r
re

al
-

ti
m

e
co

ns
is

te
nc

y

R
ea

l-
ti

m
e

ex
ec

u-
ti

on
an

d
im

m
e-

di
at

e
co

m
m

un
ic

a-
ti

on
en

ha
nc

e
de

-
bu

gg
in

g
an

d
effi

-
ci

en
cy

L
an

gu
ag

e-
sp

ec
ifi

c;
Si

ng
le

fil
e

ed
it

in
g

Ja
va

rd
ai

r
D

es
kt

op
Ja

va
C

on
fli

ct
-a

w
ar

e
ed

it
in

g;
Se

m
an

ti
c-

le
ve

l
C

on
fli

ct
de

te
ct

io
n

D
ed

ic
at

ed
se

rv
er

O
pe

ra
ti

on
al

T
ra

ns
fo

rm
at

io
n

w
it

h
A

ST
co

m
-

pa
ri

so
n

M
or

e
pr

ec
is

e
co

nfl
ic

t
de

te
ct

io
n

an
d

m
er

gi
ng

;
Im

-
m

ed
ia

te
co

nfl
ic

t
aw

ar
en

es
s;

M
an

-
ua

l
pr

op
ag

at
io

n
of

ch
an

ge
s

Sc
al

ab
ili

ty
is

-
su

es
w

it
h

la
rg

e
pr

oj
ec

ts
or

te
am

s;
L
an

gu
ag

e-
sp

ec
ifi

c

8

CHAPTER 3

Approach

3.1. Motivating Example

This section presents two illustrative examples to elucidate and substantiate the ratio-
nale behind this dissertation approach to conflict detection and change propagation in
collaborative coding environments.

These examples are meant to illustrate the practical advantages of the approach
methodology over traditional VCS and live-edit collaboration tools in addressing the
prevalent challenges encountered in collaborative software development.

Both examples utilize the file Calculator.java as a base version (Figure 3.1).

c la s s Calculator {
int add(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.1. Base version of Calculator.java.

3.1.1. Example 1

Figure 3.2 and Figure 3.3 illustrate a scenario where two developers, Developer A and
Developer B , work independently on local versions of the same file (Figure 3.1). Developer
A adds a new main method that references the existing add method, while Developer
B renames the method add to sum. Figure 3.4 illustrates the optimal outcome for this
particular type of scenario and reflects the capabilities of our approach.

In a traditional VCS systems such as Git, this situation would typically result in a
merge conflict (Figure 3.5). Both Developer A and Developer B have modified the same
file, both interacting with the method add, but in a incompatible way. A VCS system
would try to merge these changes by looking for a common ancestor (the base file present
in the Server) and then apply both modifications on top of that.

Developer A’s main method contains a reference to method add, a method that has
been renamed by Developer B, effectively removing the method add from the code in
Developer B’s version. This leads to ambiguity in the merge process: the system cannot
automatically determine whether the reference in main should point to the newly renamed

9

c la s s Calculator {
int add(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}

void main(String args []) {
int result = add(1 ,2);

}
}

Figure 3.2. Developer A version.

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.3. Developer B version.

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}

void main(String args []) {
int result = sum(1 ,2);

}
}

Figure 3.4. Ideal merged version.

sum method or remain as add. As a result, Git treats this as a conflict, requiring manual
intervention to resolve the ambiguity.

In live-editing systems, such as those provided by integrated development environments
like Visual Studio Code or IntelliJ IDEA, a similar issue arises. Live-editing tools propagate
10

<<<<<<< Developer A's change
int add(int a, int b) {

return a + b;
}
...
void main(String args []) {

int result = add(1 ,2);
}

=======
int sum(int a, int b) {

return a + b;
}

>>>>>>> Developer B's change

Figure 3.5. Conflicting changes after Developer A and Developer B commit
their changes.

changes made by collaborators in real-time without the use of conflict detection or resolution
mechanisms.

In this scenario, as soon as Developer B renames the method add to sum, this change
would be immediately reflected in the shared document. Concurrently, Developer A’s
changes, which reference a method the now-renamed add method in the new main method,
would cause a runtime or compile time error due to the disappearance of the add method.

For this type of collaboration to work, both developers must be constantly aware
of each other’s real-time changes, and coordinate this type of modifications to avoid
introducing inconsistencies or errors in the code.

3.1.2. Example 2

Figure 3.6 and Figure 3.7 illustrate a different scenario in which Developer A and Developer
B are concurrently modifying the body of the same method, add.

c la s s Calculator {
int add(int a, int b) {

return a + b + 1;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.6. Developer A version.

In a traditional VCS, attempting to push these changes would lead to a merge conflict
(Figure 3.8). This is because the modifications are applied to the body of the same
method, resulting in overlapping edits that Git cannot automatically reconcile. Git would

11

c la s s Calculator {
int add(int a, int b) {

return 10 + b;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.7. Developer B version.

prompt the collaborators with a merge conflict notification, requiring manual intervention
to determine which version of the body should be kept or how the changes should be
integrated.

<<<<<<< Developer A's change
int add(int a, int b) {

return a + b + 1;
}

=======
int add(int a, int b) {

return 10 + b;
}

>>>>>>> Developer B's change

Figure 3.8. Conflicting changes after Developer A and Developer B commit
their changes.

Our proposed approach was designed to not only streamline the merging process but
also to proactively handle potential conflicts. It would detect that the changes made by
Developer A and Developer B to the body of the add method are incompatible, as both
involve distinct modifications to the same section of the method. The system would flag
this situation as a conflict as it requires manual resolution.

Rather than allowing the conflicting changes to proceed unchecked or rely solely on
post-commit conflict resolution, it ensures that these types of conflicts are recognized at
an early stage. It would notify both collaborators of the conflict before either of them
attempt to push their changes to the shared code base.

3.2. Protocol Architecture

The objective of this protocol is to facilitate collaborative software development, enabling
multiple collaborators to work concurrently in isolated environments while maintaining a
shared codebase.

The principal function of the system is to monitor individual modifications made by
each collaborator and provide awareness of potential conflicts. This allows the architecture
12

of the protocol to be divided into four different scenarios, which can be used to manage
and synchronise the existing work.

Connect: Synchronizes collaborator workspace with the existing workspace in the Server.
Update: Automatically alerts the server of new changes and verify for potential conflicts.
Push: Submits the collaborator’s local changes to the server and propagates them to other

connected collaborators, provided they are conflict-free with other collaborators
at that time.

Force Push: Similar to Push, but allows collaborators to submit their changes even in
the presence of conflicts, overriding any conflicting modifications. Ideally used to
unblock development when a conflict prevents progress.

To better understand the protocol, consider a scenario involving two collaborators,
Developer A and Developer B, both working on a shared Java file, Calculator.java,
represented by Figure 3.9.

c la s s Calculator {
int add(int a, int b) {

return a + b;
}

}

Figure 3.9. Base version.

3.2.1. Connecting to the server

When a developer attempts to establish a connection with the server, it initiates a
synchronization process between their local workspace and the server’s latest version of
the codebase. The connection is initiated with the transmission of a Handshake message,
which contains the universally unique identifier (UUID) and a name associated with the
Developer. This identifier is used to uniquely identify the client within the system.

Subsequently, a Fetch Request is transmitted, prompting the server to return the
latest version of the shared codebase. In response, the server returns a Fetch Response,
containing an encoded version of all files available in its codebase. Figure 3.10 illustrates
the scenario in which Developer A attempts to establish a connection with the server.

3.2.2. Making a local change

In this scenario, Developer A renames the add method to sum (Figure 3.11), while Developer
B introduces a new method subtract (Figure 3.12).

Upon these modifications, an Update message is sent to the server, containing infor-
mation about the respective transformations performed by each one of the collaborators.

Assuming the system has already processed Developer A’s changes (the renaming of
add to sum) without detecting any conflicts (Figure 3.13, Developer B’s Update message,
including the addition of the method subtract, would be compared against these prior
changes. In the light of the fact that no conflicts are evident in the transformation

13

Figure 3.10. Developer A establishing connection with the server.

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

}

Figure 3.11. Developer A version.

c la s s Calculator {
int add(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.12. Developer B version.

in question, the server concludes that both actions are non-conflicting. As a result of
such determination, a Notify Conflicts message is then issued by the server to both
Developer A and Developer B, as represented in Figure 3.14. The message contains an
empty list of conflicts.

However, if Developer B had instead attempted to rename the add method to addition
(Figure 3.15), a conflict would arise since both developers are renaming the same method,
but to different names.
14

Figure 3.13. Update action performed after local changes are made by
Developer A.

Figure 3.14. Update action performed after local changes are made by
Developer B.

In this instance, the system would identify a conflict and generate a Notify Conflicts
message, directed to both Developer A and Developer B, indicating that a conflict has
occurred. This message would provide detailed information of the specific conflict regarding
the original method add, along with information identifying the conflicting collaborator
(Figure 3.16).

15

c la s s Calculator {
int addition(int a, int b) {

return a + b;
}

}

Figure 3.15. Developer B version.

Figure 3.16. Update action performed after local changes are made by
Developer B.

3.2.3. Pushing changes

When Developer A decides to propagate the changes, a Push message is transmitted to
the server. This message contains a list of the transformations performed - in this case,
renaming add to sum. Prior to applying the changes globally, the server performs a further
check for conflicts. Upon finding none, the server applies the transformations to its own
directory and sends a Propagate message to all connected collaborators (Figure 3.17),
ensuring their workspaces are updated accordingly.

Following the receipt of the Propagate message, Developer B’s workspace is updated
to reflect the following structure, represented by Figure 3.18.

Once Developer A’s modifications have been implemented, the server’s codebase will
assume the structure illustrated on Figure 3.19:

It should be noted that the renaming transformation did not override other non-
conflicting changes performed by Developer B, such as addition of the method subtract.

In the event that Developer B intends to submit the modifications to the code, the
procedure would be analogous to that of Developer A, given that no conflict has been
identified (Figure 3.20). Consequently, all versions of the Calculator.java file will look
like Figure 3.21.
16

Figure 3.17. Push action performed by Developer A.

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.18. Developer B version after receiving the Propagate message.

However, if for some reason a conflict would be detected by the server, the system will
instead issue a Notify Conflict message, containing the relevant information, rather than
a Propagate message. Furthermore, the server will not be updated with the modifications
that are being shared.

3.2.4. Force-pushing changes

Consider now a scenario in which Developer B also renames the add method, this time to
addition (Figure 3.23). This creates a conflict with the previous renaming of the method

17

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

}

Figure 3.19. Server version after accepting Developer A changes.

Figure 3.20. Push action performed by Developer B.

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

int subtract(int a, int b) {
return a - b;

}
}

Figure 3.21. Every instance of Calculator.java.

by Developer A to sum (Figure 3.22). Both developers are then notified of the conflict
through the Notify Conflicts message just like the scenario in Figure 3.16.
18

c la s s Calculator {
int sum(int a, int b) {

return a + b;
}

}

Figure 3.22. Developer A version.

c la s s Calculator {
int addition(int a, int b) {

return a + b;
}

}

Figure 3.23. Developer B version.

However, should Developer B be insistent upon these changes, the Force Push action
may be used. This action transmits a Force Push message to the server, forcing the
alterations performed by Developer B to be applied to the server codebase and propagating
these same changes via a Propagate message to the connected Developers (Figure 3.24).

Figure 3.24. Force Push action performed by Developer B.

19

CHAPTER 4

Implementation

As a proof-of-concept for the proposed approach, we have developed Javardair, a collabora-
tive coding environment for Java projects. Javardair uses two key technologies to facilitate
the extraction of modifications, conflict detection, and structured editing of Java code.
The first of these is Jaid [26], a transformation-based conflict detection tool, and the
second is Javardise, a structured code editor.

4.1. Enabling Technologies

4.1.1. JavaParser

JavaParser [27] is an open source library that allows the transformation of Java source code
into an Abstract Syntax Tree (AST). An AST is a hierarchical tree-like data structure that
represents the syntactic structure of the source code. Each node in the AST represents an
element of the source code, such as classes, methods, or statements. Figure 4.1 illustrates
an example of a Java class represented in the format of an AST.

Figure 4.1. AST of a Java file (code of Figure 4.2).

21

4.1.2. Jaid

Jaid is a prototype tool designed to assist and improve the merging process. It uses
an approach based on transformations and member identity, rather than the traditional
text-based conflict detection used in VCS [26]. This approach enables Jaid to address
instances where traditional VCS either identifies conflicts that are not present or are not
problematic, or fails to identify conflicts that do exist, due to its textual and line-based
approach.

The use of AST as a means of representing code enables Jaid to perform more granular
and language-aware conflict detection.

Jaid operates on the basis of UUIDs attached to the structural elements of the code
(such as methods and fields). This ensures that each element retains a persistent identity
across multiple versions of the code. The use of unique identifiers also facilitates the
tracking of changes to individual elements, which is a key mechanism for this project.
Figure 4.2 illustrates a Java class with UUID comments attached to each member.

//9e30e98a -36db -47f4 -836c-16 c390a1d2d7
package test;

//13c9f311 -0d07 -46aa -8591 - ef22c6ab8e49
c la s s Calculator {

//73bb1c00 -f3ab -41a7 -9c56 -1 e1ba192f751
int add(int a, int b) {

return a + b;
}

//52f17915 -21ad -413a-824d-0 c39584037f0
int subtract(int a, int b) {

return a - b;
}

}

Figure 4.2. Java source code with UUID comments attached.

4.1.3. Javardise

Javardise is a structured editor that supports a subset of Java’s syntax [22], created with
the aim of improving the pedagogical experience of programming. It is based on the MVC
architecture and makes use of JavaParser AST parsing mechanism, which means that
when using this editor, changes are applied over the AST version of the source code.

Javardise provides an important feature for this project: the ability to extend and
customise its functionality through the development and use of plug-ins. Plug-ins allow
specific actions and behaviours to be added to the editor interface. This way, it was created
four different plug-ins for Javardise to streamline main actions: connecting to the server,
tracking the changes, pushing changes and forcing pushing changes.
22

4.2. Implementation

Figure 4.3 represents a diagram of components that highlights the relationship between
the components mentioned above and that will be used in the implementation of the
prototype.

Figure 4.3. Javardair component diagram.

4.2.1. User Interface

Figure 4.4 illustrates the Javardair user interface. The interface’s toolbar is comprised
of four fundamental buttons, which provide access to the Javardair collaborative actions.
These include buttons to connect to the server, enable tracking of modifications, push
changes, and force push changes, as previously described.

Furthermore, the prototype employs the use of two pop-up windows. One displays
the current list of modifications made to the code by the user (Figure 4.5), thus enabling
the user to ascertain which modifications diverge from the server and also to identify the
changes that will be propagated. The second pop-up window provides a detailed view of
any conflicting changes with other connected users (Figure 4.6).

This way, the prototype serves as a comprehensive functional implementation of the
proposed approach to collaborative coding with conflict detection, supporting the core
features discussed in this chapter.

4.2.2. Messaging Format

Communication between the Javardair client side and server side is facilitated by a
socket-based communication system. For the purposes of clarity and organisation, the
messages exchanged between the client and the server are divided into two categories:
Client Messages and Server Messages. Client Messages originate from the client side of

23

Figure 4.4. Javardair interface.

Figure 4.5. Transformations window.

Javardair and are employed for the purpose of interaction and updating the server. Server
Messages are those transmitted by the server back to the client in response to a Client
Message.

Both Client and Server Messages adhere to a consistent structural pattern, as follows:

• Operation: Indicates the type of operation being performed, such as updating
the server, pushing the changes or requesting synchronisation.
• Content: Represents information relevant to the operation, such as lists of

transformations, conflicts, or file metadata.
• Identifier (only present in Server Messages): Identifies the collaborator who sent

the Client Message that lead to the Server Message.
24

Figure 4.6. Conflicts window.

Table 4.1 presents a comprehensive table detailing the different types of messages
based on the different operations, outlining the operation, content and structure for each
one.

Operation Type Content Description
Handshake Client Client Information Establishes a connection

with the server.
Fetch Request Client None Requests the server to up-

date the files to the most cur-
rent state.

Update Client List of Transforma-
tions

Notifies the server of recent
changes done to the code.

Push Client List of Transforma-
tions

Requests the server to apply
the changes done and propa-
gate it, if no conflicts exist.

Force Push Client List of Transforma-
tions

Similar to Push, but ignores
the existence of conflicts.

Fetch Response Server Encoded List of Files
Client ID

Response to Fetch Request
messages, providing the list
of files.

Propagate Server List of Transforma-
tions
Client ID

Sends the transformations
pushed to connected collab-
orators.

Notify Conflicts Server Map of Conflicts
Client ID

Provides information about
existing conflicts, to the col-
laborators involved.

Table 4.1. Existing message types.

These messages are all serialised in JavaScript Object Notation (JSON) format, allowing
both sides to easily parse and interpret the data received.

4.2.3. Dealing with multiple clients

The server-side architecture employs a multi-threaded approach to facilitate the man-
agement of concurrent connections from multiple users. This model assigns a dedicated

25

thread to each connected peer. The function of each thread is to handle all communication
between the server and its associated worker in an autonomous manner, thereby ensuring
that interactions with one worker do not impinge upon those of other clients. Upon
establishing a connection, the server assigns each client’s unique identifier and name,
provided in the handshake message, to the corresponding thread managing that client.
This facilitates the tracking and management of each client on an individual basis.

When the server receives an Update or a Push message from a collaborator, it processes
the attached list of transformations and stores them in a shared data structure. This
structure is designed to map the latest set of transformations provided by the collaborator
to the corresponding thread instance, thus maintaining an independent record of the
changes submitted by each collaborator.

However, the potential for race conditions or data inconsistencies within the server
may arise when handling simultaneous changes from multiple contributors. To address
this issue, a locking mechanism is employed to guarantee the integrity of the shared data
structure.

The synchronisation mechanism guarantees that when a thread attempts to access the
data structure for the purpose of storing newly received data or checking for the existence
of conflicts, it first verifies whether the structure is currently in use by another thread.
In the event that it is, the thread is blocked until the structure becomes available. Once
access is granted, the thread locks the structure, updates it in accordance with the relevant
criteria and then releases the lock.

4.2.4. Encoding files

As previously discussed, the server plays a pivotal role in providing collaborators with the
most recent version of the project files upon receipt a Fetch Request message. In order to
achieve this, the server encodes the content of each file in Base64 format and encapsulates
it into a custom object. This object not only stores the encoded data but also includes
metadata such as the file name, thus enabling the server to transmit a structured list of
files.

On the client side of Javardair, the system oversees the reception and integration of
the files sent by the server.

Upon receiving the encoded files, the system decodes the Base64 content back to its
original form and writes it to the corresponding workspace directory. In the event that
a file does not already exist, a new file is created in both the root and local directories.
Conversely, in cases where the file already exists, the system overwrites the file in the root

4.2.5. Transformations

Transformations represent a fundamental concept within the Javardair framework. Trans-
formations encapsulate the atomic operations that modify the source code in a structured
and traceable manner. Each transformation represents a structured alteration to the
source code, reflecting any modification made by each collaborator.
26

A transformation is not merely a discrepancy between two iterations of a code file.
Rather, it is a formal, structured operation that can be applied to an AST. This method-
ology permits alterations to be depicted in a more comprehensive manner than is feasible
with conventional VCS. Transformations are classified into four categories:

• Addition: Introduction of new elements, such as a method, class, or field, into
the source code.
• Removal: Deletion of an existing element from the source code.
• Modification: Changing the properties or content of an existing element (e.g.,

altering a method’s signature or modifying a field’s type).
• Move: Relocation of an element within the source code (e.g., changing the

position of a method within the same class).

Each collaborator’s workspace in Javardair is divided into two main directories: the
root directory, which mirrors the most recent version of the codebase stored on the
server, and the local directory, where collaborators independently modify their own version
of the source code. This structure allows collaborators to work autonomously without
immediately affecting the global state of the project, while ensuring that all changes are
tracked by the system.

In order to extract the transformations from the code, the AST of the files in the root
directory are compared with the AST of the files in the local directory, which reflects the
changes made by the collaborators. This comparison enables Javardair to detect structural
changes at a granular level, identifying additions, deletions or modifications that have been
introduced into the code. The system initially identifies file-level alterations, including
the addition or removal of an entire file, through a process of comparison involving file
identifiers. It then proceeds to examine specific elements within each matching file. Each
item is uniquely identified by a unique identifier (UUID), which enables the system to
track changes even in instances where the item’s properties, such as its name or content,
have undergone modification [26]. This comparison yields a set of transformations, each
of which describes a specific change.

Transformations in Javardair are implemented using the Command pattern, whereby
each transformation is treated as a command that can be applied to the AST. This design
pattern facilitates the application and reversal of transformations. Each transformation
command contains the necessary information to be applied to the AST.

4.2.6. Serialising Transformations

In order for the transformations to be shared between collaborators and the server, they
must be serialised into a format that is easily transmittable and interpretable by all parties.
Therefore, a format that ensures reliable serialisation, transmission and deserialisation
of the transformations was required. JSON was chosen for this purpose, as it ensures
that transformations can be reliably serialised, transmitted and deserialised in a format
accessible to any potential client implementation. The conversion to JSON ensures the

27

preservation of all essential information pertaining to the transformation, including the
UUID of the modified element, the type of transformation, the associated content, and
other relevant details.

Each transformation is serialised by first creating a JSON object, which serves as a
container for key-value pairs. The key is a String that identifies specific attributes, such as
the UUID of the element, name, parameters, and so forth. The value is a JSON element
that contains the corresponding data. Jaid comprises 35 different transformations types,
but for the current implementation Javardair, only 10 transformation types were taken into
account (AddCallable, SignatureChanged, ReturnTypeChangedMethod, BodyChanged-
Callable, RemoveCallable, AddField, RemoveField, RenameField, TypeChangedField,
InitializerChangedField). Each of these transformation types has its own distinct structure.
However, they all include a key-value pair for a field that serves as an universal identifier
for the type of transformation being represented.

In Figure 4.7 a new method division is added - the system would define this trans-
formation as a AddCallable.

Figure 4.7. Adding a new method to a Java file.

When serialising this transformation, the content of the JSON regarding the Add-
Callable transformation would look like the following:

• Code: "AddCallable"
• Owner UUID: "13c9f311-0d07-46aa-8591-ef22c6ab8e49"
• Constructor: false

28

• Body: "//fa661ee2-54c9-40bb-af9c-c8093de1bb3c \r \n double division(int
a, int b) { \r \n if (b != 0) { \r \n return a / b; \r
\n } \r \n}"

4.2.7. Applying Transformations

In order to prevent inconsistencies or errors, it is important to correctly apply the trans-
formations, particularly when elements may no longer exist due to specific modifications.
Javardair uses the algorithm employed by Jaid to apply transformations to the code, which
enforces a specific sequence [26], as outlined below:

(1) Apply all file additions.
(2) Filter out all inter-type move transformations and apply only their corresponding

removal transformations.
(3) Apply all other removal transformations (including files, methods, fields, etc).
(4) Apply all local move transformations in the order they were extracted.
(5) Filter all inter-type move transformations and apply only their insertion transfor-

mations.
(6) Apply all other insertion (adding method, fields, etc).
(7) Apply all remaining transformations in any order.

In scenarios where a transformation introduces new references, such as the one illus-
trated in Figure 3.2 and Figure 3.3 , where Developer A renames the method add() while
Developer B makes a call to the same method using the "old" name, the system updates
any outdated references to maintain code consistency.

This is made possible by Jaid’s utilisation of a translation mechanism that updates
references to renamed or moved elements, employing the use of UUIDs to track these
elements [26]. During the application of transformations, such as renames or moves, the
system records the changes and uses this information to update references in subsequent
transformations. In the case of other types of transformations, the system performs a
verification process to ascertain whether the referenced element has undergone a renaming
or relocation. In the event of such a change, the system translates the reference to the
new identifier.

Upon receipt of a Propagate message from the server, the system initiates a sequence
of operations prior to attempting to implement the modifications. Algorithm 1 and 2
describe this sequence of operations.

Javardair initiates the process by extracting any existing transformations at the
moment the message is received. Subsequently, the list is compared to the transformation
list intended for application to ascertain whether there is a match. In the event of match,
the received transformation list is applied to both directories, unless the receiving client is
identical to the client that sent the original Push message (which initiated the Propagate),
in which case it is only applied to the root directory.

29

Algorithm 1 Function to evaluate transformations by comparing the current set of
transformations with the received set of transformations. The parameter receivedTrans-
formations is a set of transformations and the parameter sender is the UUID of the
collaborator responsible for the transformations.

function evaluateTransformations(receivedTransformations, sender)
currentTransformations ← getTransformations()
applyChanges(receivedTransformations, sender)
if setsAreNotEqual(currentTransformations, receivedTransformations) then

conflicts← getConflicts(receivedTransformations, currentTransformations)
if conflicts is not empty then

applyTransformationsTo(projectLocal, currentTransformations)
end if

end if
end function

Algorithm 2 Function to verify where to apply the transformations. The parameter
receivedTransformations is a set of transformations and the parameter sender is the UUID
of the collaborator responsible for the transformations.

function applyChanges(receivedTransformations, sender)
if sender ̸= clientID then

applyTransformationsTo(projectLocal, receivedTransformations)
end if
applyTransformationsTo(projectRoot, receivedTransformations)

end function

In the event of inconsistencies between the transformation lists, the received transfor-
mations are nevertheless applied to both directories, unless the receiving client is the same
as the one that sent the original Push message (that lead to the Propagate), in which case
it is only applied to the root directory. Furthermore, any inconsistencies between the two
lists will be identified and addressed concurrently.

In the absence of conflicts, no additional measures are undertaken, apart from updating
the server (via an Update message) to ensure uniformity. However, in instances where
conflicts are identified, the list of transformations extracted at the time of the message,
will take precedence over the recent modifications in the local directory.

4.2.8. Conflict detection

In the context of this dissertation, the term "conflict" is defined as a situation that requires
the direct involvement of humans in order to achieve resolution. Such conflicts arise when
the application of transformations simultaneously results in semantic errors in the source
code.

In the event that two contributors attempt to rename the same method to disparate
values, an automated system, such as VCS or a Live Editing tool, is not able to decide
which transformation should prevail during the merge process.

Jaid’s conflict detection algorithm is based on a predefined set of conflict types, which
outlines pairs of transformation types that are inherently incompatible.
30

Upon receipt of an Update or a Push message comprising a list of transformations,
the server is responsible for ascertaining whether any conflicts exist between this newly
received list and the recent transformations made by other connected collaborators. In
order to achieve this objective, it is necessary for the server to compare the incoming
transformation list with the transformation lists from other collaborators, which are stored
in the shared data structures, previously mentioned. Algorithm 3 describes this procedure.

Upon completion of the conflict detection process, a set of conflicts associated with
the conflicting collaborators is returned. Each item in the set of conflicts provides detailed
information regarding the nature of the conflict. This encompasses the following:

• A message describing the conflict.
• A detailed account of the transformations that caused the conflict.
• Additional context explaining the conflicting transformation.

Algorithm 3 Function to compare the received set of transformations with all the remain-
ing sets of transformations from other collaborators in order to obtain a set of conflicts
associated with the conflicting collaborators. The parameter receivedTransformations
is a set of transformations and the parameter sender is the UUID of the collaborator
responsible for the transformations.

function checkForConflicts(receivedTransformations, sender)
conflicts ← ∅
for each (otherClient, otherTransformations) ∈ clientsInfo do

if otherClient ̸= senderClient then
conflictSet← getConflicts(receivedTransformations, otherTransformations)
conflicts[otherClient] ← conflictSet

end if
end for
return conflicts

end function

In order to identify conflicts between two sets of transformations, the algorithm
generates the Cartesian product of the two sets, which results in all possible pairs of
transformations between the two sets. Subsequently, each pair is subjected to a comparison
with a shared set, which is derived from the server project and represents the common
version accessible to all connected collaborators. This comparison is conducted to ascertain
the potential for conflict. If a pair of transformation is identified as conflicting, it is
recorded in a dedicated set that tracks all detected conflicts. Conversely, if the pair is
deemed non-conflicting, it is disregarded and no conflict is raised. For instance, if the same
transformation appears in both sets (e.g., both collaborators rename the same method to
the same value), the transformation is recognised as redundant and classified as a shared
transformation, rather than as a conflict.

Furthermore, the conflict detection algorithm employs a semantic-aware approach for
the handling of modifiers, distinguishing between two subsets: the access modifiers (public,
private, protected) and non-access modifiers (final, static, etc). This distinction is
crucial, as each subset of modifiers is subject to different conflict rules. In the case of

31

access modifiers, a conflict arises when two transformations result in incompatible access
levels for the same element.

To illustrate, if one collaborator were to transform a method to public while another
were to transform it to private, the application of both transformations would result in an
element with multiple (and contradictory) access levels (public and private), which is
an impossible scenario. Such cases demand manual intervention for resolution, and thus
are treated as a conflict. In the case of non-access modifiers, conflicts are identified when
transformations result in the introduction of incompatible modifiers. In the event that
one transformation introduces an abstract modifier to an element while another adds a
modifier that is in conflict with the previous one, such as static or final, the system will
raise a conflict, given that these modifiers cannot coexist within the same element.

A data structure is created that associates the unique identifier of each collaborator
with the list of conflicts for that particular individual. The structure is then conveyed to
the pertinent collaborators via a Notify Conflicts message. Upon receipt of this message,
the system stores the conflict data within a comparable data structure on the recipient’s
local machine. This configuration allows the collaborator to access the specifics of any
conflicts. The conflict information is subsequently displayed to the collaborator in the
respective pop-up window.

4.3. Experiments

In order to test the application of the protocol in use with the prototype, it was necessary
to create a series of scenarios and experiments designed to assess the system’s capacity
to detect and handle multiple conflicts, as well as its ability to ensure consistency during
concurrent modifications.

To simulate the existence of multiple collaborators in a controlled environment, we
developed an additional plug-in for Javardise that functionated as a automated bot. Each
bot simulated an individual collaborator, performing a series of pre-defined coding tasks,
such as addition, renaming or deletion of elements, as well as systems actions such as
connecting to the server and pushing/force pushing the changes. This setup enabled us to
reproduce real-world scenarios in a consistent manner and observe how Javardair handled
collaborative coding tasks.

In the initial phases, the prototype was evaluated with a smaller Java project consisting
of a single file (Figure 4.8). Three bots, each representing a distinct collaborator, were
configured to execute modifications including the addition, renaming and deletion of
methods. These modifications were programmed to occur concurrently, thereby simulating
a realistic scenario of multiple collaborators working simultaneously.

Table 4.2 illustrates a selection of tasks designed to simulate the presence of multiple
concurrent users. The results of these experiments demonstrated that Javairdair is capable
of propagating and implement modifications. Moreover, the system’s capacity to discern
and address potential conflicts as each collaborator works locally was also validated.
32

package test;

c la s s Contact{
private String name;
private String address;
private String phone;
private String email;

public Contact(String name , String address , String phone ,
String email) {
th i s .name = name;
th i s .address = address;
th i s .phone = phone;
th i s .email = email;

}

public String getName () {
return name;

}

public String getAddress () {
return address;

}

public String getPhone () {
return phone;

}

public String getEmail () {
return email;

}

public String toString () {
return "Name: " + name + "\nAddress: " + address + "\

nPhone: " + phone + "\nEmail: " + email;
}

public s ta t i c void main(String [] args) {
Contact c = new Contact("Afonso", "Random Lisbon

Street", "912345678", "afonso@mail.pt");
c.toString ();

}
}

Figure 4.8. Java Contact class.

However, the presence of conflicts impeded the progression of predefined tasks, as
the option to propagate the modifications was no longer possible due to the existence
of conflicts. This resulted in the necessity for human intervention to resolve the issues.

33

Collaborator One Collaborator Two Collaborator Three

Connect to server Connect to server Connect to server

Rename field name to
fullName

Rename field address to
addressInfo

Change field phone type to
int

Add method updateName Rename method getEmail
to getEmailInfo

Change body of getEmail
method

Push changes Delete method getPhone Rename toString method
to getContactInfo

Delete method
getContactInfo

Push changes Push changes

... Rename method getName to
getNameInfo

Change body of main
method

Push changes Push changes

Change body of
updateName

Change body of
updateName

Force push changes Change body of
getContactInfo method

Change body of main ...

Push changes

...

Table 4.2. Tasks designed for each collaborator during experimentation.

Nevertheless, the system demonstrated its capacity to promptly identify instances where
human intervention was required to resolve conflicts, thereby preventing the accumulation
of conflicts before their dissemination to other users, which could otherwise result in merge
conflicts.

To illustrate, in the previously mentioned example of tasks, when Collaborator Three
attempts to modify the body of the method getContactInfo after Collaborator One has
deleted it, the system detects a conflict and prohibits these two collaborators from propa-
gating any modifications. However, they are capable of making more local modifications
and can also receive modifications from collaborators that are not conflicting. For example,
Collaborator Two propagated the changes to the method main after Collaborator One and
Collaborator Three’s changes were deemed conflicting.

34

CHAPTER 5

Conclusion

The increasing complexity of software development, particularly in collaborative settings,
necessitates the availability of effective tools to address the complexities of real-time
synchronisation, the merging of changes and continuous integration.

It is crucial that the system is capable of accurately reflecting each user’s modification
across all local environments for all collaborators, while maintaining code consistency. The
primary challenge arises from the detection and resolution of conflicts, particularly when
multiple users are simultaneously editing the same segment of code, answering the first
part of the initial research question.

In response second part of the first research question, the protocol for propagation of
code changes designed to integrate CI practices into a collaborative coding environment
was found to address the previously mentioned issues.

As a proof of concept for the proposed idea, we have developed Javardair, a collaborative
structured code editor that makes use of a transformation-based protocol for propagation
of code changes to facilitate the interaction between collaborators.

Despite their widespread use, traditional version control systems often encounter
difficulties in managing concurrent modifications introduced by multiple contributors. This
can result in frequent merge conflicts and their accumulation. In these systems, conflicts
are typically identified at the textual level, whereby changes are compared line by line.
This approach may result in ambiguity and confusion when different developers modify
the same lines of code in different ways. This is problematic in scenarios where changes to
the structure may not be easily reconciled through simple textual comparison (such as
renaming a method).

In contrast, Javardair’s transformation-based approach compares the changes at the
semantic level. By representing modifications as changes in an abstract syntax tree, the
system is able to more accurately identify instances of incompatibility, even when the
changes affect different parts of the code. This addresses the second research question.

5.1. Drawbacks

One significant limitation is the lack of scalability. As the number of users engaged in
a collaborative project increases, the process of identifying conflicts may become more
time-consuming due to the heightened frequency of changes. Similarly, an expansion in the
scale of the project, in terms of the number of files and the complexity of the operations
involved, may also have an impact on performance, as the system is required to handle a
larger set of operations and dependencies.

35

Additionally, the language-specific implementation represents a further limitation,
albeit one that is more closely associated with the development proof of concept for the
protocol. Although the protocol is designed to be generalisable, the current implementation
is constrained by its reliance on a limited subset of Java syntax and a correspondingly
limited set of possible transformations.

Finally, the protocol is contingent upon the capacity to extract transformations
from the codebase. In order for this to function effectively, it is necessary to have a
reliable mechanism for the generation and processing of abstract syntax trees or equivalent
representations for different programming languages.

5.2. Benefits

Despite the drawbacks, the posed approach also offers significant benefits.
Firstly, the protocol does not necessitate the continuous comparison of the local

system’s state with that of the server. A local replica of the codebase situated on the
server is leveraged for the purpose of tracking modifications. This results in a reduction of
overhead on both the client and the server, thereby improving performance by minimising
the frequency of network operations and central server checks.

Furthermore, the protocol facilitates immediate conflict detection. Upon the introduc-
tion of a change by any collaborator, the system promptly analyses the modification and
assesses for inconsistencies with other collaborators’ alterations. This proactive strategy
guarantees that conflicts are identified at an early stage, preventing the emergence of more
significant issues at a later stage in the development process.

Additionally, this concept is highly adaptable to diverse software development environ-
ments. As long as structural modifications can be extracted, the protocol can be applied
to any software platform.

5.3. Future Work

One possible improvement to this work would be the incorporation of a conflict resolution
mechanism. Rather than relying on conflict detection alone, the system could facilitate
collaboration by enabling users to either accept or override modifications made by other col-
laborators, thereby providing greater control over the integration process and streamlining
collaborative decision-making.

Another area for potential improvement is the visualisation and representation of
conflicts. At the moment, conflicts are displayed in a separate window. An alternative,
more integrated solution could involve presenting the conflicts directly within the IDE
interface, with the conflicting nodes highlighted. This would enhance the user experience
by providing a clear and more intuitive conflict awareness, thus enabling users to address
the conflicts with greater ease.

36

References

[1] Getting started with code with me | intellij idea. https://www.jetbrains.com/help/idea/
code-with-me.html.

[2] C. Brindescu, I. Ahmed, C. Jensen, and A. Sarma. An empirical investigation into merge conflicts
and their effect on software quality. Empirical Software Engineering, 25:562–590, 2020.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of collaboration conflicts. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, pages 168–178, 2011.

[4] C. R. De Souza, D. Redmiles, and P. Dourish. "breaking the code": Moving between private and
public work in collaborative software development. In Proceedings of the 2003 ACM International
Conference on Supporting Group Work, pages 105–114, 2003.

[5] V. Enes, P. S. Almeida, C. Baquero, and J. Leitão. Efficient synchronization of state-based crdts. In
2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 148–159. IEEE, 2019.

[6] M. Fowler. Continuous integration. https://martinfowler.com/articles/
continuousIntegration.html, 2011.

[7] fubaduba. What is live share? - live share. https://learn.microsoft.com/en-us/visualstudio/
liveshare/.

[8] S. Ghorashi and C. Jensen. Jimbo: a collaborative ide with live preview. In Proceedings of the 9th
International Workshop on Cooperative and Human Aspects of Software Engineering, pages 104–107,
2016.

[9] Git. Git. https://git-scm.com/, 2019.
[10] M. Goldman. Software development with real-time collaborative editing. PhD thesis, Massachusetts

Institute of Technology, 2012.
[11] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding in a web ide. In Proceedings

of the 24th annual ACM symposium on User interface software and technology, pages 155–164, 2011.
[12] R. E. Grinter. Using a configuration management tool to coordinate software development. In

Proceedings of conference on Organizational computing systems, pages 168–177, 1995.
[13] M. L. Guimarães and A. R. Silva. Improving early detection of software merge conflicts. In 2012 34th

International Conference on Software Engineering (ICSE), pages 342–352. IEEE, 2012.
[14] A. Hornsby. Xmpp message-based mvc architecture for event-driven real-time interactive applications.

In 2011 IEEE International Conference on Consumer Electronics (ICCE), pages 617–618. IEEE,
2011.

[15] B. K. Kasi and A. Sarma. Cassandra: Proactive conflict minimization through optimized task
scheduling. In 2013 35th International Conference on Software Engineering (ICSE), pages 732–741.
IEEE, 2013.

[16] S. Kumawat and A. Khunteta. A survey on operational transformation algorithms: Challenges, issues
and achievements. International Journal of Computer Applications, 3(12):30–38, 2010.

[17] Aditya Kurniawan, Aditya Kurniawan, Christine Soesanto, and Joe Erik Carla Wijaya. Coder: Real-
time code editor application for collaborative programming. Procedia Computer Science, 59:510–519,
2015. International Conference on Computer Science and Computational Intelligence (ICCSCI 2015).

37

https://www.jetbrains.com/help/idea/code-with-me.html
https://www.jetbrains.com/help/idea/code-with-me.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://learn.microsoft.com/en-us/visualstudio/liveshare/
https://learn.microsoft.com/en-us/visualstudio/liveshare/
https://git-scm.com/

[18] G. Litt, S. Lim, M. Kleppmann, and P. Van Hardenberg. Peritext: A crdt for collaborative rich text
editing. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2):1–36, 2022.

[19] H. Mcheick and Y. Qi. Dependency of components in mvc distributed architecture. In 2011 24th
Canadian Conference on Electrical and Computer Engineering (CCECE), pages 691–694. IEEE, 2011.

[20] S. McKee, N. Nelson, A. Sarma, and D. Dig. Software practitioner perspectives on merge conflicts
and resolutions. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 467–478. IEEE, 2017.

[21] M. Qureshi and F. Sabir. A comparison of model view controller and model view presenter. arXiv
preprint arXiv:1408.5786, 2014.

[22] A. L. Santos. Javardise: a structured code editor for programming pedagogy in java. In Companion
Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming,
pages 120–125, 2020.

[23] M. Shahin, M. A. Babar, and L. Zhu. Continuous integration, delivery and deployment: a systematic
review on approaches, tools, challenges and practices. IEEE Access, 5:3909–3943, 2017.

[24] D. Sun, S. Xia, C. Sun, and D. Chen. Operational transformation for collaborative word processing.
In Proceedings of the 2004 ACM conference on Computer supported cooperative work, pages 437–446,
2004.

[25] Z. Syahputra. Website based sales information system with the concept of mvc (model view controller).
Jurnal Mantik, 4(2):1133–1137, 2020.

[26] André R Teles and André L Santos. Code merging using transformations and member identity. In
Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages 71–88, 2023.

[27] Federico Tomassetti, N Smith, C Maximilien, and S Kirsch. Javaparser, 2021.
[28] X. Zhang and D. Gracanin. Service-oriented-architecture based framework for multi-user virtual

environments. In 2008 Winter Simulation Conference, pages 1139–1147. IEEE, 2008.

38

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1. Introduction
	1.1. Context and Motivation
	1.2. Goals
	1.3. Research Method
	1.4. Document Structure

	Chapter 2. Literature Review
	2.1. Theorical Background
	2.1.1. Merging Challenges
	2.1.2. Continuous Integration
	2.1.3. Model View Controller Architecture
	2.1.4. Distributed Model View Controller

	2.2. Collaborative Editing
	2.2.1. Operational Transformations
	2.2.2. Conflict-Free Replicated Data Type

	2.3. Real Time Collaborative Coding Editors
	2.3.1. Visual Studio Code Live Share
	2.3.2. IntelliJ IDEA Code with Me
	2.3.3. Jimbo
	2.3.4. Collabode
	2.3.5. CodeR
	2.3.6. Comparison

	Chapter 3. Approach
	3.1. Motivating Example
	3.1.1. Example 1
	3.1.2. Example 2

	3.2. Protocol Architecture
	3.2.1. Connecting to the server
	3.2.2. Making a local change
	3.2.3. Pushing changes
	3.2.4. Force-pushing changes

	Chapter 4. Implementation
	4.1. Enabling Technologies
	4.1.1. JavaParser
	4.1.2. Jaid
	4.1.3. Javardise

	4.2. Implementation
	4.2.1. User Interface
	4.2.2. Messaging Format
	4.2.3. Dealing with multiple clients
	4.2.4. Encoding files
	4.2.5. Transformations
	4.2.6. Serialising Transformations
	4.2.7. Applying Transformations
	4.2.8. Conflict detection

	4.3. Experiments

	Chapter 5. Conclusion
	5.1. Drawbacks
	5.2. Benefits
	5.3. Future Work

	References

