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Resumo

O modelo de Heston, conhecido por incorporar volatilidade estocéstica, é crucial para
a determinacao do preco de derivativos financeiros. No entanto, a sua calibracao ap-
resenta desafios significativos, particularmente em termos de eficiéncia computacional e
estabilidade numérica. A complexidade inerente do modelo surge do uso de equacoes
diferenciais estocésticas para descrever tanto o preco do ativo quanto a sua volatilidade,
exigindo técnicas numéricas sofisticadas para a estimacao dos parametros. Assegurar a
estabilidade numérica mantendo a precisao é um feito complicado.

O objetivo desta tese é calibrar de forma eficiente as opgoes do indice S&P 500 uti-
lizando varias técnicas de calibragao sob formulagoes alternativas do modelo de Heston
(1993). As técnicas de calibracdo incluem: Mean error sum of squares (MSE); Relative
mean error sum of squares (RMSE); e Christoffersen (2009) (IVRMSE). As formulagoes
examinadas incluem: o modelo de Heston original, onde abordamos a ”little Heston trap”;
formulacao consolidada de integral unico; representagao de Attari (2004); transformada
rapida de Fourier (FFT) de Carr e Madan (1999); e a transformada rapida fracional de
Fourier (FRFT) de Chourdakis (2005).

Palavras-chave: Modelo de Heston (1993), Volatilidade Estocastica, Avaliagao de
Opcoes.






Abstract

The Heston model, renowned for incorporating stochastic volatility, is crucial for accu-
rate pricing of financial derivatives. However, its calibration poses significant challenges,
particularly in computational efficiency and numerical stability. The model’s inherent
complexity arises from its use of stochastic differential equations to describe both the
stock price and its volatility, requiring sophisticated numerical techniques for parameter
estimation. Ensuring numerical stability while maintaining accuracy is a delicate balance.

The purpose of this thesis is to efficiently calibrate S&P 500 index options using
various calibration techniques under alternative formulations of the Heston (1993) model.
The calibration techniques examined include: Mean Squared Error (MSE); Relative Mean
Squared Error (RMSE); and Christoffersen (2009) (IVRMSE). The formulations examined
include: the original Heston model where we address the ”little Heston trap”; consolidated
single integral formulation; Attari (2004) representation; fast Fourier transform (FFT)
formulation by Carr and Madan (1999); and, Chourdakis (2005) fractional fast Fourier
transform (FRFT).

Keywords: Heston (1993) Model, Stochastic Volatility, Option Pricing.
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CHAPTER 1

Introduction

1.1. Context and motivation

The 1987 stock market crash exposed significant limitations in classical option pricing
models like Black and Scholes (1973) and Merton (1973), particularly the assumption
of constant volatility. Empirical studies following the crash revealed that stock returns
exhibit skewness and fat tails, with volatility varying over time and often inversely related
to stock prices. This highlighted the need for a more flexible approach to option pricing
that could capture these observed market behaviors.

Heston (1993) introduced a groundbreaking framework that allows volatility to evolve
as a stochastic process, addressing the limitations of earlier models. By modeling key
empirical features of stock returns, such as skewness, fat tails, and accounting for volatility
smiles or skews in implied volatilities, coupled with an analytical representation for pricing
European call options, the Heston model has become a cornerstone in both academic
research and practical financial modeling. This thesis examines the model’s significance,
its applications in modern finance, and its lasting impact on the understanding of volatility

and option pricing.
1.2. Aims, objectives and thesis methodology

The aim of this thesis is to effectively calibrate S&P 500 index options using alternative
formulations of the Heston (1993) model. The calibration will be done using three different

loss functions, including:

e Mean error sum of squares (MSE);
e Relative mean error sum of squares (RMSE);
e Christoffersen (2009) (IVRMSE).

The formulations investigated include:

e Original Heston model;

e Consolidated single integral;

e Attari (2004) representation;

e Carr and Madan (1999) fast Fourier transform;

e Chourdakis (2005) fractional fast Fourier transform.
The objective is to assess the computational efficiency and calibration accuracy of
various calibration techniques for the investigated formulations, thereby improving their

practical use in financial markets. Empirical data from S&P 500 index options will be



utilized to evaluate the performance of the study. This will involve implementing each cal-
ibration technique for every formulation, measuring the accuracy of the implied volatility
surface generated, and comparing their computational speed and efficiency. The results
will provide insights into the trade-offs between computational efficiency and calibration

accuracy.

1.3. Core questions
This thesis will answer two core questions:

e [s there anything we can implement to mitigate the numerical instabilities asso-
ciated with the Heston (1993) model?
e Across each calibration technique, which formulation provides the best balance

between computational efficiency and calibration accuracy?

1.4. Importance

Traditional calibration techniques for the Heston model are often computationally in-
tensive and prone to numerical instabilities, leading to significant pricing errors. These
challenges are particularly problematic in real-time trading and risk management scenar-
ios, where both speed and accuracy are crucial. Addressing these issues is essential for

enhancing the practical applicability of the Heston model.

1.5. Thesis structure

This thesis is structured into five chapters, each addressing a specific aspect of the

research:

e The Introduction chapter provides the context, motivation, aims, objectives of
the study, thesis methodology, core questions and its importance.

e The Literature review chapter reviews existing literature on the Heston model,
its alternative formulations and the numerical integration schemes that will be
used.

e The Data and methodology chapter describes the data, calibration techniques
procedures, calibration bias detection procedures and a brief explanation about
the Matlab code behind the thesis.

e The Results chapter presents the formulations that got the best results for each
calibration technique.

e The Conclusions chapter summarizes the findings.

We present two appendices, the first one with the results that were not presented in

the Results chapter and the second one dedicated to Heston (1993) model parameters

evolution plots. Finally, the thesis ends with its references.






CHAPTER 2

Literature review

This chapter provides a solid review of the literature behind the Heston (1993) model.
By delving into the Heston model’s comprehensive literature, we aim to present an ex-
tensive understanding of its foundational principles, its development over time, and the
various enhancements proposed by different researchers. This review not only solidifies
the theoretical foundations of the Heston model but also provides a critical analysis of its
practical applications and limitations.

The chapter begins by introducing a brief history behind the Heston model, so the
reader can better understand its value and its importance in financial modeling. The
historical context of the model’s development is crucial as it highlights the limitations of
previous models and the innovative steps taken by Heston to address them. By under-
standing this history, readers can appreciate the model’s significance and its impact on
the field of quantitative finance.

Next, we talk about the model assumptions and limitations. These assumptions, while
simplifying the complex reality of financial markets, enables the derivation of mathemati-
cal solutions. However, they also introduce limitations that need to be carefully considered
when applying the model to real-world data.

We discuss the model dynamics along with a complete derivation of the original Heston
model. We introduce the reader to some basic Fourier analysis concepts and, additionally,
we address the ”Little Heston Trap”. It is presented the various Heston model formula-
tions used to price options in this thesis, briefly describing each one of them and we finish

with the numerical integration schemes that will be used.



2.1. Heston model

Since its introduction in 1993, the Heston model has become one of the most important
models in stochastic volatility pricing, a revolutionary approach to option pricing. Its rise
is tied to the 1987 stock market crash, which exposed limitations in the Black-Scholes-
Merton model of Black and Scholes (1973) and Merton (1973), particularly the assumption
of normally distributed stock returns with constant volatility. Empirical studies since the
crash have shown that returns exhibit skewness and kurtosis, and that volatility is time-
varying, often inversely related to price.

A widely used method for modeling time-varying volatility involves allowing volatility
to be driven by its own stochastic process. This approach is employed in stochastic
volatility models, such as the Heston (1993) model. Some of the pioneering models in this
area were proposed by Hull and White (1987), Scott (1987), Wiggins (1987), Chesney and
Scott (1989), and Stein and Stein (1991).

The parameters of the Heston model can generate skewness and kurtosis, leading
to a smile or skew in implied volatilities derived from option prices produced by the
model. It intuitively captures the inverse relationship between stock price levels and
volatility, making it straightforward and easy to comprehend. Furthermore, the Heston
model provides a closed-form solution for call option prices, which includes a numerically
evaluated integral, enhancing both its flexibility and practicality. For these reasons, the
Heston model has become the most widely used stochastic volatility model for pricing
equity options.

A key innovation of the Heston model is its use of characteristic functions for option
pricing, eliminating the need to know the terminal price density. This insight led to a

new approach in option pricing, known as pricing by characteristic functions.

2.2. Model assumptions and limitations

Heston assumes that the underlying stock price, S}, follows a stochastic process close
to the geometric Brownian motion and that the variance, vy, is also stochastic, following
a Cox-Ingersol-Ross (1985) process that incorporates mean reversion.

Heston assumes a correlation between the Wiener processes under the underlying stock
price and the variance dynamics where this correlation is typically negative in real-world
data. This can be explained by the leverage effect.

Heston assumes that the underlying does not pay dividends during the option’s life.
This limitation can lead to mispricing of options on dividend-paying stocks.

Under the risk-neutral measure, the Heston model assumes a constant rate of interest
throughout the option’s life. This limitates the reality of stochastic interest rates.

A drawback of the Heston model is that it requires multiple parameters to be calibrated
simultaneously, which can be complex and time-consuming. Additionally, the parameters
calibrated to historical data may not remain stable for extended periods, necessitating

frequent recalibration to ensure accuracy.
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The model also fails to account for sudden jumps in prices, leading to an underesti-
mation of the probability of large price movements and, finally, due to its mean-reverting
nature, the Heston model tends to underestimate the implied volatility skew, particularly

for short maturities.

2.3. Heston model dynamics

The Heston Model, under the physical measure P, is represented by the following

bivariate system of stochastic differential equations

dSy = pSydt + /v, S, AWy,
dv, = k(0 — vy) dt + o\/v dWy,
where EF[dWT,dW5,] = pdt.

w1 is the drift of the stock price process. The k parameter controls the speed of mean

(2.1)

reversion of the variance process. It represents the velocity at which the process will
revert to its mean. 6 is the long-term mean of the variance. When the distance to the
mean, (6 —v;), is high, the strength of mean reversion, (6 — v;), will be high as well with
a strong opposite force pushing the trajectory back to its mean. The higher the k or the
distance to the mean, the stronger the mean reversion force. The volatility of the variance
o, controls the amplitude of the possible fluctuations around the mean. The randomness
of the stock price and its variance are controlled by two correlated Wiener processes.
The correlation p controls the relationship between the dynamic of the underlying stock
price and its volatility. So, in addition to the drift of the stock price process, the Heston
model has five unknown parameters: vy, the initial level of the variance; x, the speed of
reversion of the variance process; 6, the long-term mean of the variance; o, the volatility
of the variance; and p, the correlation between the stock price and its variance.

If 260 > o2, the drift is sufficiently large to make the origin unreachable for v;.
This is known as the Feller condition. If the Feller (1951) condition is violated, v; will
visit the origin, almost surely, but will not stay at zero, that is, the origin boundary
is strongly reflecting. When calibrating the Heston model, it is fairly common for the
model’s parameters to violate the Feller condition. While this is not catastrophic, since v,
only briefly touches zero, it is still concerning. This is because the model may frequently
produce extremely low volatility levels (e.g., below 0.01), which is not a typical market
behavior. In practice, this suggests that users should exercise caution when interpreting
the results of the model, especially in cases where the Feller condition is violated.

In the Heston model, the distribution of the log stock price at maturity, In S, can dis-
play skewness and excess kurtosis based on the chosen parameter values. The correlation
parameter p plays a key role in controlling the skewness of the distribution for both In St
and the continuously compounded return In (S7/Sy) over the time interval [0,7]. When

p is positive, the probability distributions exhibit positive skewness, while a negative p



results in negatively skewed distributions; this will be the typical case as we explained be-
fore. The volatility of variance parameter ¢ influences the kurtosis of the distribution. A
high o leads to greater dispersion in the variance process, causing the return distribution
to exhibit higher kurtosis and fatter tails. In contrast, when o is low, the distribution
tends to have less pronounced tails.

Another characteristic of the Heston model is that the implied volatilities derived from
option prices generated by the model will display a volatility smile or skew. The shape
of this skew depends on the parameter values. Specifically, the correlation parameter p
influences the direction of the skew: when p > 0, the skew will have a positive slope, and
when p < 0, the skew will exhibit a negative slope, this will be the typical case. Increasing
values of the volatility of variance ¢ means that the variance fluctuates more than usual;
this will lead to a steeper smile. Low values of the volatility of the variance ¢ means
that the variance does not fluctuate as much; this will lead to a flatter smile. Finally, the
parameters k, # and vy control the level of the smile. The mean reversion speed s also
controls the curvature. A high x makes the volatility revert faster, flattening the volatility
smile because volatility spikes will be short-lived; a low x means slow reversion, leading
to a steeper volatility smile, as volatility deviations from € can last longer.

As we know, equations (2.1) represent the Heston model under the physical measure
P, but, for pricing purposes, we need the processes for (S;,v;) under the risk-neutral
measure Q. It is also more convenient to work with a model that is expressed in terms
of independent Brownian motions. If we let Z7, and Z;, for t > 0 be two independent

Brownian motions under the real measure P, we can rewrite dW;, and dW5, as

AWy, = /1 — p*dZ3, + pdZs,

(2.2)
de‘ft = dzgit

where EF[dZ] dZ3,] = 0. Substituting the equations of (2.2) in the bivariate system of
SDEs in (2.1) give us

dSt = [LStdt + \/’thSt‘\/ 1— deZEt + \/’thStdeg’;t

(2.3)
dvy = k(0 — v;)dt + o/v,dZs,

To change the measure we need to introduce the two-dimensional Girsanov theorem
which includes the idea behind the Radon-Nikodym derivative. Note that we rewrote
the original bivariate system of SDEs (2.1) in terms of independent Brownian motions
because in the two-dimensional Girsanov theorem that we will present, we make use
of the independence concept. Nevertheless, independence is not necessary, since every
derivation in this thesis that uses independence between Brownians can be reformulated
for correlated Brownians.

We will now introduce the reader to some well-known results that are mandatory here

in this subject. The following definition and theorems can be found in [26].
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DEFINITION 2.3.1. Let (2,.#,P) be a probability space, let P be another probability
measure on (S, .F ) that is equivalent to P, and let Z be an almost surely positive random
variable with B[Z] = 1 that relates P and P via

P(A) = / Z(w)dP(w) for every A € F. (2.4)
A
Then Z is called the Radon-Nikodym derivative of P with respect to P, and we write
dP
7z =—.
dpP

THEOREM 2.3.2. (Lévy, Two-dimensions) Let M(t), Ma(t) fort > 0, be martingales
relative to a filtration F(t), t > 0. Assume that for i,j5 = 1,2, we have M;(0) = 0,
M;(t) has continuous paths, and [M;, M;|(t) = té;; for allt > 0. Then M, (t), Ma(t) are

mdependent Brownian motions.

PROOF. See [[26], p. 159]. O

In the above theorem, ¢;; is called the Kronecker delta and is defined as

1,
61]: )
0, ifi#]

ifi=j

fori,j =1,2.

THEOREM 2.3.3. (Two-dimensional Girsanov) Let W (t) = (W1 (t), Wa(t)), 0 <t < T,
be a two-dimensional Brownian motion (i.e., a vector of two independent, one-dimensional
Brownian motions) on a probability space (2, #,P), and let F(t), 0 < t < T, be a
filtration for this two-dimensional Brownian motion. Let 0(t) = (01(t),62(t)) be a two-

dimensional adapted process. Define

—exp< 2/6 )dW; (u ——/292 >

W;(t) = W;(t) +/D 6;(u)du for j=1,2,

(2.5)

and assume that .
/O S 02(u) 22 (u)du < oo] | (2.6)

Set Z = Z(t). Then E[Z] = 1, and under the probability measure P given by the equation

(2.4), the process W (t) is a two-dimensional Brownian motion.

PROOF. By Lévy, two-dimensions Theorem, it suffices to show that W;(t) is an F;-
martingale under P and [W;, W](t) = t0;; (i, = 1,2). Indeed, for i = 1,2, W;(t) is an
Fi-martingale under P if and only if Wi(t)Zt is an JFp-martingale under P, since

Wi(t)Z

t o WZ<S)ZS
Z, 75| =

Zs

E[Wi(t)|F] = = Wi(s),




with 0 < s <t < T. Applying It6’s lemma to f(X(t)) = eX® where X(t) is the term
inside the exponential of Z(t), we get

2 2 2
1 1
_ LX) (_ § :Gj(t)de(t) _ 5 § :0?(t)dt> + BX(t)§ g 6’]2<t)dt

2
)Y 0;(H)dW;(t)
j=1
Integrating both sides produces the following
t 2
Z(t) = Z(0) —/0 (=Z(w) Y 0;(w)dW;(u) (2.7)
j=1

To ensure that the above integral is well defined and is a martingale, the expected value
of this integral squared needs to be finite. We will end up exactly with condition (2.6) of
the theorem and therefore Z(t) is a martingale with E[Z] = E[Z(T)] = Z(0) = 1. Now
that we know the form of Z(t) and using W;(t) from the theorem above, by Ito’s product
formula we have

d (Wilt)2,) = Wilt)dZ, + ZudWi(t) + dZ,dWi(1)

(1) (~20)'S" 0,00, 1) + ZaWi

Use the fact that [M;, M;](t) = t6;;, which we write informally as dW;(t)dW;(t) = dtJ; ;.
The expression above has no dt term, therefore this shows that W;(t)Z(t) is an F-

martingale under P. So W ) is an Fi-martingale under P, Moreover,

0

We can now derive the processes for (S;,v;) under the risk-neutral measure Q. This is
done by applying the two-dimensional Girsanov theorem. Consequently, the risk-neutral
version of the bivariate system of SDEs in (2.3) is

4, = (r — q)Sudt + oS/ T— PAZE + \JirSipd 23 (28)
v = [5(0 — v) — Nt + 0T 22 |

where
p—(r—q /o,
1 —p?\/ve

t,

ZiQtA = ZIP:t +

I

A
o\/V¢

I =75, +



where EQ [dZi@t*dZ;@t*] =0, with A = A(S;, vy, t) for simplification.

Note that we introduced a function A in the drift term of the risk-neutral variance
process in (2.8). This alternative form is used when markets are not complete or when
the assets are not traded which is the case for our variance process. As volatility is not a
traded asset here, this function is not unique, so this is why we represent the risk-neutral
measure Q with A, so in a sense we are saying that our measure Q depends on A\ and
correspondingly for each A there is an equivalent martingale measure.

This function is known as the volatility risk premium. According to Heston (1993),
Breeden’s (1979) consumption model indicates that this premium is proportional to the
variance, leading to A\(Sy, vy, t) = Avy, where A is a constant. The introduction of this func-
tion will not complete the market but will better replicate the market implied volatility
surface.

By setting A = 0, we ensure that the SDE for the variance process under the risk-
neutral measure Q will be the same as the one under the physical measure P. For sim-
plification, in this thesis we set A = 0, but this is not always needed. For further details
on the estimation of A, refer to Bollerslev et al. (2011). All derivations in this thesis will
include the volatility risk premium A(S;,v;,t) = Av,, where A is a constant for a more
complete model analysis. For simplification, for now on, we will drop the time index on
the variance and use A(Sg, vy, t) = Av.

As we seen before, Heston (1993) assumed that the underlying stock does not pay
dividends, consequently, every Heston model derivation in this thesis for now on, will be
under this assumption. At the end of each derivation we show how to include dividends.
The dividends that we will be included in the formulas will always be seen as continuous
over the option’s life and not stochastic.

In this section we included dividends in the SDE of the stock price in (2.8), by including
¢ in the equation of Z?@

2.4. Variance process distribution and properties

Cox, Ingersoll, and Ross (1985) described the distribution and properties of the vari-
ance process. The distribution of future values of the variance process, v;, can be computed

in closed form as

Y
—2Ct7

here we have that Y = 2¢,v;. Conditional on a realized value of v,, this random variable,

(%

(2.9)

Y, (for t > s) follows a non-central chi-square distribution with d = %0 degrees of freedom

—k(t—s

and non-centrality parameter 2c,v e ), where

2K
02(1 _ e*/{(tfs))’
and with ¢t > s. Therefore, the probability density function of the variance process, vy, at

¢ = (2.10)

time ¢, conditional on its value at the current time, s, is given as



f(vgvs,K,0,0) = ce ™™ (%)g I,(2v/uv), (2.11)

where u = cuse %) v = ¢y, ¢ = 20%9 — 1 and [,(2y/uv) is a modified Bessel function
of the first kind of order ¢. Finally, the mean and variance of the variance process, v,

conditional on the value v are respectively the following

m = Elvi|vs] = 0 + (vs — 9)6‘”('5_8),
2 2 (2.12)

o Oo
= s| = Usg— 7l{(t73) . 72K(t75) 1 _ *li(tfs) 2'
v = Var|v|vs] = v - (e e ) + o (1—e )

When k becomes too large, the variance process quickly reverts to its long-term mean, 6.
Consequently the mean m will approach 6 as kK — co. A high value of k£ will make v; have
little variation around # where this little variation is considered negligible. Consequently,
the variance v will approach 0 as kK — oc.

As k — 0, the mean-reversion effect is almost negligible. The mean m in this regime will
approach its current level, reflecting the fact that v; will not revert quickly to 6 and will
instead fluctuate around its current value. Hence, the mean m will approach vs as k — 0.

To retrieve the value of v as kK — 0 we will rewrite the v expression in (2.12) as

0'2(2215 + 9(6(21575)/4 — etk + esn)) " e(tfs)n -1
2e2tK € ’

K

We can now easily calculate the value of v as kK — 0 by taking the product of limits

' 0.2(2,05 + 9(6(21‘/75)% — etk + esn)) (e(ts)/{ _ 1>
lim E———
k—0 262tm r—0 rk—0 K

lim e*® lim

The first term of the above expression is expressed as o2vg, the second one as 1 and the
third one as (t — s). Consequently, the variance v will approach o?v,(t — s) as K — 0.
This concludes the properties of the future distribution.

If the variance process does display mean reversion (x,6 > 0), then as time t becomes
large, the asymptotic distribution of v,, will approach a gamma distribution with the
following probability density function

Flvi8.0) = psol e (2.13)

where = 3—'; and o = 20_%9. The expression in (2.13) can also be named as the steady state
function. We will now determine the mean and variance of the steady state function. We

will begin by determining the mean. The mean of (2.13) is given by its expected value

]E[v]:/o vf(v)dv:/o v%valeﬁvdv:%/o vee Pdy.

This integral is a well-known form, which is related to the Gamma function. Specifically
o0 r 1
/ v Pdy = —(;éa:: )7
0
10



thus, the mean is
o 8 T+
[(a) pot!

We will now determine the variance. The variance of (2.13) is given as

=0.

Var[v] = E[v?] — (E[v])? = /000 V2 f(v)dv — 0% = % /OOO v e Py — 62

Using the Gamma function for the above integral give us

/OO v e Pdy = —F(a i 2)7
0 ﬁa—‘rQ

thus, the variance is
p* T(a+2) ,, o2
Vi = ————— —0"=—.
e 2k
In all of the above expressions we abreviated v, as v. These findings are consistent with

the conclusions presented by [12].

2.5. The European call price

Let C'(K) denote the price of a European call on a non-dividend paying stock with
spot price Sy, strike K and time to maturity 7 =7 — t. The time-t price of C'(K) is the
discounted expected value of the payoff under the risk-neutral measure Q and is expressed
as

O(K) = e "E¥(Sy — K)7]
= e "EY(Sy — K)lg,-k] (2.14)
= 6_TT]EQ[ST15T>K] — KG_TTEQ[]IST>K],
where 1 is the indicator function. The probabilities above will be obtained under different
probability measures. E@[1 g, ] is the probability of the call expiring in-the-money under

the measure Q, which can be computed as
E®1g,~x] = Q(Sr > K) = Q(In Sy > In K). (2.15)

To evaluate e ""EQ[Sr1 g, k], we need to change the probability measure from Q to an-
other measure which we will denote as Q°. To do this, we can utilize the Radon-Nikodym
derivative which relates the two measures, Q and Q°. Now, consider the following Radon-
Nikodym derivative
dQ  Br/B;, eT/et ST EQ[err]
dQf ~ Sy/S,  Sr/S, Sy  ew

Here we will define B; as the value of a bank account at time ¢ > 0. For the initial

(2.16)

condition we assume that B(0) = 1 and that the bank account grows at a constant

risk-free rate r over time. Hence, B(t) follows the following differential equation

dB(t) = rB(t)dt,

11



Consequently,

t
By, = exp (/ rdu) =" (2.17)
0

In (2.16), we have written Sye"™ = EQ[e"r], since under the measure Q, the stock
grows at the risk-free rate r, also here we define St as e*” where x7 = In Sp. We will now

evaluate the first expectation in the last line of (2.14).

G_TTEQ[ST]IST>K] = G_T(T_t)StEQ [ST/St]IST>K] = Bt/BTStEQ [ST/St]IST>K]

Sr/S s [ Sr/S dQ

= SE? [1g,-x] = SQ%(Sr > K) = 5,Q%(In Sy > In K).

Consequently, the European call price of equation (2.14) can now be written in terms of
both measures, Q and Q° as

C(K) = 5Q°(InSr > InK) — Ke""Q(In St > In K). (2.19)

We will denote the probability under the measure Q° by P; and the probability under the

measure Q by P,. Therefore, (2.19) can be rewritten as
C(K) = Stpl - K@iTTPQ. (220)

P; and P, represent the probability of the call expiring in-the-money (under different
measures), conditional on the value of the stock S; = e", where z; = InS; and on
the value v; of the volatility at time ¢. Then the expression (2.20), using the fact that

x; = In .Sy, can be written as
C(K) - €rtP1 - KB_TTPQ. (221)

The measure Q uses the bank account B; as numeraire and the measure Q° uses the stock
price S;. If we assume a value of ¢ # 0 then, in equation (2.20) and (2.21) we multiply
the first term by e~97, as explained by Whaley (2006).

To obtain the price P(K) of a European put, we first obtain the price C'(K) of a European
call and then we find the value of P(K) by using the put-call parity

PK)=C(K)+ Ke™ ™ — Sie 7. (2.22)
Here, we also assumed the presence of a continuous dividend yield q.

2.6. Heston PDE

In the Heston model we need to hedge both stock and volatility which are our two
sources of randomness. Therefore, we form a portfolio consisting of one option V =
V(S,v,t), A units of the stock, and ¢ units of another option U(S,v,t) for the volatility
hedge. Under these conditions, the portfolio is valued as

1=V +AS + oU. (2.23)

12



Assuming that the portfolio is self-financing, the change in portfolio value is
dIl = dV + AdS + dU. (2.24)

The hedging portfolio strategy will go as follows. We will apply It6’s lemma to obtain the
processes for V and U. After having both processes we can then derive the II process. To
derive the Heston PDE, we need to find the values of A and ¢ that makes the portfolio
riskless. Applying It6’s lemma for V' and U will return the same expression, one in terms
of V and the other in terms of U, so to avoid repeatedness we will ilustrate the Itd’s

lemma for V
1 1
dV = Vidt + VsdS + 5VSS(dS)2 + Vydv + 5vw(dv)2 + Vi gdvdsS. (2.25)

Now, using the fact that (dS)? = vS%dt, (dv)* = c*vdt, and dvdS = opvSdt, using
the SDEs in (2.8), where dZ}dt = dZ3}dt = dZdZs} = (dt)* = 0 and (dZ3})? =
(dZ5h)? = dt, (2.25) is now represented as

1 1
dV = Vidt + VsdS + §US2VSsdt + Vydo + 5020‘/%dt + opvSV,gdt. (2.26)

Now, to save some space we will use the following operator

1 1
Ly=():+ 5052()55 + 50222()% + opvS()ys-
Making use of Ly, (2.26) is now represented as

AV = (L\V)(S, v, t)dt + VsdS + V,,dv. (2.27)

Note that the operator for U will be the same as the operator for V. The difference is
that one is in terms of U and the other is in terms of V. Now, substituting the operator
Ly in (2.24) lead us to

I = (L\V)(S, v, t)dt + (L U)(S, v, t)dt + [Vs + oUs + Al dS + [V, + @U,) dv. (2.28)

In the above expression, the last two terms must be zero if we want to hedge the portfolio

against movements in both the stock and volatility. Consequently, we must have
A=—pUg— Vs. (2.29)
We can now substitute the new values of ¢ and A in (2.28) and obtain

dIl = (L1V)(S,v, t)dt + (L U)(S, v, t)dt. (2.30)

Assuming that the portfolio grows at a constant risk-free rate, r, our change in portfolio

value is now

13



dIl = rlldt = r(V + AS + pU)dt. (2.31)

Now, if we substitute the values of ¢ and A in (2.31), make this expression equal to (2.30)
and drop the dt terms, we get the following equality

<L1V>(S7U7t) —TV+7’SVS . (L1U>(S,U,t) —TU+TSUS

Vi Uy

(2.32)

When looking to the equality in (2.32) we see that the left side is a function of V' and the
right side a function of U. Therefore, each side can be written as a function f(.S,v,t).
Since we are mainly interested in the option that is used to hedge the volatility, our main
focus is therefore the option U(S, v,t). This lead us to the following equality

(L U)(S,v,t) =rU +rSUg
Uy B

—f(S,v,1). (2.33)

We write the minus sign before the function f(.S,v,t) for reasons that will become clearer

in a bit. We can rewrite the equality above as
(L U)(S,v,t) —rU = —rSUgs — f(S,v,t)U,. (2.34)

Remember, rS is the drift of the stock price SDE. Hence, the function f(.S,v,t) must
be some sort of drift of the variance SDE. Therefore, using this idea, makes sense why
Heston (1993) specifies this function as

f(S,v,t) = k(0 —v) — (S, v,t), (2.35)

where the function f(S,v,t) is the drift of the variance SDE represented in the expres-
sion (2.8). The function A(S,v,t) represents the volatility risk premium that we already
discussed when deriving the risk-neutral process for the variance process v;. Substituting
(2.35) in (2.34) and rearranging the terms, we produce the Heston PDE in terms of the
stock price S as

(L U)(S,v,t) —rU +rSUg + [k(8 — v) — \v]U, = 0. (2.36)

A European call option with strike price K and maturity at time 7" satisfies the PDE
(2.36) subject to the following boundary conditions

U<vaaT):(S_K)+a U(Oav7t):07 US(OO7U7t):1a U(S,OO,t)ZS,

2.37
rSUs(S,0,t) + kOU,(S,0,t) — rU(S,0,t) + U (S,0,t) = 0. (2:37)

To simplify the PDE in (2.36) which is expressed in terms of (S, v,t) we can define it in
terms of the log price z = In S and express it in terms of (x,v,t). To do this, we calculate

the following derivatives

1 1 1 1
Us=U,5, Uys=7ZUp, Uss= _§Ur + o

14



We can now substitute these expressions into the Heston PDE in (2.36) and obtain the
Heston PDE in terms of the log price z = In S. Before doing this, let us use the following
operator

Ly = 1+ 500k + 50%00u + 0p0e

Making use of Lo, the Heston PDE in terms of the log price x = In .S is represented as

(LU)(z,v,t) —rU + (7“ - %v) Uy + [k(0 —v) — MU, = 0. (2.38)

This completes the derivation of the Heston PDE. If we assume a value of ¢ # 0 then, in
equation (2.36) and (2.37) we replace the term 7S by (r — ¢)S, in (2.37), U(S, 00,t) = S
by U(S,00,t) = Se™ and finally, in equation (2.38) the term (r — tv) by (r — ¢ — 3v).
Note that the boundary conditions in (2.37) is only for call options. One could use the

put-call parity and easily obtain the boundary conditions for put options.

2.7. PDE for P, and P,

Since the European call C'(K') expressed in (2.21) is a financial derivative, it must also

satisfy the Heston PDE (2.38) which consequently we write as
1
(L2C)(z,v,t) —rC + <T — 51}) Cy + [k(0 —v) — \|C, = 0. (2.39)

Now, we are interested in the Heston PDE for the in-the-money probabilities P; and P,.
Since (2.21) is a linear combination of two terms and we know that it satisfies the above
PDE as a whole, this implies that each term will also satisty the above PDE. Consequently,
e" Py and —Ke "™ P, will satisfy the PDE in (2.39). We will use these facts to derive the
PDE for P, and P,. To do this, we need to find the required derivatives of these two

terms.

Cy=e"P,0 — Ke " [rPy + Py, d;9, (2.40)

Cp=€"[PL+ P10y — Ke " Py b9, (2.41)

Cow =€" [P+ 2P, + P, |01 — Ke " Py, 02, (2.42)

Cy=2¢e"P,01 — Ke " Py 09, (2.43)

Cpy =€°Py, 001 — Ke " Py, 0;9, (2.44)

Coe = € [P, + P1,,] 051 — Ke " Py, 05. (2.45)

We used the Kronecker delta, d;;, to ilustrate how each equation is expressed when cal-
culating individually the required derivatives for the terms, e** P, and —Ke "™ P,.

To derive the PDE for Py, in equations (2.40) through (2.45), we use i = 1 to only use

the terms containing P;. We substitute these equations into the PDE in (2.39), we drop

the e” terms and making use of the Ly operator, we get
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(Lo Py)(x,v,t) + (r + %U) P, + [pov+ k(0 —v) — ] Py, = 0. (2.46)

Similarly, to derive the PDE for P, in equations (2.40) through (2.45), we use i = 2 to
only use the terms containing P,. We substitute these equations into the PDE in (2.39),

we drop the —Ke™" terms and making use of the L, operator we get
(LoPy)(z, 0,1) + <7’ - %v) Py, + k(0 — v) — Ao Py, = 0. (2.47)
By combining equations (2.46) and (2.47) we get
(Lo Pj)(z,v,t) + (r +uv) P, + (a — bjv)P;, =0, (2.48)

for j = 1,2, where u; = %,

For the option price to satisfy the terminal condition of (2.38), the combined PDEs in

ugz—%,a:me,b1:/<a+>\—pa,andb2:fi+/\.

(2.48) are subjected to the following terminal condition
Pi(z,v,T;InK) =15, foralzeRv>0. (2.49)

If we assume a value of ¢ # 0 then, in equation (2.39) and (2.47) we replace the term
(7‘ — %v) by (r —q— %v), in equation (2.46) the term (r + %v) by (7‘ —q+ %v) and finally,
in equation (2.48) the term (r + u;v) by (r — ¢ + u;v). The derivatives from (2.40) to
(2.45) would also change because the term e* P; in the equation (2.21) would be replaced
with e®t~ 1" P;.

2.8. Characteristic functions

We could solve (2.48) numerically, but we prefer an analytical solution. One could
try separation of variables, but that does not work here, and when one does not know an
obvious way to solve a PDE, we try to guess a solution and then perfect it via trial and
error. Since we are dealing with probabilities, we naturally switch to their representation
in terms of the generally applicable characteristic functions. Each in-the-money proba-
bilities P; will be recovered from its characteristic function f; via the Gil-Pelaez (1951)
inversion formula. This formula will be introduced but not on this section.

Heston (1993) assumed that the characteristic functions of the terminal stock price, z7 =

In S7, are of the log linear form

[i(#; 4, v) = exp(Cy(1, ) + Dj(T, )vs + idxy), (2.50)

where ¢ is the imaginary unit, C; and D; are coefficients, 7 = T"—t is the time to maturity
and ¢ some dummy variable.

Before deriving the PDE for the characteristic functions f;, we will introduce the 2-
dimensional Feynman-Kac theorem. We will use this theorem to show that the PDE for

the characteristic functions f; will follow the same PDE as the one for the in-the-money
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probabilities P; in the equation (2.48). The following theorem can be found in Shreve
(2004).

THEOREM 2.8.1. (2-dimensional Feynman-Kac Theorem) Let W (t) = (W1(t), Wa(t))
be a two-dimensional Brownian motion (i.e., a vector of two independent, one-dimensional

Brownian motions). Consider the stochastic differential equations
d Xy (u) = Br(u, X () du + 71 (u, X (w) dWi(u) + 2w, X () dWs(u),
AXa(u) = By(u, X (u)) du + a1 (u, X () AW () + 22, X (w)) AW (),

where X (u) = (X (u), Xa(u)).
The solution to this pair of stochastic differential equations, starting at X,(t) = z1 and

(2.51)

Xs(t) = x4, depends on the specified initial time t and the initial positions x1 and z;.
Let a Borel-measurable function g(y1,ys2) be given. Corresponding to the initial condition
t,x1, 19, where 0 <t < T, we define

ft, 2, 0) = Elg(Xy(T), Xo(T)) | 7] (2.52)

Here we assume that E[g(X1(T), Xo(T))|F:] < oo, for allt and xy,xo. Then

Jt4 B far +Ba S +%(’Y%1 +12) frnan + (V11721 +712722) faras + %(731 +932) fanar = 0, (2.53)
with the terminal condition
f(T,x1,29) = g(x1,22)  for all x; and x,.
PRrROOF. Let 0 < s <t < T be given. Hence, for the initial condition s we have

fs, 01, 22) = Blg(X1(T), Xo(T))|Fi]. (2.54)

Using conditional expectations relative to the filtration F; in both sides of (2.52) leave us
with

E[f(t, z1, 72)|Fs] = E[E[[g(X1(T), Xo(T))|F]] F]
= f(s,x1,72).

For the second equality we used the iterated conditioning principle and for the last equality
we used the equation (2.54). This proves that the function f(¢,x1,x2) is a martingale.
Let us now assume that f(t,z1,x2) is some twice-differentiable function. It6’s lemma
shows that

1 1
df = ftdt + fxldml + f:l:gde + §fx1x1 (dx1)2 + fa:1a:2dxldx2 + Qfxgxg (d$2)2

1 1
= (ft + B1fey + Bafay + 5(’7%1 + V%Z)fmwl + (111721 + 712'722)fac1x2 + 5(7%1 + 7222)fw2x2> dt

+ Y11 [z, AW + Y12 fz, AW + o1 f2, AW + Y22 f2,dWa.
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Since the function f(t,x1,x2) is a martingale, the dt term must be zero. When taking the
differentials, one uses the fact that W, and W, are independent. That is, f(¢, z1, x2) sat-
isfies the PDE (2.53), where the equation (2.52) imposes the following terminal condition

f(T 21, 29) = g(xq,22) for all 1 and x.

O
Let us now suppose a pair of processes (x4, v;) that is governed by the following SDEs
dxy = (r + ujv)dt + o/ 1 — p2dZ3, + \Jo,pdZ3, 2.55)

dv, = (a — bjv)dt + \Jv,dZ3,
where E© [dZ%dZéth] = 0. If we define the equation (2.52) as
f<t7 T, U) = EQ[HITZInK’FtL

with 27 = In Sr, then, by an application of the 2-dimensional Feynman-Kac theorem,
f(t,z,v) satisfies the PDE in equation (2.48) subjected to the terminal condition defined
in the equation (2.49). Now, if we define the equation (2.52) as

f(t7 x? /U) = EQ[e,L(z)IT“Ft]?

which is the characteristic function for 7 = InSy. Then, by an application of the
2-dimensional Feynman-Kac theorem, f(t,x,v), will also satisfy the PDE in equation

(2.48) but now subjected to the terminal condition
f(T,z,v) = g(x,v) =" foralxecRv>0.

Therefore, following the equation in (2.48), the PDE for the characteristic function f;

is represented as
(Laf;)(@,v,t) + (r + ujv) fj, + (a —bjv)f;, = 0. (2.56)

with u;, a and b; defined in the last section.

Before continuing, one should note that the modern approach to obtain all of the
PDEs that we derived so far is by an application of the two-dimensional Feynman-Kac
theorem. In this thesis we used a version of the theorem that makes use of independent
Brownians and as we said before, we can rewrite all of the theorems and definitions such
that we make use of correlated Brownians. The general principle of the usage of this
theorem to derive the PDEs goes as follows. We correctly define the bivariate system of
SDEs and the function in the equation (2.52). After that, we find the martingale, apply
the 1t0’s lemma, set the dt term equal to zero and retrieve the PDE.

To evaluate (2.56) we need the following derivatives
fjt:_(CjT—"_DjTU)fj’ sz:i¢fj7 fjv:Djfj7 (2 57)
fieo = =F3 f1 = D3y, fi = 0D, ;. |
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Now, we substitute these derivatives in the PDE (2.56) and drop the f; terms to obtain
1 1
v (—DjT + poipD; — §¢2 + §U2D§ + pjigp — bij) —Cj, +rig+aD; =0.  (2.58)
Consequently, this produces two differential equations

. 1 1 .
Dj. = poigpD; — §¢>2 + 5021)? + pjidp — b; D;

(2.59)
Cj, = rig +aD);
subjected to the following zero initial conditions:
D;(0,6) = C;5(0,6) = 0. (2.60)

The first equation in (2.59) is a Ricatti equation in D; while the second one is an ordinary
differential equation in C; that can be solved using integration once we obtain D;. The
step by step derivation of the coefficients C; and D, can be found in Rouah (2013). After
solving the Ricatti equation, the solution D; can be written as
. b]' —p0'2¢+d] ( 1—€djT )

Dj(Ta ¢) - 0_2 1 o gjedjT

(2.61)

Now that we know the solution of the coeficient D; we substitute its value in the second
equation of (2.59) and use integration to obtain C;. Doing this gets us the following

solution for C}

Ci(r,¢) = ripT + % |:(bj — poi¢p +d;)T —21n (lﬂ@dﬂﬂ , (2.62)

where the coefficients d; and g; are as follows:

. bj—pO'ZQb‘i‘d]
by — poi¢ —dj’

dy =/ (poid — b)) — *(2uji6 — ¢*) . g, (2.63)
When we compute the characteristic function, we use v; as the unobserved initial variance,
vg, and x; as the log spot price of the underlying stock. This concludes the derivation of
the characteristic functions f;. If we assume a value of ¢ # 0 then, in the equation (2.56)
we substitute the term (r 4 u;v) by (r — ¢ + u;v) and in the equations (2.58), (2.59) and
(2.62) we substitute the term r by r — ¢.

In the next section we present some useful results of Fourier analysis and after that, the

Gil-Pelaez inversion formula will be presented.

2.9. Fourier analysis

Let us consider a measurable function f : R — C. If the Lebesgue integral of the

absolute value of f is finite then this function is called Lebesgue integrable and satisfies
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the following condition

Hﬂh:/fLﬂ@Mx<ax (2.64)

[e.9]

Under these conditions we say that f € L'(R) and, consequently, the Fourier transform
and its inverse exists. There are several definitions of the Fourier transform f of a function

f. The one that is usually encountered in the mathematical finance literature is

FED) =) = [ e f)d (2.65)

with f : R — C. The original f can be recovered by the inverse Fourier transform of f as
— 1 e —duzx [

FUFEN@) = (o) = - / e f(u) du. (2.66)

Characteristic functions are closely related to Fourier transforms. Let X be a random
variable defined on some probability space (€2, F,P). Consider px : R — C the charac-
teristic function, F'x the cumulative distribution function of X and fx the corresponding
probability density function. Then, the characteristic function is defined as the Fourier
transform of the probability density function fx

(Ffx)() = ox(u) = / £ dFy () = / ¢ f(2)dz = EleX]. (2.67)

—00 —0o0

[e.e]

The probability density function fx can be obtained by the inverse Fourier transform of
the characteristic function ¢x
1 [~ _
FAFf@) = frlw) = 5 [ e pxlude (268)
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2.10. Gil-Pelaez (1951) inversion formula

In 1951, Gil-Pelaez published his famous inversion formula. This formula will help us
to recover each in-the-money probabilities P; from its characteristic functions f;. After
knowing the analytical form of P;, we substitute its values in the equation (2.20) and,
consequently, we finally complete the original derivation of the Heston model. We will

begin by introducing the Gil-Pelaez inversion formula.

PROPOSITION 2.10.1. (Gil-Palaez Inversion Formula) Let Fx(z) be the cumulative

distribution function of some random wariable X defined on some probability space
(Q, F,P). Furthermore, let

px(u) = /_OO e dF ()

o0

be the associated characteristic function. Then we have

% [FX(Z’) + FX<ZC—)] — % 4 /Oo eiuccgo(_ugﬂ—i;—iuxcp(u) o

PROOF. See [[21], p. 18]. O

—0o0

To express the option price of a European call in terms of the inverse Fourier transforms,
we need to introduce the following lemma.
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LEMMA 2.10.2. We have the equality

2T T U

Therefore, assuming that Fx(x) is continuous, Gil-Palaez inversion formula simplifies to

Fe()= -1 /OOO R <M) du. (2.69)

iu
PROOF. See [[21], p. 19]. O

As we saw before, in the Heston model, there are two characteristic functions f; and
f2 associated to each in-the-money probabilities P, and P,. This is because each P; is
obtained under different measures. It also seems that only a single characteristic function
need to exist, because there is only one underlying stock price in the model. Bakshi and
Madan (2000) explain this idea where consequently we define, for now on, fo(¢) = ¢(¢)
and f1(¢) = (¢ —i)/p(—1) where ¢ is a dummy variable.

We can finally determine analytically the form of the in-the-money probabilities P;. Before

we apply the Gil-Pelaez inversion formula one should note that
Fx(z)=P(X <z2)=1-P(X >z) < P(X >z)=1- Fx(x).

This implies that

1 1 & —iuz 1 1 oo —tux

pecs 0 =1 (52 [Tr(EE a) < ot [T (U
2 7 zn 2 7mJ ;an
(2.70)

Now, using the expressions of P; and P expressed in the equation (2.20), and using (2.70)

we get

1 1 00 _ N\p—tuln K
Qlar>mK) =P =41 [ (2lzie du

2 7 o(—1)iu

, (2.71)

1 1 00 S0<u>e—man
Qer>ImK)=P=—-+— R —— ) du

2 7 J w

where we substituted the dummy variable ¢ by u and xr represents the logarithm of the
terminal stock price St.

In the next section we will discuss potencial problems on both integrands of equations in
(2.71).

2.10.1. The little Heston trap

The integrands of (2.71) are often well-behaved, avoiding numerical issues. However,
there are cases where the integrands behavior complicates numerical integration. The first
challenge is that the integrands are undefined at u = 0, even though the integration range
is [0, 00), necessitating integration starting close to zero. To minimize inaccuracies from
excluding the origin, the integrands must not be overly steep near zero. Another issue
is that the integrands may exhibit discontinuities. A further complication is integrands

that oscillate significantly, typically linked to short-maturity options. Albrecher et al.
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(2007) highlighted two formulations of the Heston characteristic function in academic
literature: Heston (1993) formulation and a slightly altered version, ” Little trap”. Though
equivalent, the second formulation, as demonstrated by Albrecher et al. (2007), results
in a characteristic function that is more suitable for numerical integration. The original
formulation of the Heston characteristic function was covered in section 2.8. To derive the

second formulation, multiply the numerator and denominator of the coefficient D; with

e~%7 which leads to the equivalent form:
b — poigp—d; [ 1 —eb7 1 b —poip—d;
D; = -2 J === 2 z 2.72
](7—’ ¢) 0'2 (1 —CjedjT) ’ € g] b] —p02¢+dj ( )
One part of the solution C; in (2.62) can be rewritten as:
1— q. d;T 1 — c.e~ %7
d;7 —2In (Leﬂ) = —d;7—2In (Lj> . (2.73)
1 —g; L—¢

This equality holds by putting e%7 in evidence inside the logarithm in the left expression

of (2.73). This implies that C; can be written in the equivalent form:

, a _ 1 —cjedm

C,(1,9) = rigr + = {(bj — poi¢ —d;)T — 21n (#)} : (2.74)
If we assume a value of ¢ # 0 then, in (2.74) we substitute the term r by (r —q). Al-
brecher et al. (2007) assert that while their formulation and Heston’s original formulation
are fundamentally the same, their approach significantly reduces numerical issues during
model implementation. They note that alternative algorithms can be employed to address
the discontinuities inherent in the original Heston model. However, the ”Little Trap” for-
mulation consistently avoids these problems, making these alternative algorithms almost
unnecessary. This makes their formulation a reliable choice for practical applications in

numerical modeling.

2.11. Heston model formulations

In this section we present all of the Heston model formulations used to price options in
this thesis. We include the Heston original, the consolidated integrals version, the Attari
(2004) approach, the fast Fourier transform formulation of Carr and Madan (1999) and the
fractional fast Fourier transform of Chourdakis (2005). These formulations offer different
approaches to the problem, each bringing unique advantages and practical applications,
which will be thoroughly examined in the following subsections. As you can tell by now,
we did a complete derivation of the original Heston model and we will see next that the
consolidated integral version is a consequence of the original one. For the remaining three
formulations we will follow Rouah (2013) but we will only present the formulas, not the

complete derivations. We will also consider the little Heston trap for every formulations
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since its characteristic functions are more suitable for numerical integration. Finally, every

Heston model formulation that we will present will include a continuous dividend yield,
q.
2.11.1. Original version

As we have seen before, with the Gil-Pelaez inversion formula, we determined an ana-
lytical solution for both in-the-money probabilities P, and P, expressed in the equations
(2.71). Now that we have the analytical solution for both P, and P,, we substitute its
values in the equation (2.20) and finally obtain the European call price for the original

Heston model.

2.11.2. Consolidated integrals

By combining the integrals for the probabilities P; into a single integral, the numerical
integration required for calculating call prices is simplified. This consolidation reduces to
one numerical integration instead of two, theoretically cutting the computation which
in a sense is more pratical. We obtain the European call price for this formulation by
manipulating the original version formula

1 1 1 00 —iuln K 9
C(K) =587 — SKe ™+ — /0 R [e — (&e“”% - K e‘”w(U)ﬂ du.
(2.75)

2.11.3. Attari (2004)
Attari (2004) presents an alternative formula for the Heston call price. Attari (2004)

writes the terminal stock price as S = Sy’ T**T) | where 2 = (¢, T) now denotes the
stochastic component of the stock price process. Attari’s (2004) formula for the call price

is presented as

C(K) = S — %Ke” _ K ‘;_” / " Alu)du, (2.76)
where
(R(u) + %) cos (ul) + <I(u) — Riu)) sin (ul)
A(u) = T : (2.77)
with
&(u) = R(u) + il (u). (2.78)

—rT

R(u) and I(u) are the real and imaginary parts of {(u) and [ = ang—t &(u) here
represents the Attari (2004) characteristic function. The logarithm of the terminal stock
price is In St = In Sy + r7 + x(¢,T) where the characteristic function &(u) is for z(¢,T)
and not for In Sp. Consequently, if we want to express the integrand in equation (2.77)

in terms of the Heston (1993) characteristic function for In Sz, we use the following

EQ [eiux(t7T)] — EQ [eiu In ST]e—iu(ln Se+rr)
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Therefore, we set the following
E(u) = (u)eMIMSHT) — oxp(Cy(T, 1) + Da(T, u)vy — furt), (2.79)

where, p(u) = fo(u) with fo(u) represented in the equation (2.50). When we compute the
characteristic function &, we use v; as the unobserved initial variance, vy. The primary
benefit of Attari’s method is that it requires only a single numerical integration to calculate
the call option price. Additionally, the presence of the u? factor in the denominator of
A(u) causes the integrand to dampen rapidly. As a result, when the upper limit of the
integral is truncated during numerical integration, the precision loss is minimized. The
Attari integrand decreases significantly faster than the Heston integrand, but it is much
steeper at the origin. As a result, there is a possibility of encountering difficulties in

numerical integration in that region.

2.11.4. Carr and Madan (1999) fast Fourier transform

Before introducing the Carr and Madan (1999) FFT we need to first explain the
Carr and Madan (1999) representation. Carr and Madan (1999) derive the call option
price using the Fourier transform. Their approach involves adjusting the call price by

introducing a damping factor, which goes as follows
c(k) = e C(K). (2.80)

Here we define £ = In K. Carr and Madan introduces this damping factor because the call
price C'(K) represented in the equation (2.14) is not Lebesgue integrable and consequently
its Fourier transform will not exist. Introducing this damping factor makes the adjusted
call price ¢(k) an integrable function and, consequently, it is possible to determine its
Fourier transform.

The idea now is to find the Fourier transform ¢(u) of ¢(k) and then we apply the inverse
fourier transform. This will yield us back ¢(k). We now remove the damping factor and
consequently retrieve C'(k). Hence, Carr and Madan (1999) formula for the call price is
presented as

C(K) = e “*c(k)

(&

—ak 00
- / e () du .81
-

m —00
ak 00 )
= / Rle " é(u)dul,
0

™

where .
e "o(u— (a+1)i)

elu) = a?+a—u+iua+1)
The last equality in (2.81) holds, because the integrand is a complex number, and since

(2.82)

the call price C'(K) represents a real number, we evaluate only the real part of the complex
number which is even-valued.
Carr and Madan (1999) shows that a sufficient condition for c¢(k) to be integrable is that

¢(0) is finite. Therefore, this is the same as saying that the numerator o(—(a+ 1)i) needs
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to be finite when u = 0. Finally, this is the same as existing the (a+ 1)-st moment of Sr,
namely E[S2™!] < oo, since ¢(u) = E[e* 7] = E[Si].

According to Lord and Kahl (2007), using this particular representation offers several
advantages. First, it simplifies the process by requiring only a single numerical integra-
tion. Additionally, because the denominator in equation (2.82) is a quadratic function
of the integration variable u, the integrand in the Carr and Madan method decays much
faster than in the original Heston formulation. This faster decay means that truncating
the integration domain in equation (2.81) is less problematic. Lastly, the representa-
tion can also enhance computational accuracy, provided the damping factor « is chosen
appropriately.

Carr and Madan (1999) also developed a version of their representation for OTM
options. They highlight that, as maturity approaches expiration, the call option’s value
converges to its intrinsic value (S — K)*, which leads to increased oscillations in the
integrand of the Fourier inversion in equation (2.81), making the integration process
significantly more difficult. In this thesis, however, an alternative approach is presented
by algorithmically selecting the damping factor «, we later explain how we determined
this value. As a result, we will not present Carr and Madan’s OTM option pricing formula,
instead, we will only use the equation in (2.81) to produce results across a wide range of
maturities, including very short and long expirations, for OTM, ATM and ITM options.

Now that we introduced the Carr and Madan (1999) representation, we can now finally
introduce the fast Fourier Transform version.

Carr and Madan (1999) applied the FFT to speed up the computation of option prices.

The discrete Fourier transform maps a vector of points x = (x1, ..., zy) to another vector
of points X = (Z1,...,Zx) via the relation
Ze*@* ITDE g fork=1,...,N. (2.83)

In the discrete Fourier transform (DFT), these sums are computed independently from
one another, resulting in a number of arithmetic operations of order N2, i.e. O(N?). The
FFT computes these sums simultaneously with O(V log, N) arithmetic operations. The
objective of the FFT is to discretize the expression for the call price C(K) in Equation
(2.81) and express it in terms of (2.83).

Evaluation of the call price in Equation (2.81) requires the discretization of the range
of strikes and of the integration domain. We can approximate the call price by the
trapezoidal rule over the truncated integration domain [0,b] for u, using N equidistant
points

=(j—1)n, forj=1,...,N.

where 7 is the increment. The trapezoidal rule approximates the call price C'(k) as

~be(uy)] wy, (2.84)
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where the weights are w; = wy = % and w; = 1for j =2,..., N —1. The analytical form
of these weights will be explained in the next section.

We focus on strikes near the money, so the discretization of the strike range is centered
about the log spot price log S;. The strike range, therefore, is discretized using N equally

spaced points as
k,=—-b+ (v—1)A+1ogS;, forv=1,... N,

where A\ is the increment and b = NT’\ This results in log strikes over the range [log S; —
b,log S; +b— A]. For a log strike value k, on the grid, we can now express equation (2.84)

for the price of the call as

—ak, N
ne 3 —iujky 4
Clk) =D R [ Me(uy)] wy. (2.85)
j=1
Substituting for u; and £, we get
e—akv N
Clk,) ~ n Z% [e—i/\n(j—l)(v—l)ei(b—logSv)ujé(uj)] w;. (2.86)

m y
J=1

We express equation (2.86) in terms of the discrete FFT in (2.83) if we have z; =
eib=loe Su)u;s ¢y Yw; and if the increments 7 and A satisfy the constraint

2m

e

This is a key limitation of the FFT method, as it introduces a trade-off between grid

An =

sizes. With a fixed N, selecting a fine grid for the integration range inevitably produces
a coarser grid for the log strike range, and vice-versa. Increasing the granularity for
both grids requires raising /N, which increases the computation time. In this thesis we
considered N = 128 and the increment n value was obtained by following Carr and
Madan (1999) idea where we define the upper limit for the integration in equation (2.81)
as Omax = N1, with ¢dpax = 1000. This resulted in n = 7.8125 and consequently in a
log strike increment A = 0.00628. For this fixed value of N, we selected this value for
Omax because a bigger value would generate a log strike range that would not cover the
original strike range and a smaller value would generate a log strike range too big when
compared to the original strike range. When using these values for N, ¢nax, 7 and A, our
log-strike range k, covers the original strike range for every calibrated day. Finally, we
use the built-in Matlab function LinearInterpolate to apply linear interpolation to obtain
the call prices at the desired strikes. One should note that a slight change in one of the
values can generate different results. Note that to implement a continuous dividend yield,
q, following Whaley (2006), we replace the spot price S by Se™9" before passing the price
to the function.
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2.11.5. Chourdakis (2005) fractional fast Fourier transform

The fractional fast Fourier transform (FRFT) is an extension of the standard FFT,
offering more flexibility. It was utilized in option pricing by Chourdakis (2005). The
FRFT generalizes the FF'T by removing the constraint A\n = %” that the FF'T imposes
on the grid size parameters. Instead of using a strict 1/N in the exponent, the FRFT
introduces a more general parameter §. Consequently, equation (2.86) can be modified
to

—akv

Z?R _22“631(” Dy ], forv=1,...,N.

In this approach, the grid size parameters A and 7 satisty An = 27 3. This allows A and

to be chosen freely while setting

A1}

=
A special case of the FRFT is when 8 = 1/N, which coincides with the FFT. To imple-
ment the FRFT for a sequence x1,..., 2y, construct the vectors y and z, each having a

dimension of 2N

—im(j—1)28; N
’y — {e (J 1) 6]x]} ' , {0}“;\[:1 ,
7=1
Zz = ({67‘71—(‘7_1)25]}]\[ , {elﬂ(N—j+l)25}N ) X
7j=1 7j=1

The next step involves taking the FF'T of both y and z to obtain § = D(y) and Z = D(z).
Then, compute their product element by element, resulting in a new vector h of dimension
2N

h=9©%={yz}
Before continuing, we need to introduce the inverse of the DFT defined in the equation
(2.83). This will be defined as

N
Z RGDEDE fork=1,...,N. (2.87)

This will map a vector of points x = (#1,...,2Zy) to another vector of points x =
(71,...,2y), where X = D(x) and x = D7!(%). Next, apply the inverse FFT to h,
yielding a vector h = D‘l(ﬁ) with dimension 2/N. Then, perform another product ele-

ment by element with the vector e defined as

. N
e = ({e—m(ﬂ—l)Zﬁ}j:1 , {O};Vzl) .

The fractional FFT can thus be expressed as:
i=e®@D Y h)=eo0 D)o ?2)
=e® D (D(y) © D(2)).
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The first N components of & are kept, while the remaining N components are omitted,
as they are zeros. Like the FFT, the FRF'T transforms the N-dimensional vector = into
an N-dimensional vector . However, the FRFT involves intermediate 2/N-dimensional
vectors y and z, necessitating the computation of two FFTs during the intermediate
steps. Despite the extra computational effort, this is generally compensated for by the
enhanced accuracy obtained from the flexibility to select the integration and strike grids
independently and as arbitrarily small as desired.

To carry out the FRF'T, we start by selecting an arbitrary number of points, N, an
integration increment 7, and a log-strike increment A. We then define 5 = An/27 and
proceed with the process as outlined in this section. The FRFT is faster than the FFT
for the same number of points and another advantage of the FRF'T is that we can restrict
the range of strikes on which the algorithm is applied.

In this thesis, just like in the FFT, we selected N = 128 and the increment 7 value
was also obtained like in the FFT, the difference is that, we considered ¢pax = [K~, K]
where the lower and upper bound of this interval depends on the value of the underlying
stock price S. This will be explained in more detail in the next chapter. Since N is fixed
and ¢nay is determined in this way, we can retrieve the value for the increment n by using
the expression we used in the FFT as ¢.x = Nn. The value for the log-strike increment
A can now be freely chosen: we defined A = log (K /K~)/N. When using these values
for N, ¢max, 7 and A, our log-strike range k, restricts the range of strikes on which the
algorithm is applied for every calibrated day. We could also apply this value of A in the
FFT but since the increments n and A satisfy the constraint that we saw in the FFT, n
would result in a bigger value, and consequently generate a coarser integration grid.

Finally, just like in the FFT, we use the built-in Matlab function LinearInterpolate
to apply linear interpolation to obtain the call prices at the desired strikes. And again, a
slight change in one of the values can generate different results. To implement a continuous
dividend yield ¢ we follow Whaley (2006) and proceed like explained in the FFT.

2.12. Numerical integration schemes

We will begin by introducing two numerical integration schemes that will be used
to approximate the integrals presented in the last section for the various Heston model
formulations. We will first introduce the composite trapezoidal rule and finish with the
Gauss-Laguerre Quadrature. The first one will be used to approximate the integrals for
the FFT and FRFT and the second one will be used to approximate the integrals for
the remaining formulations. The following numerical integration schemes can be found in
Rouah (2013).

2.12.1. Composite trapezoidal rule

The composite trapezoidal rule belongs to the Newton-Cotes quadrature class which
are the simplest integration rules, but also the ones that require the most computing power

because we assume equally spaced abcissas meaning that many abcissas are required in
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order for the approximation of a given integral to be accurate, especially if there are
regions in the integration domain where the function is steep or highly oscillatory. In
the Heston model, we usually require an integral evaluated over the integration domain
(0,00). This means that when using the composite trapezoidal rule, we must select the
domain as [Pmin, Pmax), where ¢, is a very small number and ¢y is a large number.
We saw how the Heston integrand can be oscillatory, hence the selection of ¢.,., must be
large enough so that the integrand is sufficiently damped to not cause a loss of accuracy

in the approximation of

/ Sy~ 3 wif(ey), (2.89)

where the points (z1,...,zy) are called the abcissas and (wy,...,wy) are called the weights
associated with the abcissas. The Heston integrand is not defined at ¢ = 0. Therefore,
we use ¢nin as the lower limit of the integration domain.

The composite trapezoidal rule approximates the integral in (2.88) as the sum of trape-
zoids, each with equal width x4, — 2; and with the height being defined as the value of
f(x) at each of the endpoints. We define the abcissas ; = a+ (j —1)b for j =1,..., N,
where h = (b—a)/(N — 1) such that x; = a and xy = b. By joining the line segments at
f(z;) and f(x;41) the trapezoids are built. This rule uses the weights w; = wy = % and

2
wj = h for j =2,..., N — 1. Therefore, the approximation in (2.87) is defined as

/f flay +hfo] + f(a:N) (2.89)

In the FFT and FRFT, we used N equidistant points over the truncated integration
domain, where this explains why we defined h = 1 in the equation (2.84). This is because

the ratio of N with N — 1 is approximately 1.

2.12.2. Gauss-Laguerre quadrature

Gauss-Laguerre Quadrature comes from the Gaussian quadrature class which is more
accurate than Newton-Cotes quadrature and requires far fewer abscissas, and it uses
unequally spaced abscissas. The abscissas are specified for us in advance so we do not
need to worry about the upper and lower limits ¢,,;, and ¢, for the integration range
(0,00). We will approximate an integral of the form of (2.88) just like the composite
trapezoidal rule. Just like we saw in the composite trapezoidal rule, the Gauss-Laguerre
quadrature requires also a set of abcissas (x1,...,xy) along with associated set of weights
(wy,...,wy) whose values will depende on the choice of N.

Gauss-Laguerre quadrature is particularly useful for evaluating integrals over the semi-
infinite interval (0, co). This is highly relevant in financial mathematics, especially for the

Heston model, which requires such integrations. The abcissas (z1,...,zx) will be defined

29



as the roots of the Laguerre polynomial Ly (x) of order N defined as:

N

Ly(z) =) (_kll)k (]Z) ", (2.90)

k=0

The weights (w,...,wy) are obtained with the derivative of (2.89) evaluated at each of
the N abcissas:

l _ Y (_1)k N -1 -
LN(xj)_;(k:—l)!(k)x? , forj=1,..,N. (2.91)

Then, we can finally define the weights as:
— 6xj

EEETNENS

Note that (2.90) has N +1 terms but its derivative (2.91) has N terms, which is the correct

number of terms required for the approximation in (2.88). In this thesis we considered

for j=1,...,N. (2.92)

the quadrature with 32 points.
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CHAPTER 3

Data and methodology

3.1. Data

The S&P 500 index options were obtained from the Refinitiv database with the sample
period extending from January 2°¢, 2018 through May 315, 2022. We excluded options
with less than 21 days to maturity, options with more than 270 days to maturity, options
that are very deep OTM and options that are very deep I'TM due to low liquidity.

We considered a very deep ITM (OTM) call (put) option as an option where its
moneyness is greater or equal than 1.12 and very deep OTM if its moneyness is less than
0.88. We define the option moneyness as the ratio between the underlying stock price S,
and the strike price, K, given as S/K.

By using this idea, a call option is said to be OTM if its S/K € [0.88,0.97); ATM
if its S/K € [0.97,1.03); ITM if its S/K € [1.03,1.12); and, finally, a put option is
said to be OTM if its S/K € [1.03,1.12); ATM is its S/K € [0.97,1.03); ITM if its
S/K € [0.88,0.97).

Table 3.1.1. present the sample properties of the S&P 500 index used in this thesis.
The reported numbers are respectively the average option mid prices in $ and the total
number of observations for each moneyness maturity category. As seen before, the sample
period extends from January 2", 2018 through May 315, 2022 for a total of 246,194 calls
and 230,935 puts. The summary statistics are derived using daily data from the last quote
of each option contract at 3:45 p.m. GMT-4.

Call (Put) options
S/K Time-to-maturity Subtotal
21-70 71-120 121-170 171-220 221-270

0.880.04) | 475 (339.43) 15,91 (356.03) [ 32,43 (386.40) ['51.26 (415.07) [ 67.03 (432.90)

’ 15,974 (12,196) | 15,885 (12,357) | 14,248 (11,271) | 11,010 (8,532) | 9,980 (7,774) | 67,106 (52,130)
0.00007) | 1551 (18826) | 47.47 (219.19) [ 7895 (258.22) | 109.49 (295 88) | 132.31 (320.43)

’ 7,044 (7,.872) | 7.860 (7,802) | 7,076 (7.036) | 5,572 (5.524) | 5,109 (5,053) | 33,570 (33,287)
0.07.1.00) | 2523 (110-46) 179514 (154.32) [134.07 (197.98) [ 169,81 (237.80) [ 194,03 (263.01)

’ 7,595 (7,595) | 7,522 (7.522) | 6,746 (6,746) | 5.270 (5.270) | 4,900 (4,000) | 32,033 (32,033)
1.001.03) | 11626 (67.67) 16052 (113.92) [ 201.39 (156.51) | 238.57 (195.27) | 262.97 (220.41)

' 7,213 (7,213) 7,115 (7,115) 6,393 (6,393) 4,964 (4,964) 4,624 (4,624) 30,309 (30,309)
1.031.06) | 19319 (15.61) | 233.16 (87.64) [273.46 (127.54) [ 3IL17 (163.49) | 334.63 (157.63)

’ 6,047 (6,947) | 6,840 (6,840) | 6,204 (6,204) | 4,737 (4,737) | 4,445 (4,445) | 20,173 (20,173)
106.1.12) | 21220 (2793) [ 34467 (62.25) [ 35285 (97.03) [ 42031 (128.49) [ 44244 (150.67)

’ 12,911 (12,911) | 12,655 (12,655) | 11,520 (11,520) | 8,774 (8,774) | 8,143 (8,143) | 54,003 (54,003)
Subtotal | 58,584 (54,734) | 57,886 (54,291) | 52,187 (49,170) | 40,327 (37,801) | 37,210 (34,939) | 246,194 (230,935)

TABLE 3.1.1. Sample properties of the S&P 500 index options
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Table 3.1.2. present in percentage, the averaged market implied volatilities of in-
dividual contracts within each moneyness maturity category across the sample periods

used.

Call (Put) options
Sample period S/K Time-to-maturity

21-70 71-120 121-170 171-220 221-270
[ ) [ 14.81 (15.27) | 14.27 (14.94) | 14.89 (15.63) | 15.52 (16.34) | 15.47 (16.18)
[ ) | 14.09 (14.08) | 15.08 (15.09) | 16.18 (16.17) | 17.01 (17.00) | 17.02 (17.02)
[ ) | 15.77 (15.76) | 16.87 (16.86) | 17.88 (17.87) | 18.60 (18.59) | 18.45 (18.43)
[ ) | 18.60 (18.61) | 19.09 (19.10) | 19.76 (19.77) | 20.25 (20.25) | 19.96 (19.97)
[ ) | 21.45 (21.47) | 21.21 (21.23) | 21.58 (21.61) | 21.81 (21.84) | 21.38 (21.41)
[ ) | 25.06 (25.13) | 23.91 (23.97) | 23.91 (23.97) | 23.82 (23.89) | 23.19 (23.26)
[ ) 1 12.91 (12.84) | 11.20 (11.32) | 10.31 (10.45) | 11.15 (11.52) | 11.40 (11.76)
[ ) | 11.26 (11.20) | 11.42 (11.40) | 11.15 (11.12) | 12.52 (12.49) | 12.94 (12.92)
[ ) 112,15 (12.15) | 12.94 (12.93) | 12.64 (12.63) | 14.06 (14.06) | 14.18 (14.17)
[ ) | 14.51 (14.52) | 14.95 (14.96) | 14.36 (14.38) | 15.54 (15.56) | 15.51 (15.53)
[ )| 17.12 (17.15) | 16.86 (16.90) | 16.04 (16.09) | 16.91 (16.95) | 16.79 (16.83)
[ ) [20.88 (20.99) | 19.50 (19.59) | 18.27 (18.36) | 18.82 (18.91) | 18.44 (18.53)
[ ) | 11.80 (11.41) | 10.95 (10.85) | 11.03 (11.03) | 11.17 (11.24) | 11.65 (11.77)
[ ) 1 10.56 (10.50) | 11.50 (11.48) | 12.21 (12.19) | 12.58 (12.56) | 13.22 (13.19)
[ ) 1 12.03 (12.02) | 13.23 (13.22) | 13.86 (13.86) | 14.13 (14.12) | 14.62 (14.61)
[1.00,1.03) | 14.65 (14.66) | 15.28 (15.28) | 15.62 (15.63) | 15.69 (15.70) | 15.98 (15.98)
[1.03,1.06) | 17.16 (17.17) | 17.12 (17.15) | 17.19 (17.21) | 17.08 (17.10) | 17.24 (17.26)
[1.06,1.12) | 20.37 (20.45) | 19.50 (19.55) | 19.22 (19.28) | 18.91 (18.96) | 18.85 (18.90)
[0.88,0.94) | 19.65 (20.12) | 19.28 (19.73) | 19.50 (19.95) | 20.82 (21.03) | 19.87 (20.63)
[ ) ( ( (21.38) (23.10) (21.64)
[ ) ( ( (23.15) (24.76) (23.00)
[ ) ( ( (25.00) (26.36) (24.54)
[ ) ( ( (26.68) (27.88) (25.83)
[ ) ( ( (28.90) (29.72) (27.60)
[ ) ( ( (14.27) (14.60) (14.85)
[ ) ( ( (15.23) (15.74) (16.08)
[ ) ( ( (16.91) (17.27) (17.53)
[ ) ( ( (18.83) (18.97) (19.10)
[ ) ( ( (20.67) (20.62) (20.59)
[ ) ( ( (23.20) (22.85) (22.62)
[ ) ( ( (16.64) (17.34) (17.78)
[ ) ( ( (18.63) (19.41) (19.74)
[ ) ( ( (20.57) (21.16) (21.33)
[ ) ( ( (22.43) (22.77) (22.78)
[ ) ( ( (24.16) (24.23) (24.11)
[ ) ( ( (26.32) (26.12) (25.82)

0.88,0.94
0.94,0.97
0.97,1.00
1.00,1.03
1.03,1.06
1.06,1.12
0.88,0.94
0.94,0.97
0.97,1.00
1.00,1.03
1.03,1.06
1.06,1.12
0.88,0.94
0.94,0.97
0.97,1.00

Jan 2018

May 2022

Jan 2018

Dec 2018

Jan 2019

Dec 2019

0.94,0.97) | 20.46 (20.51) | 21.04 (21.07) | 21.38 (21.38) | 23.09 (23.10) | 21.59 (21.64
0.97,1.00) | 22.65 (22.63) | 23.03 (23.02) | 23.16 (23.15) | 24.78 (24.76) | 23.02 (23.00
1.00,1.03) | 25.32 (25.32) | 25.17 (25.18) | 25.00 (25.00) | 26.35 (26.36) | 24.54 (24.54
1.03,1.06) | 27.82 (27.84) | 27.12 (27.14) | 26.65 (26.68) | 27.86 (27.88) | 25.81 (25.83
1.06,1.12) | 31.05 (31.10) | 29.66 (29.70) | 28.85 (28.90) | 29.67 (29.72) | 27.54 (27.60
0.88,0.94) | 13.17 (12.93) | 13.29 (13.47) | 14.04 (14.27) | 14.37 (14.60) | 14.64 (14.85
0.94,0.97) | 12.13 (12.11) | 14.00 (14.00) | 15.26 (15.23) | 15.75 (15.74) | 16.10 (16.08
0.97,1.00) | 13.73 (13.72) | 15.79 (15.78) | 16.92 (16.91) | 17.28 (17.27) | 17.55 (17.53
1.00,1.03) | 16.85 (16.86) | 18.09 (18.09) | 18.82 (18.83) | 18.96 (18.97) | 19.09 (19.10
1.03,1.06) | 20.02 (20.04) | 20.32 (20.35) | 20.64 (20.67) | 20.59 (20.62) | 20.56 (20.59
1.06,1.12) | 24.04 (24.10) | 23.32 (23.38) | 23.13 (23.20) | 22.78 (22.85) | 22.55 (22.62
0.88,0.94) | 16.38 (16.28) | 16.30 (16.40) | 16.49 (16.64) | 17.22 (17.34) | 17.66 (17.78
0.94,0.97) | 17.55 (17.53) | 18.21 (18.19) | 18.65 (18.63) | 19.43 (19.41) | 19.77 (19.74
0.97,1.00) | 20.17 (20.17) | 20.38 (20.37) | 20.57 (20.57) | 21.16 (21.16) | 21.34 (21.33
1.00,1.03) | 22.99 (22.99) | 22.58 (22.58) | 22.43 (22.43) | 22.76 (22.77) | 22.77 (22.78
1.03,1.06) | 25.54 (25.55) | 24.58 (24.59) | 24.13 (24.16) | 24.21 (24.23) | 24.08 (24.11
1.06,1.12) | 28.70 (28.73) | 27.10 (27.14) | 26.28 (26.32) | 26.07 (26.12) | 25.77 (25.82

Jan 2020

Dec 2020

Jan 2021

Dec 2021

Jan 2022

Dec 2022

NN D — | N DD | D — [ DD [ D | DO T — | | — | — | [ —
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TABLE 3.1.2. Market implied volatilities

In Table 3.1.2., the market implied volatilities of call options within either the I'TM
or OTM category often closely align with the market implied volatilities of put options
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in the corresponding opposite category. This generally persists across different sample
periods and time-to-maturity categories. For a given time-to-maturity, both calls and
puts imply similar U-shaped volatility patterns across different strike prices. The primary
factor behind this consistent pricing relationship between calls and puts is due to put-call
parity. For this reason, calls and puts exhibit similar levels of mispricing. This will be

confirmed later in the results chapter.

3.2. Procedures

We estimated the parameters of the Heston model using loss functions. The methods
that we will discuss use the error between quoted market prices and model prices, or
between market and model implied volatilities. We obtain the parameter estimates © by
minimizing the value of the loss functions, so that the model prices or implied volatil-
ities are as close as possible to their market counterparts. A constrained minimization

algorithm must be used so that the constraints on the parameters

k>0, >0, 0>0, v9>0, pel-1,1] (3.1)

are respected. Since loss functions use market option prices or implied volatility derived
from those prices as inputs, they produce estimates of the risk-neutral parameters of the
Heston model.

Consider a set of Ny maturities 7 (for ¢ = 1,..., Ny) and a set of N strikes Kj
(for kK = 1,..., Ng). For each maturity-strike pair (7, Kj), we observe a market price
C(1:, K1) = Cy and a corresponding model price C(r, K; ©) = C&, calculated under
some Heston model formulation. In this thesis, we focus on two categories of loss functions:
those that minimize the error between market and model prices, and those that minimize
the error between quoted and model-implied volatilities. Now we introduce two loss
functions that fall into the first category.

The first is the mean error sum of squares (MSE) loss function, where the parameter

estimates are found by minimizing
1
= 2 (Co— CRY, (3.2)
tk

with respect to ©. The second is the relative mean error sum of squares (RMSE) loss

function, which obtains the parameter estimates by minimizing
1 (Cyue — Cp)?
— —_—, 3.3
v ; G (3:3)

again with respect to ©.
Next, we move on to the second category of loss functions. By using the implied

volatility mean error sum of squares (IVMSE), we estimate the parameters by minimizing
1
v v (3.4)
tk
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where [Vy, = IV (7;, Ki) and IV, = IV (1, Ky; ©), respectively, represent the market and
model-implied volatilities. However, a drawback of Equation (3.4) is its computational
complexity. For each optimization iteration, the Heston price C must be computed first,
followed by a root-finding procedure to derive the implied volatility IV, from C.

An alternative approach, suggested by Christoffersen et al. (2009), is to approximate
Equation (3.4) using the implied volatility relative mean squared error (IVRMSE) loss
function. This approach eliminates the need for the root-finding procedure altogether. In

this case, the parameter estimates are obtained by minimizing

(Co —
3.5
NZ BSVegatk ’ (3:5)

where BSVega,,. is the Black-Scholes—Merton sensitivity of the option price to changes in
the implied volatility V. It is calculated at the given maturity 7, and strike /; as

BSVega,, = Se™ " n(dwy)\/Tt, (3.6)

with
log(S/Ky) + (r —q+ IV2/2)7,
IViyr/Te ’

where n(x) = exp(—z%/2)/v/27 represents the standard normal density function. In this
thesis, we only used the MSE, RMSE and IVRMSE loss functions. In equations (3.2),
(3.3), (3.4) and (3.5), N = NyNg and 32, = S0 S8

dy = (3.7)

3.3. Bias detection using a one-sample t-test

In this thesis, a one-sample Student’s t-test is applied to evaluate whether the model’s
mean calibration error significantly differs from zero, which would indicate potential bias
in its calibrated values. We explain in the next section what is this error approach. The
t-test compares the sample mean of the error values to a hypothesized population mean
of zero, under the assumption that the errors are normally distributed and the population
variance is unknown.

The null hypothesis (Hy) assumes that the mean error is zero, suggesting that the model
is unbiased:

Hy:p=0.
The alternative hypothesis (H7) posits that the mean error is not equal to zero, indicating
bias in the model’s calibration:

Hy:p#0.
The MATLAB function [h, p, ci] = ttest(errorData, 0) is used to perform the
test, where errorData represents the error values and 0 is the hypothesized mean. The
function returns h, which indicates whether the null hypothesis can be rejected. If h = 1,
the null hypothesis is rejected, implying that the mean error significantly differs from zero
and that bias is detected in the model’s calibrated values. If h = 0, the null hypothesis

34



is not rejected, indicating that the mean error does not significantly differ from zero,
suggesting that the model is unbiased.

The p-value returned by the function represents the probability of observing the data
under the null hypothesis. If the p-value is below the chosen significance level of 0.05, the
null hypothesis is rejected, indicating that the mean error is significantly different from
zero and that bias is present in the model’s calibration. Conversely, if the p-value exceeds
0.05, the null hypothesis is not rejected, implying that the model’s calibrated values are
unbiased. Additionally, the confidence interval (ci) provides a range within which the
true population mean of the errors is likely to lie with 95% confidence. The t-statistic for
the test is calculated using the formula
T—p

\/Lﬁ
where 7 is the sample mean of the errors, u = 0 is the hypothesized population mean

t =

)

under the null hypothesis, s is the sample standard deviation, and n is the sample size.
Under the null hypothesis, the t-statistic follows a Student’s t-distribution with n — 1

degrees of freedom.

3.4. Matlab program

The goal is to optimize the Heston model parameters to align model-generated prices
with observed market prices, minimizing discrepancies in implied volatilities. The process
starts by reading market data from CSV files, which include details such as option type,
time to maturity, strike prices, implied volatilities, underlying mid price, continuous com-
pounding interest rate (r), implied dividend yield (¢), and other key metrics. For each
option contract, the correct values of r and ¢ are extracted from the data and consid-
ered constant until the end of the contract’s life, though these values may vary between
contracts. After loading the data, the script filters it to focus on options with specific
maturities and strike prices within a defined range around the current underlying mid
price.

Once the data is filtered, the script constructs a matrix of market implied volatilities.
These values are then substituted into the Black-Scholes-Merton formula to compute
the matrix of market prices. The core of the calibration process involves minimizing
the error between these market prices and the theoretical prices derived from various
Heston model formulations. This is achieved by using different loss functions. The script
employs three main loss functions: the mean error sum of squares (MSE), the relative
mean error sum of squares (RMSE), and the implied volatility relative mean squared
error RMSE (IVRMSE). These loss functions are applied across five different Heston
model formulations: Heston original, Heston single integrand, Attari, FFT, and FRFT.
To speed up the computation for the first three formulations, the script uses a technique
called Strike Vector Computation, which calculates each characteristic function once per

maturity and reuses it for different strike prices. Since we have three loss functions and
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5 model formulations, the script runs a total of 15 distinct calibration processes for each
option type, aiming to find the optimal Heston parameters for each combination of loss
function and model formulation.

The optimization for each combination of loss function and model formulation is per-
formed using MATLAB’s fmincon function, which is ideal for constrained optimization
problems and it uses an interior point algorithm. fmincon adjusts the Heston parame-
ters within predefined bounds to minimize the selected loss function. After determining
the optimal parameters for each of the 15 distinct calibration processes for a given option
type, these parameters are saved and used as starting points for the next day’s calibration,
thereby speeding up future optimizations.

Once the optimal parameters are determined, the script sums the difference errors
between the implied market volatilities and the theoretical volatilities generated by each
of the 15 distinct calibration processes for a given option type. By using the one-sample
Student’s t-test, we verify if our models are on average, overestimating or underestimating
the implied volatilities for a given sample period. However, it is important to note that
this error approach does not provide a holistic view of the model’s performance for a given
day, as large positive and negative errors can cancel each other out.

For the FFT and FRFT methods, this concept of difference errors is applied to de-
termine the optimal parameters. For each day and for each combination of loss functions
with the FFT and the FRFT, the script evaluates 98 different values of the o parameter,
ranging from 0.75 to 25 in increments of 0.25. The « value that minimizes the sum of
the difference errors in absolute value for that specific day is selected. It is important to
note that each a value produces different Heston parameters, reflecting the sensitivity of
Fourier methods to the choice of a.

Finally, each CSV file corresponds to a day in the sample period, with the script
processing data for a total of 1,102 days. For each day, the program determines the
optimal Heston parameters for the 15 distinct calibration processes for both call and put
options. Once the calculations for a given day are complete, the results are written to
CSV files, where the file name reflects the combination of the loss function, Heston model
formulation, and option type. These CSV files contain eight key values: the date, the
Heston model parameters, the time taken to perform the calibration, and the difference
errors for that day. This results in 30 different CSV files for each day, 15 for calls and 15
for puts. Each new day appends its results to the existing CSV files, adding new lines for

each day’s results.
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CHAPTER 4

Results

This chapter presents the in-sample results of the S&P 500 index options under alter-
native Heston (1993) model formulations using three different loss functions. Each loss
function has its own section.

The Heston original formulation, Heston single integrand formulation, and Attari
(2004) formulation produced the best results overall. Since the difference between the
original formulation and the single integrand formulation lies in the number of numerical
integrations, the results generated by these two methods were nearly identical across all
loss functions. Due to their similarity, we chose to present the original formulation here in
this chapter, as it forms the core of this thesis. The results for the single integrand formu-
lation are presented in the Appendix. The Attari (2004) formulation is also included due
to its strong performance. Overall, the FFT and FRFT produced worse results, which
can be attributed to their high sensitivity to the values of parameters such as o, N, ¢pax,
n, and A, as discussed earlier. Therefore, the results for the FFT and FRFT are also
presented in the Appendix A.

Each subsection contains two tables, one for each chosen formulation, following the
same structure as Table 3.1.2. presented in the previous chapter. Each table entry rep-
resents the percentage error between the averaged market-implied volatilities and the
averaged implied volatilities generated by the respective model formulation for each mon-
eyness and time-to-maturity category. These values can be either positive or negative,
indicating whether the model overestimated or underestimated the implied volatilities.

Additionally, each section contains another two tables, one for each chosen formulation,
containing the statistical analysis for both option types, covering the mean, standard
deviation, minimum value, maximum value, and median for each Heston model parameter.
This analysis also extends to the calibration time and the error employed, represented by
the sum of the difference errors, as explained in the Matlab program section. We also
present the results of the Student’s t-test. In the Appendix B, we provide evolution plots
for each Heston model parameter, across different combinations of loss function, model
formulation, and option type. Although in the tables we have results for 6 different sample
periods, the statistical analysis, the results of the Student’s t-test and the evolution plots
only covers the entire sample period, which extends from January 2", 2018 through May
315, 2022.

Finally, the computations were executed over a span of 18 days, reflecting the com-
plexity of the algorithms and the volume of data processed. The code was executed on

a laptop with the following specifications: an AMD Ryzen 5 5600H processor, 8GB of
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DDR4 RAM clocked at 3200 MHz, an NVIDIA GeForce GTX 1650 GPU, and a 512GB
SSD. The system ran on Windows 11 (64-bit).

4.1. MSE loss function

The following tables present the percentage errors between the averaged market-
implied volatilities and the averaged implied volatilities generated by the Heston orig-
inal formulation and by the Attari formulation, broken down by moneyness and time-

to-maturity categories. Positive values indicate overestimating, while negative values

indicate underestimating.

Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 3.23 (3.26) -2.01 (-1.70) -1.66 (-1.50) 0.07 (0.18) 1.52 (1.63)
Jan 2018 [0.94,0.97) | 4.37 (4.35) -1.20 (-1.29) -1.40 (-1.46) -0.04 (-0.04) 1.15 (1.23)
[0.97,1.00) | 3.45 (3.39) -0.48 (-0.50) -1.13 (-1.14) -0.23 (-0.20) 0.67 (0.73)
May72022 [1.00,1.03) | 4.03 (4.09) |-0.04 (8.00e-04) | -1.00 (-0.98) -0.40 (-0.37) 0.33 (0.37)
[1.03,1.06) | 2.41 (2.47) 0.01 (0.06) -0.92 (-0.90) -0.42 (-0.40) 0.19 (0.21)
[1.06,1.12) | -0.19 (-0.25) | -0.17 (-0.20) -0.59 (-0.63) -0.16 (-0.20) 0.30 (0.26)
[0.88,0.94) | -0.84 (-0.32) | -3.26 (-1.84) -0.93 (0.32) 1.00 (1.51) 1.71 (1.88)
Jan 2018 [0.94,0.97) | -0.13 (0.37) | -1.67 (-1.68) -0.82 (-0.83) 0.28 (0.33) 0.59 (0.68)
[0.97,1.00) | -0.52 (-0.67) | -0.78 (-0.88) -0.66 (-0.73) -0.11 (-0.08) 0.10 (0.16)
Dec_2018 [1.00,1.03) | 3.53 (3.62) 0.27 (0.29) -0.39 (-0.37) -0.28 (-0.23) -0.13 (-0.08)
[1.03,1.06) | 1.40 (1. 51) 0.53 (0.57) -0.34 (-0.31) -0.35 (-0.31) -0.21 (-0.17)
[1.06,1.12) | -2.82 (-2.91) | -0.34 (-0.38) -0.39 (-0.45) -0.11 (-0.18) | -2.20e-03 (-0.06)
[0.88,0.94) | -2.04 (-1.80) | -4.41 (-3.44) -2.28 (-1.72) 0.23 (0.58) 1.79 (1.97)
Jan 2019 [0.94,0.97) | 3.58 (3.41) -1.64 (-1.90) -1.03 (-1.09) 0.67 (0.72) 1.44 (1.57)
[0.97,1.00) | 3.33 (3.07) -0.66 (-0.69) -0.96 (-0.91) 0.05 (0. 14) 0.60 (0.70)
Dec;019 [1.00,1.03) | 3.86 (3.86) -0.18 (-0.12) -0.98 (-0.91) -0.40 (-0.33) 0.02 (0.08)
[1.03,1.06) | 2.12 (2.19) 0.08 (0.13) -0.86 (-0.81) -0.50 (-0.46) -0.14 (-0.11)
[1.06,1.12) | -1.55 (-1.65) 0.18 (0.11) -0.14 (-0.20) 0.12 (0.04) 0.30 (0.22)
[0.88,0.94) | 3.01 (2.32) -1.70 (-1.71) -1.65 (-1.63) 0.23 (0.21) 1.39 (1.46)
Jan 2020 [0.94,0.97) | 6.49 (6.33) -0.26 (-0.29) -1.47 (-1.49) -0.14 (-0.14) 0.94 (0.99)
[0.97,1.00) | 6.03 (6.04) 0.03 (0.05) -1.32 (-1.31) -0.29 (-0.29) 0.69 (0.71)
Dec_2020 [1.00,1.03) | 4.57 (4.60) -0.07 (-0.04) -1.30 (-1.27) -0.38 (-0.37) 0.68 (0.70)
[1.03,1.06) | 2.52 (2.54) -0.39 (-0.35) -1.31 (-1.29) -0.28 (-0.28) 0.80 (0.79)
[1.06,1.12) | -0.20 (-0.25) | -0.82 (-:0.82) | -L.1I (-1.12) | 0.02 (-0.01) 1.08 (1.03)
[0.88,0.94) | 3.54 (4.24) -0.70 (-0.84) -1.65 (-1.69) -0.32 (-0.15) 1.65 (1.92)
Jan 2021 [0.94,0.97) | 5.08 (5.06) -2.30 (-2.46) -1.98 (-2.08) -0.12 (-0.14) 1.68 (1.77)
[0.97,1.00) | 3.15 (3.12) -1.19 (-1.24) -1.34 (-1.38) -0.08 (-0.07) 1.16 (1.24)
Dec;021 [1.00,1.03) | 5.14 (5.29) -0.25 (-0.20) -0.97 (-0.96) -0.28 (-0.25) 0.54 (0.59)
[1.03,1.06) | 4.05 (4.16) 0.07 (0.12) -0.83 (-0.81) -0.47 (-0.45) 0.07 (0.10)
[1.06,1.12) | 1.95 (1.92) 0.18 (0.14) -0.55 (-0.60) -0.47 (-0.52) -0.18 (-0.22)
[0.88,0.94) | -3.31 (-2.17) | -1.97 (-1.87) -1.30 (-1.27) -0.03 (-0.05) 1.23 (1.27)
Jan 2022 [0.94,0.97) | 1.99 (1.92) -0.12 (-0.16) -0.66 (-0.69) -0.28 (-0.30) 0.47 (0.53)
[0.97,1.00) | 2.39 (2.40) 0.38 (0.41) -0.69 (-0.67) -0.66 (-0.64) -0.03 (0.02)
Dec;022 [1.00,1.03) | 1.30 (1.33) 0.34 (0.38) -0.71 (-0.69) -0.75 (-0.72) -0.16 (-0.15)
[1.03,1.06) | 0.17 (0.19) 0.26 (0.30) -0.50 (-0.51) -0.54 (-0.52) -0.04 (-0.03)
[1.06,1.12) | -1.36 (-1.40) 0.43 (0.41) 0.02 (-8.50e-03) | 0.03 (-5.70e-03) 0.40 (0.37)

TABLE 4.1.1. MSE Heston original - implied volatility percentage errors
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Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 3.22 (3.33) -1.92 (-1.58) -1.57 (-1.40) 0.13 (0.23) 1.55 (1.66)
Jan 2018 | 0-94.0.97) [ 458 (4.58) [ -1.04 (-112) [-132 (-1.38) [-4.700-03 (-6.800-0) | 1.16 (1.24)
0.97,1.00) | 3.67 (3.65) | -0.36 (-0.37) |-1.09 (-1.09) 20.22 (-0.19) 0.67 (0.73)
May_2022 [1.00,1.03) | 4.05 (4.13) | -1.90e-03 (0.04) |-1.00 (-0.97) |  -0.41 (-0.38) 0.33 (0.36)
[1.03,1.06) | 2.30 (2.36) | -0.02 (0.02) |-0.95 (-0.93)|  -0.44 (-0.43) 0.18 (0.20)
[1.06,1.12) [ -0.42 (-0.52) | -0.29 (-0.32) |-0.66 (-0.70) |  -0.20 (-0.24) 0.28 (0.24)
[0.88,0.94) | -0.77 (-0.40) | -3.20 (-1.75) | -0.89 (0.42) 1.05 (1.58) 1.76 (1.93)
an 2o1s | 10-940.97) | 003 (0.63) | 147 (-146) | -0.63 (-0.64 0.40 (0.45) 0.66 (0.74)
0.97,1.00) | -0.54 (-0.59) | -0.63 (-0.71) |-0.52 (-:0.59) |  -0.05 (-0.02) 0.13 (0.19)
Dec;018 [1.00,1.03) | 3.41 (353) | 0.32(0.34) |-0.34 (-0.32)|  -0.28 (-0.23) 20.14 (-0.09)
[1.03,1.06) | 1.22 (1.33) | 0.9 (0.53) |-0.35 (-0.33) 20.39 (-0.35) 20.26 (-0.22)
[1.06,1.12) | -2.99 (-3.21) | -0.45 (-0.51) |-0.47 (-0.54) -0.20 (-0.27) -0.09 (-0.14)
0.88,0.94) | -2.44 (-1.97) | -4.35 (-3.32) | -2.17 (-1.57) 0.31 (0.68) 1.83 (2.01)
Jan 201e | 0-940.97) | 390 (8.77) | -1.33 (158) | -0.85 (-0.92) 0.76 (0.80) 1.47 (1.59)
0.97,1.00) | 3.77 (3.56) | -0.4L (-0.43) |-0.85 (-0.80) 0.10 (0.19) 0.61 (0.71)
Dec;019 [1.00,1.03) | 3.80 (3.91) | -0.10 (-0.04) |-0.94 (-0.88)|  -0.40 (-0.33) 0.01 (0.08)
[1.03,1.06) | 191 (1.98) | 4.80e-03 (0.05) | -0.91 (-0.86) 20.54 (-0.50) 0.17 (-0.14)
[1.06,1.12) | -1.96 (-2.10) | -0.04 (-0.12) |-0.27 (-0.34) 0.02 (-0.05) 0.24 (0.16)
(0.88,0.94) | 3.08 (2.49) | -1.61 (-1.61) |-1.58 (-1.56) 0.26 (0.24) 1.42 (1.48)
o 2020 |10:910.97) | 661 (6.45) | -0.20 (:0.23) |-L44 (-1.46) | -0.15 (0.15) 0.94 (0.98)
0.97,1.00) | 6.14 (6.15) | 0.07 (0.09) |-1.31 (-1.30) |  -0.31 (-0.30) 0.68 (0.71)
Dec;020 [1.00,1.03) | 457 (4.60) | -0.07 (-0.03) |-1.30 (-1.28)|  -0.39 (-0.38) 0.68 (0.69)
[1.03,1.06) | 2.46 (2.48) | 041 (-0.36) |-1.33 ((1.31)|  -0.29 (-0.29) 0.79 (0.78)
[1.06,1.12) | -0.33 (-0.37) | -0.87 (-0.87) |-1.14 (-1.15) 0.02 (-0.02) 1.07 (1.02)
0.88,0.94) | 3.41 (4.20) | -0.62 (-0.70) |-1.55 (-1.57)|  -0.24 (-0.07) 1.71 (1.98)
Jan 2021 |10:910.97) | 534 (5.35) | 210 (:224) |-1.90 (-1.99) | -0.09 (0.10) 1.70 (1.79)
0.97,1.00) | 3.60 (3.62) | -1.04 (-1.09) |-1.29 (-1.34)|  -0.07 (-0.06) 1.17 (1.25)
Dec_2021 [1.00,1.03) | 5.28 (5.43) | -0.20 (-0.15) |-0.97 (-0.96) -0.29 (-0.26) 0.54 (0.59)
[1.03,1.06) | 3.7 (4.08) | 0.03 (0.08) |-0.87 (-0.85)|  -0.50 (-0.48) 0.06 (0.09)
[1.06,1.12) | 1.64 (1.60) | 0.05 (2.20e-03) |-0.64 (-:0.69) |  -0.53 (-0.57) 0.21 (-0.24)
0.88,0.04) | -3.12 (-1.94) | -1.80 (-1.68) |-1.19 (-1.15) | 0.02 (-8.50e-03) 1.24 (1.28)
Jan 2022 [0.94,0.97) | 2.21 (2.14) | -4.00e-04 (-0.03) | -0.62 (-0.65) -0.28 (-0.30) 0.46 (0.51)
0.97,1.00) | 252 (2.53) | 0.45 (0.47) | -0.67 (-0.66) 20.66 (-0.64) 20.04 (9.90¢-03)
Dec_2022 [1.00,1.03) | 1.29 (1.32) | 0.36 (0.39) | -0.71 (-0.69) 0.76 (-0.72) 0.17 (-0.15)
[1.03,1.06) | 0.07 (0.09) 24 (0.28) | -0.52 (-0.53) -0.55 (-0.53) -0.04 (-0.03)
[1.06,1.12) | -1.53 (-1.58) | 0.35 (0.33) | -0.03 (-0.05) 0.01 (-0.02) 0.40 (0.38)

TABLE 4.1.2. MSE Attari - implied volatility percentage errors

By inspecting both tables, both formulations produced good results for any given sam-
ple period across the moneyness and time-to-maturity categories. For both formulations,
we can also see that both calls and puts produced similar levels of mispricing for these
same categories for all sample periods.

The results of the Student’s t-test for the Heston original formulation were the follow-
ing. For calls, h = 0 indicating that the calibration of the Heston original formulation is
not biased, a p-value p = 0.24063 and a confidence interval ci = [-0.00008, 0.00002]
with 95% confidence. For puts, h = 1 indicating that the calibration of the Heston original
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formulation is biased, a p-value p = 0.00297 and a confidence interval ci

0.00013] with 95% confidence, overestimating on average.

= [0.00003,

The results of the Student’s t-test for the Attari formulation were the following. For

calls, h = 0 indicating that the calibration of the Attari formulation is not biased, a

p-value p = 0.17776 and a confidence interval ci =

[-0.00009, 0.00002] with 95%

confidence. For puts, h = 1 indicating that the calibration of the Attari formulation is
= [0.00002, 0.00013] with

biased, a p-value p = 0.00550 and a confidence interval ci

95% confidence, overestimating on average.

We now present two tables, one for each formulation, with the statistical analysis for

both option types.

Parameters Mean Standard deviation Minimum Maximum Median

K 2.45829 (2.39279) 1.30100 (1.26997) 0.03096 (0.03184) | 10.12063 (9.71708) | 2.33007 (2.25976)
0 0.16320 (0.16744) 0.38317 (0.38772) 0.03310 (0.03400) 1.99910 (1.99899) 0.06596 (0.06717)
o 1.10841 (1.10855) 0.37106 (0.36375) 0.53844 (0.56751) 2.00000 (2.00000) 1.00182 (1.00865)
v 0.04367 (0.04361) 0.05938 (0.05896) 0.00446 (0.00454) | 0.68689 (0.68076) 0.02857 (0.02853)
p -0.78994 (-0.79602) 0.04911 (0.04968) -0.99900 (-0.99900) | -0.62707 (-0.64965) | -0.78342 (-0.78972)
Time 2.09387 (1.90994) 1.17363 (1.31304) 0.54046 (0.44715) | 13.48915 (20.42345) | 1.85651 (1.60835)
Error -0.00003 (0.00008) 0.00090 (0.00088) -0.00290 (-0.00344) | 0.00452 (0.00478) | -0.00002 (0.00012)

TABLE 4.1.3. MSE Heston original - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 2.38997 (2.30863) 1.31962 (1.27959) 0.03097 (0.03026) | 10.12307 (9.71641) | 2.23923 (2.14493)
0 0.16795 (0.17348) 0.39238 (0.39882) 0.03087 (0.03220) 1.99969 (1.99975) 0.06698 (0.06850)
o 1.08762 (1.08570) 0.36215 (0.35537) 0.54638 (0.55304) 2.00000 (2.00000) 0.99227 (0.99503)
v 0.04360 (0.04356) 0.05939 (0.05897) 0.00422 (0.00430) | 0.68696 (0.68188) 0.02848 (0.02849)
P -0.78947 (-0.79546) 0.04880 (0.04945) -0.99900 (-0.99900) | -0.62518 (-0.64806) | -0.78304 (-0.78896)
Time 1.71564 (1.56805) 0.98400 (1.14292) 0.38836 (0.39163) | 12.58123 (15.93984) | 1.51921 (1.34847)
Error -0.00004 (0.00007) 0.00091 (0.00089) -0.00312 (-0.00343) | 0.00455 (0.00481) | -0.00002 (0.00011)

TABLE 4.1.4. MSE Attari - calls (puts) statistical analysis

The tables above summarize the statistical analysis for both formulations covering

both option types. We can see that, on average, the calibration time for puts was faster

than the calibration time for calls for both formulations.

The Attari formulation, on

average, was faster than the Heston original formulation for both option types, which was

expected.
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4.2. RMSE loss function

The following tables present the percentage errors between the averaged market-
implied volatilities and the averaged implied volatilities generated by the Heston orig-
inal formulation and by the Attari formulation, broken down by moneyness and time-
to-maturity categories. Positive values indicate overestimating, while negative values

indicate underestimating.

Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 1.36 (1.59) |-2.13 (-2.83) | -1.32 (-1.64) | 0.38 (0.87) 1.86 (2.77)
Jan 2018 [0.94,0.97) | 3.65 (2.00) |-0.94 (-2.00) |-1.39 (-1.18) | -0.12 (0.71) 1.18 (2.21)
[0.97,1.00) | 5.27 (1.03) |-0.24 (-1.21) | -1.33 (-1.00) | -0.45 (0.30) 0.63 (1.43)
May_2022 [1.00,1.03) | 3.54 (2.59) |-0.47 (-0.64) | -1.49 (-0.97) | -0.78 (-0.06) 0.24 (0.86)
[1.03,1.06) | 0.97 (1.69) |-1.01 (-0.44) | -1.68 (-0.96) | -0.95 (-0.25) 0.02 (0.51)
[1.06,1.12) | -2.82 (-0.26) | -1.70 (-0.44) | -1.63 (-0.75) | -0.90 (-0.22) 1.40e-03 (0.30)
[0.88,0.94) | -4.83 (0.09) | -3.73 (0.16) | -1.12 (2.92) | 0.70 (4.16) 1.09 (4.06)
Jan 2018 [0.94,0.97) | 0.89 (1.30) | 0.37 (-0.75) | -0.11 (0.60) | -0.40 (1.65) -0.28 (1.76)
[0.97,1.00) | 6.36 (-1.75) | 1.46 (-1.36) |-0.34 (-0.54) | -0.95 (0.36) -0.70 (0.57)
Dec_2018 [1.00,1.03) | 4.49 (2.96) | 0.64 (-0.28) | -1.16 (-0.54) | -1.43 (-0.17) -1.00 (-0.02)
[1.03,1.06) | -0.21 (1.74) | -0.78 (0.28) |-2.26 (-0.45) | -1.93 (-0.37) -1.26 (-0.25)
[1.06,1.12) | -7.61 (-1.62) | -3.23 (-0.15) | -3.63 (-0.42) | -2.33 (-0.28) -1.36 (-0.22)
[0.88,0.94) | -5.94 (-1.17) | -3.39 (-4.22) | -1.23 (-1.62) | 0.76 (1.44) 2.01 (3.47)
Jan 2019 [0.94,0.97) | 5.24 (1.76) | -0.35 (-2.37) | -0.99 (-0.51) | 0.17 (1.74) 0.76 (2.93)
[0.97,1.00) | 7.20 (0.68) | 0.12 (-1.30) |-1.23 (-0.64) | -0.48 (0.73) 0.04 (1.58)
Dec_2019 [1.00,1.03) | 3.67 (2.66) |-0.34 (-0.66) | -1.50 (-0.89) | -0.94 (-0.08) -0.38 (0.57)
[1.03,1.06) | 0.05 (1.78) |-0.99 (-0.25) | -1.72 (-0.91) | -1.15 (-0.42) -0.40 (0.09)
[1.06,1.12) | -5.79 (-1.16) | -1.82 (0.03) |-1.47 (-0.34) | -0.79 (-0.09) 0.09 (0.14)
[0.88,0.94) | 2.43 (0.22) |-1.88 (-3.60) | -1.28 (-1.93) | 0.82 (0.85) 2.27 (2.64)
Jan 2020 [0.94,0.97) | 3.88 (2.61) |-1.52 (-1.47) |-1.86 (-1.34) | -0.18 (0.55) 1.32 (1.99)
[0.97,1.00) | 3.85 (3.36) |-1.24 (-0.85) | -1.86 (-1.23) | -0.47 (0.22) 1.00 (1.47)
Dec_2020 [1.00,1.03) | 2.77 (2.82) |-1.31 (-0.80) | -1.91 (-1.25) | -0.59 (0.01) 1.00 (1.35)
[1.03,1.06) | 1.60 (1.64) |-1.40 (-0.93) |-1.89 (-1.27) | -0.46 (-0.02) 1.07 (1.28)
[1.06,1.12) | -0.15 (-0.17) | -1.31 (-1.01) | -1.51 (-1.16) | -0.07 (0.08) 1.33 (1.15)
[0.88,0.94) | -0.27 (1.82) |-1.79 (-2.52) | -1.80 (-2.13) | -0.17 (0.26) 2.07 (2.86)
Jan 2021 [0.94,0.97) | 4.94 (1.74) | -1.45 (-3.45) | -1.53 (-1.87) | 0.14 (0.65) 2.03 (2.83)
[0.97,1.00) | 7.09 (-0.31) | -0.28 (-1.93) | -1.16 (-1.14) | -0.07 (0.61) 1.34 (2.11)
Dec_2021 [1.00,1.03) | 5.00 (2.78) |-0.45 (-0.88) | -1.35 (-0.88) | -0.64 (0.20) 0.47 (1.22)
[1.03,1.06) | 1.62 (2.15) |-1.23 (-0.58) | -1.76 (-0.88) | -1.22 (-0.20) -0.25 (0.52)
[1.06,1.12) | -3.13 (0.37) |-2.29 (-0.56) | -2.17 (-0.81) | -1.77 (-0.50) -0.88 (-0.06)
[0.88,0.94) | -1.53 (-2.83) | -0.76 (-2.88) | -0.68 (-1.52) | 0.20 (0.41) 1.24 (2.12)
Jan 2022 [0.94,0.97) | 1.84 (0.06) |-0.47 (-1.07) | -1.02 (-0.80) | -0.64 (0.02) 0.18 (1.11)
[0.97,1.00) | 2.04 (1.40) |-0.05 (-0.27) | -1.06 (-0.80) | -0.97 (-0.49) -0.26 (0.39)
Dec_2022 [1.00,1.03) | 1.27 (1.17) | 0.10 (-0.07) |-0.95 (-0.85) | -0.92 (-0.70) -0.27 (0.04)
[1.03,1.06) | 0.48 (0.64) | 0.25 (0.05) |-0.57 (-0.68) | -0.55 (-0.60) | -9.00e-03 (6.30e-03)
[1.06,1.12) | -0.77 (-0.42) | 0.69 (0.42) | 0.18 (-0.16) | 0.25 (-0.17) 0.64 (0.25)

TABLE 4.2.1. RMSE Heston

original - implied volatility percentage errors




Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
0.88,0.94) | 3.26 (1.81) |-1.31 (-2.93) | -1.03 (-1.71) |  0.56 (0.80) | 1.96 (2.70)
an 201 10-94097) | 378 (1.99) |-133 (-2.10) |-1.37 (-1.22) | 0.03 (0.69) | 125 (2:20)
0.97,1.00) | 2.72 (0.83) |-0.83 (-1.18) | -1.33 (-:0.98) | -0.37 (0.32) | 0.58 (1.45)
May72022 [1.00,1.03) | 3.58 (2.41) |-0.43 (-0.63) | -1.31 (-0.96) | -0.67 (-0.05) | 0.14 (0.87)
[1.03,1.06) | 2.45 (1.41) | -0.28 (-0.49) | -1.25 (-0.98) | -0.76 (-0.25) | -0.08 (0.51)
[1.06,1.12) | 0.29 (-0.53) | -0.20 (-0.56) | -0.85 (-0.81)| -0.53 (-0.24) | -0.05 (0.29)
0.88,0.94) | -0.17 (0.82) | -1.13 (-0.25) | 0.40 (2.17) | 1.21 (3.60) | 1.45 (3.81)
Jan 201 0-94097) | 219 (1.02) [-0.37 (-120) | -043 (0:28) | -0.29 (L55) | -0.25 (1.76)
0.97,1.00) | 1.11 ( 2.97) [-0.15 (-1.51) [-0.73 (-0.49) | -0.93 (0.43) | -0.87 (0.65)
Dec;018 [1.00,1.03) | 5.15 (2.21) | 0.82 (-0.36) | -0.57 (-0.47) | -1.17 (-0.11) | -1.13 (0.02)
[1.03,1.06) | 3.50 (1 05) 1.22 (0.19) |-0.46 (-0.43) | -1.21 (-0.35) |-1.18 (-0.27)
[1.06,1.12) | -0.44 (-1.70) | 0.64 (-0.27) | -0.34 (:0.46) | -0.87 (-0.32) |-0.90 (-0.30)
0.88,0.94) [-0.25 (-1.31) | -1.96 (-4.84) [ -0.67 (-2.05) |  1.17 (1.14) | 2.34 (3.30)
Jan 2019 | 10:94.0.97) | 4.60 (1.42) [-1.30 (-2.62) [-1.08 (-0.57) | 041 (1.73) [ L1I (2.96)
0.97,1.00) | 2.93 (0.15) |-1.05 (-1.21) | -1.37 (-0.54) | -0.45 (0.83) | 0.11 (1.64)
Dec_2019 [1.00,1.03) | 4.12 (2.28) | -0.37 (-0.62) | -1.29 (-0.81)| -0.86 (-0.01) | -0.48 (0.60)
[1.03,1.06) | 3.04 (1.30) | 0.28 (-0.33) | -0.96 (-:0.92) | -0.83 (-0.40) | -0.55 (0.08)
[1.06,1.12) | 0.12 (-1.61) | 0.85 (-0.18) | 0.09 (-0.44) | 0.01 (-0.16) | 0.02 (0.06)
0.88,0.94) | 2.52 (0.42) |-1.74 (-3.55) | -1.21 (-1.88) |  0.84 (0.87) | 2.29 (2.62)
Jan 2020 | 10-94.097) | 390 (2.68) |-155 (-1.45) |-1.83 (-1.35) | -0.14 (0.53) | 1.8 (1.97)
0.97,1.00) | 3.56 (3.43) |-1.31 (-0.82) | -1.85 (-1.23)| -0.45 (0.21) | 1.02 (1.46)
Dec;020 [1.00,1.03) | 2.86 (2.81) |-1.28 (-0.79) | -1.87 (-1.25) | -0.59 (1.90e-03) | 0.98 (1.35)
[1.03,1.06) | 1.87 (1.54) |-1.26 (-0.94) | -1.81 (-1.29) | -0.46 (-0.03) | 1.04 (1.28)
[1.06,1.12) | 0.31 (-0.37) | -1.06 (-1.08) | -1.37 (-1.19) | -0.06 (0.08) | 1.31 (1.15)
0.88,0.94) | 2.70 (1.61) |-1.09 (-2.68) | -1.54 (-2.18) |  0.07 (0.18) | 2.15 (2.81)
Jan 2091 | 0-94097) | 418 (157) |-2.02 (-354) |-143 (-1.80) | 0.41 (0.63) | 2.08 (2.83)
0.97,1.00) | 2.88 (-0.27) |-0.93 (-1.87) [ -1.04 (-1.12) | 0.12 (0.63) | 1.23 (2.14)
Dec;021 [1.00,1.03) | 4.49 (2.75) |-0.42 (-0.85) | -1.08 (-0.87) | -0.46 (0.22) | 0.27 (1.25)
[1.03,1.06) | 3.25 (1.93) | -0.44 (-0.63) | -1.26 (-0.91)| -0.96 (-0.20) | -0.48 (0.54)
[1.06,1.12) | 0.90 (-0.07) |-0.61 (-0.72) | -1.31 (:0.90) | -1.32 (-0.53) |-1.08 (-0.07)
0.88,0.94) | -1.47 (-2.75) | -0.68 (-2.71) | -0.62 (-1.44) |  0.24 (0.41) | 1.25 (2.09)
Jan 2025 | 10940.97) | 199 (0.33) [-0.34 (-0.94) [-0.93 (-0.77) | -0.58 (-3.600-08) | 0.20 (L.08)
0.97,1.00) | 2.0L (1.58) | 0.03 (-0.19) | -1.00 (-:0.79) | -0.93 (-0.50) | -0.25 (0.37)
Dec_2022 [1.00,1.03) | 1.16 (1.17) | 0.13 (-0.05) | -0.91 (-0.86) | -0.90 (-0.71) | -0.28 (0.04)
[1.03,1.06) | 0.32 (0.51) | 0.23 (0.02) |-0.55 (-0.70) | -0.56 (-0.61) | -0.03 (0.01)
[1.06,1.12) [-0.95 (-0.67) | 0.62 (0.34) | 0.17 (-0.20) | 0.22 (-0.17) | 0.60 (0.27)
TABLE 4.2.2. RMSE Attari - implied volatility percentage errors

By inspecting both tables, both formulations produced good results for any given sam-

ple period across the moneyness and time-to-maturity categories. For both formulations,

we can also see that both calls and puts produced similar levels of mispricing for these

same categories for all sample periods.

The results of the Student’s t-test for the Heston original formulation were the follow-

ing. For calls, h =
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1 indicating that the calibration of the Heston original formulation is




biased, a p-value p = 0.00000 and a confidence interval ci = [-0.00117, -0.00101]
with 95% confidence, underestimating on average. For puts, h = 1 indicating that the
calibration of the Heston original formulation is biased, a p-value p = 0.00000 and a
confidence interval ci = [-0.00029, -0.00019] with 95% confidence, underestimating
on average.

The results of the Student’s t-test for the Attari formulation were the following. For
calls, h = 1 indicating that the calibration of the Attari formulation is biased, a p-value
p = 0.00012 and a confidence interval ci = [0.00004, 0.00014] with 95% confidence,
overestimating on average. For puts, h = 1 indicating that the calibration of the Attari
formulation is biased, a p-value p = 0.00000 and a confidence interval ci = [-0.00047,
-0.00037] with 95% confidence, underestimating on average.

We now present two tables, one for each formulation, with the statistical analysis for

both option types.

Parameters Mean Standard deviation Minimum Maximum Median

K 1.57749 (3.21187) 1.42149 (1.62776) 0.01164 (0.02937) | 9.29185 (12.01620) | 1.48371 (3.03987)
0 0.50732 (0.12076) 0.74238 (0.27629) 0.03042 (0.03228) 1.99730 (1.99904) | 0.10946 (0.06533)
o 0.95630 (1.23015) 0.42595 (0.36417) 0.23837 (0.54566) | 2.00000 (2.00000) | 0.90183 (1.15124)
v 0.04324 (0.04285) 0.05667 (0.06094) 0.00615 (0.00383) | 0.65455 (0.68535) | 0.02753 (0.02696)
P -0.78374 (-0.79038) 0.04542 (0.06033) -0.99271 (-0.99900) | -0.60237 (-0.58335) | -0.78279 (-0.78528)
Time 5.51197 (2.49458) 3.75331 (1.63449) 0.84195 (0.44569) | 25.64791 (15.07684) | 4.47463 (2.06734)
Error -0.00109 (-0.00024) 0.00137 (0.00089) -0.00818 (-0.00401) | 0.00163 (0.00280) |-0.00060 (-0.00017)

TABLE 4.2.3. RMSE Heston original - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 3.00516 (3.21560) 1.70335 (1.66154) 0.03283 (0.03247) | 11.37919 (11.94851) | 2.68553 (2.98542)
[ 0.13160 (0.12223) 0.30926 (0.28322) 0.02356 (0.03099) 1.99945 (1.99929) | 0.06157 (0.06321)
o 1.20313 (1.21135) 0.36049 (0.35354) 0.59174 (0.57236) | 2.00000 (2.00000) 1.17175 (1.14436)
Vg 0.04323 (0.04253) 0.05663 (0.06106) 0.00528 (0.00269) | 0.65479 (0.68615) | 0.02817 (0.02684)
p -0.77388 (-0.79444) 0.04702 (0.05893) -0.99434 (-0.99900) | -0.60155 (-0.60041) |-0.76873 (-0.79000)
Time 2.46497 (1.58608) 1.46599 (1.20143) 0.60629 (0.37690) | 16.34896 (15.84824) | 2.08486 (1.30159)
Error 0.00009 (-0.00042) 0.00077 (0.00082) -0.00253 (-0.00389) | 0.00286 (0.00224) |-0.00002 (-0.00035)

TABLE 4.2.4. RMSE Attari - calls (puts) statistical analysis

The tables above summarize the statistical analysis for both formulations covering
both option types. We can see that, on average, the calibration time for puts was faster
than the calibration time for calls for both formulations. The Attari formulation, on
average, was faster than the Heston original formulation for both option types, which was

expected.
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4.3. IVRMSE loss function

The following tables present the percentage errors between the averaged market-
implied volatilities and the averaged implied volatilities generated by the Heston orig-
inal formulation and by the Attari formulation, broken down by moneyness and time-
to-maturity categories. Positive values indicate overestimating, while negative values

indicate underestimating.

Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
0.88,0.94) | 1.15 (1.17) |-2.01 (-1.47) | -1.19 (-:0.52) | 0.61 (1.58) | 2.24 (3.29)
am 2018 |1094097) | 4.48 (347) | 0.08 (:0.71) [0.52 (-0.63) | 0.61 (0.96) | 181 (2.46)
0.97,1.00) | 7.68 (4.60) | 1.06 (-0.05) | -0.35 (-:0.73) | 0.31 (0.37) | 1.23 (1.58)
May72022 [1.00,1.03) | 5.62 (4.03) | 0.74 (-0.09) | -0.59 (-0.95) | -0.05 (-0.11) | 0.79 (0.96)
[1.03,1.06) | 2.78 (2. 08) 0.05 (-0.43) |-0.85 (-1.13) | -0.28 (-0.38) | 0.52 (0.57)
[1.06,1.12) | -1.46 (-1.22) | -0.73 (-0.93) | -0.91 (-1.13) | -0.30 (-0.47) | 0.38 (0.29)
[0.88,0.04) | -3.92 (-2.46) | -2.80 (0.21) | -1.36 (2.89) | 0.10 (3.43) | 0.54 (2.68)
Jon 201s | J0-940.97) | 351 (3.34) | 2.78 (1.81) | 221 (2.19) | 0.69 (1.76) | 0.23 (1.32)
0.97,1.00) | 12.09 (6.05) | 4.47 (1.89) | 241 (0.91) | 0.28 (0.35) | -0.36 (0.16)
Do 2018 | [1-00.1.08) | 10.00 (6.44) | 3.56 (1.52) | 163 (0.22) | -0.18 (-0.46) |-0.84 (-0.52)
[1.03,1.06) | 5.15 (3.24) | 1.98 (0.81) | 0.49 (-0.42) | -0.69 (-0.90) |-1.28 (-0.80)
[1.06,1.12) | -3.21 (-3.17) | -0.52 (-1.00) | -0.86 (-1.36) | -1.10 (-1.33) | -1.48 (-1.03)
0.88,0.94) | -4.93 (-2.31) | -3.49 (-0.27) | -1.48 (1.05) | 0.10 (3.10) | 1.91 (4.81)
Jan 2019 | 1094097) | 8.26 (5.60) | 2.45 (0.53) | 1.27 (0.49) | 1.86 (2.00) | 1.66 (3.02)
0.97,1.00) | 12.49 (5.89) | 3.13 (0.52) | 1.02 (-0.32) | 1.11 (0.56) | 0.74 (1.39)
Dec_2019 [1.00,1.03) | 8.17 (4.63) | 2.32 (0.21) | 0.36 (-0.87) | 0.34 (-0.30) | -0.03 (0.46)
[1.03,1.06) | 3.97 (2.28) | 1.29 (-0.13) |-0.11 (-1.12) | -0.11 (-0.68) |-0.25 (-0.10)
[1.06,1.12) | -2.09 (-2.14) | 0.29 (-0.54) | -0.10 (-0.86) | 9.00e-04 (-0.45) | -0.13 (-0.08)
0.88,0.04) | 1.37 (0.53) |-2.07 (-2.12) | -0.82 (-0.72) | 1.82 (1.87) | 3.45 (3.83)
an 2020 | |0-910.97) [ 3.24 (2.79) [-1.63 (-1.80) [-1.39 (-1.41) | 0.52 (0.60) | 2.28 (2.62)
0.97,1.00) | 3.83 (3.45) |-1.26 (-1.34) | -1.46 (-1.48) | 0.06 (0. 13) 1.77 (2.03)
Dec_2020 [1.00,1.03) | 2.79 (2.73) | -1.28 (-1.28) | -1.55 (-1.55) | -0.14 (-0.09) | 1.66 (1.80)
[1.03,1.06) | 1.52 (L. 62) “1.38 (-1.28) | -1.56 (-1.54) | -0.07 (-0.05) | 1.65 (1.76)
[1.06,1.12) | -0.27 (-0.11) | -1.27 (-1.14) | -1.27 (-1.24) | 0.27 (0.24) | 1.69 (1.74)
[0.88,0.94) | -1.02 (-0.40) | -2.37 (-2.29) | -2.05 (-1.65) | -0.48 (0.74) | 1.86 (3.16)
am 2021 |1094097) [ 6.15 (4.24) [-0.80 (-132) [-0.83 (0.87) | 0.75 (128) | 246 (3.23)
0.97,1.00) | 10.46 (5.95) | 1.46 (0.19) |-0.12 (-0.40) | 0.86 (1.04) | 2.04 (2.42)
Dec72021 [1.00,1.03) | 7.31 (5.24) | 1.12 (0.27) |-0.29 (-0.56) | 0.38 (0. 40) 1.32 (1.43)
[1.03,1.06) | 3.22 (2. 48) 0.08 (-0.41) | -0.74 (-0.98) | -0.17 (-0.26) | 0.68 (0.58)
[1.06,1.12) | -2.22 (-1.73) | -1.29 (-1.44) | -1.25 (-1.47) | -0.75 (-0.95) | 0.08 (-0.24)
[0.88,0.94) | -1.15 (-0.77) | -0.83 (-1.17) | -0.39 (-0.48) | 0.89 (0.94) | 2.21 (2.35)
Jon 20pg | J0-940.97) | 118 (1.24) [ -0.89 (0.77) [-L.OL (-0.76) | -0.36 (-0.15) | 0.71 (0.96)
0.97,1.00) | 1.74 (1.91) |-0.51 (-0.34) | -1.21 (-0.97) | -0.92 (-0.74) | 0.01 (0.20)
Dec_2022 [1.00,1.03) | 1.35 (1.43) |-0.33 (-0.20) | -1.20 (-1.04) | -1.05 (-0.92) |-0.20 (-0.11)
[1.03,1.06) | 0.87 (0.82) |-0.10 (-0.06) | -0.88 (-0.84) | -0.79 (-0.74) | -0.09 (-0.07)
[1.06,1.12) | -0.07 (-0.25) | 0.48 (0.38) | -0.16 (-0.24) | -0.09 (-0.17) | 0.40 (0.29)

TaBLE 4.3.1. IVRMSE Heston original - implied volatility percentage errors

44




Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
0.88,0.94) | 2.50 (2.07) |-1.49 (-2.41) [-0.60 (-1.12) | 1.50 (1.31) | 3.18 (3.23)
an 201 0-94097) | 2.60 (1.78) |-1.62 (-1.82) [-1.14 (-0.91) | 0.62 (0.96) | 2.11 (257)
[0.97,1.00) | 2.21 (1.96) |-1.20 (-0.80) | -1.23 (-0.78) 0.08 (0.49) 1.30 (1.70)
May72022 [1.00,1.03) | 2.86 (2.92) |-0.86 (-0.47) | -1.29 (-0.91) | -0.30 (-6.90e-03) | 0.78 (1.03)
[1.03,1.06) | 1.63 (1.60) |-0.76 (-0.58) | -1.28 (-1.08) | -0.45 (-0.32) 0.49 (0.57)
[1.06,1.12) [ -0.74 (-0.84) | -0.76 (-0.84) | -0.97 (-1.01) | -0.30 (-0.42) | 0.43 (0.24)
[0.88,0.94) | 0.19 (-0.09) | 0.06 (-0.74) | 2.19 (0.94) 3.54 (2.60) 3.50 (2.81)
Jan 2018 | 10:94.0.97) | 142 (1.04) [-0.22 (-0.70) [ 017 (026) | 0.68 (1.15) [ 0.55 (1.10)
[0.97,1.00) | 0.26 (-0.19) |-0.80 (-0.33) | -0.79 (-0.18) -0.50 (0.13) -0.46 (0.13)
Dec;018 [1.00,1.03) | 4.04 (3.92) | -0.02 (0.38) | -0.87 (-0.29) | -0.93 (-0.52) |-0.90 (-0.45)
[1.03,1.06) | 2.40 (2. 17) 0.36 (0.42) |-0.85(-0.49) | -1.07 (-0.88) |-1.05 (-0.80)
[1.06,1.12) | -1.53 (-1.79) | -0.17 (-0.56) | -0.81 (-0.86) | -0.85 (-1.08) |-0.84 (-0.94)
0.88,0.94) | -1.33 (-1.80) | -2.10 (-3.20) | -0.03 (-0.68) |  2.24 (2.13) | 3.86 (3.87)
Jan 2019 | 10-940.97) | 4.06 (2.18) [-1.03 (-1.79)[-0.53 (:024) | 118 (186) [ 2.13 (2.92)
0.97,1.00) | 3.33 (1.64) |-1.05 (-0.78) | -1.17 (-0.52) | 0.04 (0.74) | 0.87 (1.49)
Dec_2019 [1.00,1.03) | 3.35 (2.95) |-0.76 (-0.46) | -1.39 (-0.91) | -0.61 (-0.16) 0.09 (0.41)
[1.03,1.06) | 1.71 (1.66) |-0.48 (-0.33) | -1.31 (-1.05) | -0.78 (-0.56) |-0.13 (-0.11)
[1.06,1.12) | -2.00 (-1.66) | -0.26 (-0.34) | -0.57 (-0.65) | -0.20 (-0.35) 0.29 (-0.16)
[0.88,0.94) | 1.75 (0.86) |-2.13 (-2.30) | -0.74 (-0.82) 1.96 (1.88) 3.64 (3.77)
Jan 2020 [0.94,0.97) | 2.61 (2.27) |-1.98 (-2.07) | -1.50 (-1.50) 0.62 (0.66) 2.43 (2.56)
0.97,1.00) | 2.70 (2.63) | -1.67 (-1.59) | -1.63 (-1.56) |  0.12 (0. 17) 1.84 (1.93)
Dec_2020 [1.00,1.03) | 2.19 (2.28) |-1.57 (-1.45) | -1.67 (-1.59) | -0.11 (-0.07) | 1.71 (1.74)
[1.03,1.06) | 1.28 (1.32) | -1.54 (-1.45) | -1.64 (-1.59) | -0.05 (-0.04) | 1.67 (1.65)
[1.06,1.12) | -0.17 (-0.24) | -1.31 (-1.29) | -1.28 (-1.29) | 0.28 (0.22) | 1.71 (1.60)
[0.88,0.94) | 1.07 (-0.02) |-1.78 (-4.05) | -1.51 (-2.41) 0.55 (0.33) 3.05 (3.29)
Jan 2021 [0.94,0.97) | 2.72 (1.05) |-2.51 (-2.56) | -1.42 (-0.94) 0.87 (1.38) 2.92 (3.60)
0.97,1.00) | 2.49 (2.70) |-1.25 (-0.41) | -0.95 (-0.18) |  0.65 (1.28) | 2.14 (2.74)
Dec;021 [1.00,1.03) | 3.65 (3.99) | -0.75 (0.02) | -0.94 (-0.30) 0.12 (0. 60) 1.23 (1.65)
[1.03,1.06) | 2.05 (2. 06) -0.86 (-0.46) | -1.13 (-0.76) | -0.37 (-0.14) 0.51 (0.66)
[1.06,1.12) | -0.90 (-1.28) [ -1.20 (-1.22) | -1.21 (-1.22) | -0.74 (-0.87) |-0.06 (-0.25)
[0.88,0.94) | -1.39 (-1.22) | -0.85 (-1.65) | -0.35 (-0.83) 0.97 (0.81) 2.29 (2.32)
Jan 2022 [0.94,0.97) | 1.04 (0.68) |-0.90 (-0.82) | -0.97 (-0.74) | -0.28 (-0.05) 0.77 (1.04)
[0.97,1.00) | 1.41 (1.63) |-0.58 (-0.28) | -1.21 (-0.89) | -0.87 (-0.64) 0.05 (0.27)
Dec;022 [1.00,1.03) | 1.09 (1.23) [-0.40 (-0.16) [-1.22 (-0.98) | -1.02 (-0.86) |-0.18 (-0.07)
[1.03,1.06) | 0.66 (0.62) |-0.17 (-0.08) | -0.90 (-0.82) | -0.79 (-0.73) |-0.09 (-0.08)
[1.06,1.12) [-0.22 (-0.49) | 0.41 (0.29) |-0.19 (-0.29) | -0.12 (-0.24) | 0.38 (0.22)

TABLE 4.3.2. IVRMSE Attari - implied volatility percentage errors

By inspecting both tables, both formulations produced good results for any given sam-
ple period across the moneyness and time-to-maturity categories. For both formulations,
we can also see that both calls and puts produced similar levels of mispricing for these
same categories for all sample periods.

The results of the Student’s t-test for the Heston original formulation were the follow-

ing. For calls, h = 1 indicating that the calibration of the Heston original formulation is
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biased, a p-value p = 0.00000 and a confidence interval ci = [0.00040, 0.00088] with
95% confidence, overestimating on average. For puts, h = 1 indicating that the calibra-
tion of the Heston original formulation is biased, a p-value p = 0.00222 and a confidence
interval ci = [0.00014, 0.00062] with 95% confidence, overestimating on average.

The results of the Student’s t-test for the Attari formulation were the following. For
calls, h = 1 indicating that the calibration of the Attari formulation is biased, a p-value p
= 0.03093 and a confidence interval ci = [-0.00011, -0.00001] with 95% confidence,
underestimating on average. For puts, h = 1 indicating that the calibration of the Attari
formulation is biased, a p-value p = 0.00029 and a confidence interval ci = [-0.00032,
-0.00010] with 95% confidence, underestimating on average.

We now present two tables, one for each formulation, with the statistical analysis for

both option types.

Parameters Mean Standard deviation Minimum Maximum Median

K 2.00106 (2.49319) 1.73706 (2.06152) 0.02973 (0.02206) | 12.19936 (19.93529) | 1.79206 (2.13108)
0 0.19490 (0.15681) 0.24532 (0.20770) 0.01216 (0.01159) 1.60093 (1.37623) 0.10173 (0.08721)
o 0.98791 (1.09160) 0.42219 (0.40530) 0.24616 (0.27357) 1.99907 (1.99909) 0.93994 (1.03919)
v 0.04528 (0.04413) 0.05901 (0.05919) 0.00666 (0.00125) | 0.66134 (0.65771) 0.02887 (0.02795)
p -0.80033 (-0.78405) 0.06903 (0.07045) -0.99872 (-0.99865) | -0.55512 (-0.18213) | -0.79766 (-0.78664)
Time 3.26435 (3.02271) 4.23749 (3.39718) 0.41126 (0.40933) | 32.07864 (32.37330) | 1.80740 (1.84586)
Error 0.00064 (0. 00038) 0.00411 (0.00410) -0.00169 (-0. 00801) 0.06959 (0.06859) |-0.00005 (-0.00007)

TABLE 4.3.3. IVRMSE Heston original - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 2.74267 (3.11920) 1.57015 (1.89934) 0.04470 (0.03360) | 12.10968 (14.59549) | 2.51828 (2.80533)
0 0.10424 (0.10590) 0.11879 (0.14068) 0.02705 (0.02560) 1.03693 (1.33942) 0.07462 (0.06847)
o 1.16579 (1.16557) 0.34822 (0.35658) 0.46782 (0.30772) 1.99995 (1.99994) 1.13682 (1.12110)
v 0.04337 (0.04294) 0.05975 (0.05964) 0.00463 (0.00338) | 0.66200 (0.65835) 0.02723 (0.02733)
p -0.76960 (-0.79501) 0.05127 (0.06256) -0.99898 (-0.99897) | -0.57820 (-0.60215) |-0.76697 (-0.79041)
Time 1.63267 (1.88322) 1.71057 (2.13418) 0.31370 (0.32361) | 18.19945 (21.56241) | 1.26871 (1.38016)
Error -0.00006 (-0.00021) 0.00091 (0.00192) -0.00156 (-0.00752) | 0.01453 (0.05970) |-0.00013 (-0.00021)

TABLE 4.3.4. IVRMSE Attari - calls (puts) statistical analysis

The tables above summarize the statistical analysis for both formulations covering
both option types. We can see that, on average, the calibration time for puts was faster
than the calibration time for calls for the Heston original formulation and the other way
around for the Attari formulation. The Attari formulation, on average, was faster than

the Heston original formulation for both option types, which was expected.
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CHAPTER 5

Conclusions

The objective of this thesis was to calibrate the S&P 500 index options under alter-
native formulations of the Heston (1993) model. The five formulations used were: Heston
original, Heston single integrand, Attari, FF'T, and FRFT. To conduct this study, we
estimated five parameters for each Heston model formulation using three different loss
functions: the MSE, RMSE, and IVRMSE. For each combination of Heston model for-
mulation and loss function, we performed two calibrations, one for calls and one for puts,
resulting in a total of 30 calibrations: 15 for calls and 15 for puts.

We found that, in terms of accuracy, Heston original, Heston single integrand, and
Attari were the formulations that generally produced the best results across the three loss
functions. However, we did not conduct any formal statistical tests to definitively conclude
which formulation had the best performance. Future work could incorporate statistical
comparisons to draw more definitive conclusions regarding the relative performance of the
models. The only thing we can actually conclude is what formulation provided the best
balance between computational speed and accuracy for the loss functions. The results
between these three formulations were comparable for every loss function, with the Attari
formulation being the fastest. Consequently, the Attari formulation prevails when using
this criterion.

On average, when considering the call options, out of the 15 different calibrations, 9
underestimated (60%), 3 overestimated (20%) and 3 were non biased (20%). On average,
when considering the put options, out of the 15 different calibrations, 10 underestimated
(66.67%), 5 overestimated (33.33%) and 0 were non biased. The 3 non biased are all under
the MSE loss function for the formulations, Heston original, Heston single integrand and
Attari. Therefore, we can conclude that, in general, our calibrations underestimated on
average.

The other two model formulations, FFT and FRFT, overall presented worse results.
As explained earlier, this can be attributed to their sensitivity to the choice of parameters
such as a, N, ¢max, 0, and A. Exploring more effective strategies for parameter optimiza-
tion could significantly improve the performance of the FFT and FRFT formulations,
as better-tuned parameters would likely result in more accurate and reliable outcomes.
Nevertheless, in terms of computational speed, from fastest to slowest, we have: FRFT,
FFT, Attari, Heston single integrand, and Heston original, with the last two being prac-
tically tied. This verifies what was theoretically presented earlier, except for the tied

formulations, where in practice, the Heston single integrand was expected to be faster.
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Appendix A. Additional results

Here is presented the results for the remaining formulations: the Heston single inte-
grand, FF'T and FRFT. We present the tables containing the percentage errors between
the averaged market implied volatilities and the averaged implied volatilities generated
by each model formulation. Just like before, we have a section for each loss function. We
also present the tables with the statistical analysis and the results of the Student’s t-test.
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A.1. MSE loss function

The following tables present the percentage errors between the averaged market-
implied volatilities and the averaged implied volatilities generated by the Heston single
integrand formulation, the FFT formulation and the FRFT formulation, broken down

by moneyness and time-to-maturity categories.

while negative values indicate underestimating.

Positive values indicate overestimating,

Call (Put) options

Sample period

Time-to-maturity

21-70 71-120 121-170 171-220 221-270
3.23(3.26) | -2.01 (-1.70) | -1.66 (-1.50) 0.07 (0.18) 1.52 (1.63)

o 2018 437 (435) | -1.20 (-1.29) | -1.40 (-1.46) | -0.04 (-0.04) 1.15 (1.23)
345 (3.39) | -0.48 (-0.50) | -1.13 (-1.14) | -0.23 (-0.20) 0.67 (0.73)

May_2022 4.03 (4.09) |-0.04 (3.00e-04) | -1.00 (-0.98) | -0.40 (-0.37) 0.33 (0.37)
241 (247) | 0.01 (0.06) 0.92 (-0.90) | -0.42 (-0.40) 0.19 (0.21)

-0.19 (-0.25) | -0.17 (-0.20) | -0.59 (-0.63) | -0.16 (-0.20) 0.30 (0.26)

-0.84 (-0.32) | -3.26 (-1.84) | -0.93 (0.32) 1.00 (1.51) 1.71 (1.88)

o 2018 -0.13 (0.37) | -1.67 (-1.68) | -0.82 (-0.83) 0.28 (0.33) 0.59 (0.68)
052 (-:0.67) | -0.78 (-0.88) | -0.66 (-0.73) | -0.11 (-0.08) 0.10 (0.16)

Dec 2018 3.53 (3.62) | 0.27 (0.29) 0.39 (-0.37) | -0.28(-0.23) | -0.13 (-0.08)
1.40 (1. 51) 0.53 (0.57) 034 (-:0.31) | -0.35(-0.31) | -0.21 (-0.17)

282 (-2.91) | -0.34 (-0.38) | -0.39 (-:0.45) | -0.11 (-0.18) |-2.20e-03 (-0.0

2.04 (-1.80) | -4.41 (-3.44) | -2.28 (-1.72) 0.23 (0.58) 1.79 (1.97)

Jan 2019 358 (3.41) | -1.64 (-1.90) | -1.03 (-1.09) 0.67 (0.72) 1.44 (1.57)
3.33 (3.07) | -0.66 (-0.69) | -0.96 (-0.91) 0.05 (0.14) 0.60 (0.70)

Dec 2019 3.86 (3.86) | -0.18 (-0.12) | -0.98 (-0.91) | -0.40 (-0.33) 0.02 (0.08)
212 (2.19) | 0.08 (0.13) -0.86 (-0.81) | -0.50 (-0.46) | -0.14 (-0.11)

155 (-1.65) | 0.18 (0.11) -0.14 (-0.20) 0.12 (0.04) 0.30 (0.22)

3.01(232) | -1.70 (-1.71) | -1.65 (-1.63) 0.23 (0.21) 1.39 (1.46)

o 2020 6.49 (6.33) | -0.26 (-:0.29) | -147 (-1.49) | -0.14 (-0.14) 0.94 (0.99)
6.03 (6.04) | 0.03 (0.05) 132 (-1.31) | -0.29 (-0.29) 0.69 (0.71)

Dec;020 457 (4.60) | -0.07 (-0.04) | -1.30 (-1.27) | -0.38(-0.37) 0.68 (0.70)
252 (2.54) | -0.39 (-0.35) | -1.31(-1.29) | -0.28 (-0.28) 0.80 (0.79)

2020 (-0.25) | -0.82 (-0.82) | -1.11 (-1.12) | 0.02 (-0.01) 1.08 (1.03)

3.54 (4.24) | -0.70 (-0.84) | -1.65 (-1.69) | -0.32(-0.15) 1.65 (1.92)

2021 5.08 (5.06) | -2.30 (-2.46) | -1.98 (-2.08) | -0.12 (-0.14) 1.68 (1.77)
3.15(3.13) | -1.19 (-1.24) | -1.34 (-1.38) | -0.08 (-0.07) 1.16 (1.24)

Dec_2021 514 (5.29) | -0.25 (-0.20) | -0.97 (-0.96) | -0.28 (-0.25) 0.54 (0.59)
405 (4.16) | 0.07 (0.12) -0.83 (-0.81) | -0.47 (-0.45) 0.07 (0.10)

1.95 (1.92) | 0.18 (0.14) -0.55 (-0.60) | -0.47 (-0.52) | -0.18 (-0.22)

331 (-2.17) | -1.97 (-1.87) | -1.30 (-1.27) | -0.03 (-0.05) 1.23 (1.27)

o 2022 1.99 (1.92) | -0.12 (-0.16) | -0.66 (-0.69) | -0.28 (-0.30) 0.47 (0.53)
2.39 (2.40) | 0.38 (0.41) -0.69 (-0.67) | -0.66 (-0.64) -0.03 (0.02)

Dec;022 1.30 (1.33) | 0.34 (0.38) 2071 (-0.69) | -0.75 (-0.72) | -0.16 (-0.15
0.17 (0.19) |  0.26 (0.30) 050 (-0.51) | -0.54 (-0.52) | -0.04 (-0.03

-1.36 (-1.40) | 0.43 (0.41) | 0.02 (-8.50e-03) [ 0.03 (-5.70e-03) |  0.40 (0.37)

TABLE A.1.1. MSE Heston single integrand - implied volatility percentage errors
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Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
0.88,0.94) | 6.14 (4.39) | -5.77 (-6.24) | -6.03 (-6.04) | -4.20 (4. 53) “3.64 (-4.43)
Jan 2018 [0.94,0.97) | 4.67 (3.15) -3.08 (-4.72) | -4.71 (-5.77) | -4.09 (-5.11) | -3.98 (-5.49)
[0.97,1.00) | -0.29 (-1.82) -5.80 (-7.07) | -8.12 (-8.99) | -8.38 (-8.60) | -8.84 (-10.06)
May72022 [1.00,1.03) | -0.79 (-1.18) -5.75 (-6.22) | -7.66 (-7.79) | -7.32 (-7.24) | -7.38 (-7.99)
[1.03,1.06) | -1.98 (-2.47) | -5.88 (6.12) | -8.19 (-8.24) | -8.60 (-8.54) | -9.25 (-9.58)
[1.06,1.12) | -3.41 (-3.73) -5.99 (-5.76) | -7.66 (-7.35) | -8.00 (-7.71) 55 (-8.45)
[0.88,0.94) 2.12 (0.48) -9.07 (-8.87) | -8.50 (-7.42) | -4.10 (-3.52) | -4.72 ( 5.90)
Jan 2018 | 109L097) | -5.63 (-517) | -870 (0.36) | -0.00 (-9.22) | -5.62 (:3.98) | -8.40 (-8.62)
[0.97,1.00) | -12.29 (-11.06) |-10.07 (-10.79) | -11.46 (-10.90) | -7.86 (-4.85) | -9.48 (-10.31)
Dec;Ols [1.00,1.03) | -6.52 (-5.25) -8.34 (-9.02) | -10.42 (-9.85) | -7.88 (-5.18) |-10.87 (-11.23)
[1.03,1.06) | -6.03 (-4.78) -6.50 (-6.50) | -8.04 (-7.58) | -6.82 (-4.38) | -9.00 (-8.65)
[1.06,1.12) | -6.14 (-5.82) | -5.81 (:6.27) | -7.21 (-6.97) | -5.75 (-4.30) | -8.36 (-8.52)
[0.88,0.94) | 7.20e-03 (-0.99) | -9.68 (-8.81) | -6.84 (-6.19) | -3.72 (-1.90) | -2.42 (-2.71)
Jan 2019 [0.94,0.97) | 0.43 (-0.23) -5.07 (-5.40) | -4.46 (-4.30) | -3.09 (-0.59) | -3.95 (-3.51)
(0.07,1.00) | -1.85 (-1.83) | -5.76 (-4.50) | -5.87 (-4.58) | -5.03 (-1.48) | -4.98 (-4.71)
Dec_2019 [1.00,1.03) | -0.60 (0.62) -4.72 (-2.91) | -5.81 (-4.01) | -6.00 (-1.74) | -6.57 (-4.67)
[1.03,1.06) | -0.38 (0.17) -3.26 (-2.06) | -4.61 (-3.48) | -4.82 (-2.07) | -4.50 (-4.17)
[1.06,1.12) | -2.11 (-1.99) | -2.35 (-1.33) | -3.28 (-2.20) | -4.15 (-1.59) | -4.58 (-3.35)
[0.88,0.94) 2.53 (2.76) -3.60 (-3.01) | -3.25 (-2.39) | -0.76 (-0.50) 0.70 (0.90)
Jan 2020 [0.94,0.97) | 8.73 (9.79) 0.49 (1.12) -1.39 (-1.10) | -0.87 (-0.97) 0.53 (0.73)
[0.97,1.00) | 6.21 (6.00) -0.86 (-1.32) | -3.39 (-3.55) | -2.10 (-2.84) | -1.63 (-1.57)
Dec;020 [1.00,1.03) | 3.50 (3.30) | -1.84 (-2.19) | -3.74 (-4.00) | -2.54 (-:3.48) | -1.62 (-0.95)
[1.03,1.06) 1.56 (0.64) -2.78 (-3.36) | -4.49 (-4.80) | -2.97 (-4.11) | -2.31 (-1.64)
[1.06,1.12) | -1.31 (-2.51) -3.68 (-4.58) | -4.67 (-5.36) | -3.17 (-4.96) | -2.33 (-1.61)
0.88,0.94) | 13.63 (5.59) | -6.42 (-12.14) |-10.60 (-14.50) | -11.16 (-15.51) | -10.70 (-15.08)
fan 2091 |10:94097) | 431 (-340) [ -7.30 (-13.16) [-10.75 (-14.70) [ -10.74 (-14.92) [ -10.21 (-14.19)
[0.97,1.00) | -4.13 (-10.75) |-13.79 (-17.74) | -17.65 (-20.83) | -19.21 (-20.89) | -19.48 (-22.05)
Dec;021 [1.00,1.03) | -5.43 (-7.85) |-13.46 (-14.88) |-15.94 (-17.09) | -16.07 (-16.81) | -15.16 (-17.28)
[1.03,1.06) | -6.96 (-8.19) |-14.43 (-14.53) | -18.12 (-18.16) | -19.41 (-19.04) | -20.07 (-21.03)
[1.06,1.12) | -7.28 (-6.69) | -13.90 (-11.79) |-16.84 (-15.13) | -17.73 (-16.18) | -18.05 (-18.00)
[0.88,0.94) | -8.08 (-6.65) -7.45 (-6.93) | -4.67 (-4.14) | -1.55 (-0.91) 0.13 (0.05)
Jan 2092 1094097 | 103 (151) 0.41 (0.20) | -0.70 (-0.46) | -0.22 (0.57) | 1.01 (0.48)
0.97,1.00) | 1.77 (2.18) 0.70 (0.43) | -1.51 (-1.59) | -1.28 (-1.01) | -1.31 (-1.90)
Dec_2022 [1.00,1.03) | 0.58 (0. 47) 0.15 (-0.19) -1.61 (-1.89) | -1.39 (-1.28) | -1.12 (-1.66)
[1.03,1.06) | -1.16 (-1.45) | -0.66 (-1.09) | -2.14 (-2.66) | -1.90 (-1.97) | -2.26 (-2.82)
[1.06,1.12) | -2.92 (-3.37) | -1.01 (-1.39) | -1.96 (-2.65) | -1.82 (-1.99) | -2.15 (-2.86)

TABLE A.1.2. MSE FFT - implied volatility percentage errors
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Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
0.88,0.94) | 9.20 (1.81) | -3.50 (-7.42) | -4.82 (-7.20) | -4.80 (-5.16) | -4.07 (-3.71)
Jon 201s | 10:92.0.97) | 771 (1.31) | 246 (5.70) | -4.92 (-6.60) | -5.10 (-494) | -550 (-4.72)
[0.97,1.00) | 1.34 (-3.02) -5.71 (-8.05) -8.05 (-9.54) -8.83 (-8.67) -9.76 (-9.14)
May72022 [1.00,1.03) | 0.23 (-1.84) | -5.82 (-6.64) | -7.72 (-7.69) | -7.90 (-6.73) | -8.36 (-7.01)
[1.03,1.06) | -1.98 (-2.59) | -6.19 (-6.46) -8.37 (-8.21) -9.15 (-8.47) -9.97 (-8.55)
[1.06,1.12) | -3.86 (-3.43) | -6.52 (-5.55) | -8.10 (-6.75) | -8.52 (-7.11) | -9.36 (-7.27)
0.88,0.04) | 4.91 (1.90) | -2.47 (-7.81) | 1.15 (-6.96) | -3.05 (-3.29) | 3.69 (-5.70)
Jon 2018 | 0-92.0.97) | -L88 (5.72) | 573 (0.55) | -3.31 (-10.13) | 463 (5.11) | -4.64 (8.72)
0.97,1.00) | -9.38 (-11.81) | -9.09 (-10.20) | -7.60 (-11.23) | -6.23 (-5.69) | -8.56 (-9.25)
Dec 2015 | [1:00.1.08) | -6.20 (6.28) | -0.04 (8.70) | -8.08 (-10.52) | -6.41 (:6.20) | -11.06 (-10.16)
[1.03,1.06) | -7.81 (-5.32) | -8.46 (-6.21) | -8.92 (-8.12) | -5.54 (4.86) | -11.09 (-7.83)
[1.06,1.12) | -9.38 (-6.31) | -9.02 (-5.74) | -10.08 (-7.07) | -5.32 (-4.97) | -12.73 (-7.41)
[0.88,0.94) | 1.49 (0.84) -7.50 (-6.73) -6.14 (-5.73) -3.87 (-2.38) -4.55 (-5.24)
o 2019 | 094097) | 139 (117) | 582 (-6.23) | -6.07 (5.68) | 486 (-2.28) | -7.59 (-7.96)
0.97,1.00) | 2.67 (-1.71) | -7.29 (-7.04) | -7.86 (-6.05) | -6.66 (-3.37) | -7.83 (-8.62)
Dec 2010 | 1:001.08) | -1.07 (0.43) | -6.12 (:5.00) | 745 (-5.03) | -7.80 (:348) | -877 (847)
[1.03,1.06) | -0.71 (-0.12) | -3.99 (-3.80) | -5.62 (-4.05) | -6.18 (-3.13) | -6.73 (-6.43)
[1.06,1.12) | -1.77 (-2.16) | -2.34 (-2.32) | -3.65 (-2.55) | -4.45 (-2.30) | -5.06 (-5.30)
0.88,0.04) | 0.45 (-1.23) | -5.00 (-5.81) | -3.95 (-5.31) | -1.79 (-2.65) | 0.66 (-3.10e-03)
Jan 2020 | [094097) | 5.89 (571) | 0.80 (-222) | -2.36 (-431) | 050 (-1.70) | -5.50-03 (-1.50)
(0.97,1.00) | 3.56 (1.69) | -2.03 (-4.96) | -3.38 (-6.67) | -2.99 (4.95) | -1.34 (-3.81)
Dec_2020 [1.00,1.03) | 2.10 (1.03) -2.33 (-4.08) -3.22 (-5.21) -2.09 (-3.33) -1.21 (-2.15)
[1.03,1.06) | 0.36 (-0.38) | -2.70 (-4.62) | -3.68 (-5.85) | -3.18 (-4.88) | -1.12 (-3.24)
[1.06,1.12) | -1.73 (-2.03) | -3.42 (-4.42) | -3.79 (-5.21) | -3.00 (-4.23) | -1.25 (-2.32)
0.88,0.94) | 29.83 (2.24) | 0.26 (-12.78) | -7.68 (-14.51) | -11.64 (-14.13) | -12.86 (-11.37)
Jon 2021 |10:910.97) [ 19.06 (-5.43) | -3.76 (-12.31) |-10.47 (-13.15) | -12.70 (-12.31) | -13.28 (:0.24)
[0.97,1.00) | 4.99 (-10.39) | -11.15 (-16.33) | -17.10 (-19.07) | -19.52 (-18.80) | -21.28 (-17.88)
Dec_2021 [1.00,1.03) | 1.04 (-7.62) |-11.34 (-13.63) | -16.02 (-15.20) | -17.26 (-14.48) | -17.16 (-13.22)
[1.03,1.06) | 4.17 (-7.98) | -13.78 (-13.97) | -18.97 (-17.14) | -20.16 (-18.05) | -21.69 (-17.48)
[1.06,1.12) | -6.95 (-6.31) |-14.13 (-11.29) | -18.47 (-13.77) | -18.90 (-14.82) | -19.70 (-14.76)
0.88,0.94) | -6.82 (-7.19) | -7.13 (-7.73) | -5.04 (-4.41) | -1.57 (-1.19) | -0.80 (0.50)
o 2022 | 09L097) [ 130 (1.20) | 002 (0.72) | -1.24 (-0.05) | -018(0.82) | -0.91 (0.60)
0.97,1.00) | 2.19 (2.88) | -0.06 (0.74) | -1.63 (-0.75) | -0.87 (-0.55) | -1.81 (-0.84)
Dec_2022 [1.00,1.03) | 0.66 (1.54) | -0.59 (0.62) | -2.01 (-0.74) | -1.41 (-0.80) | -2.24 (-0.93)
[1.03,1.06) | -1.23 (-0.35) | -1.20 (-0.28) | -2.18 (-1.32) | -1.59 (-1.20) | -2.41 (-1.50)
[1.06,1.12) | -3.23 (-2.33) | -1.81 (-0.76) | -2.45 (-1.31) | -1.84 (-1.29) | -2.65 (-L.51)

TABLE A.1.3. MSE FRFT - implied volatility percentage errors

By inspecting the tables above, the Heston single integrand produced good results
for any given sample period across the moneyness and time-to-maturity categories, the
FFT and the FRFT produced worst results but comparable between each other. For each
model formulation, we can also see that both calls and puts produced similar levels of
mispricing for these same categories for all sample periods.

The results of the Student’s t-test for the Heston single integrand formulation were
the following. For calls, h = 0 indicating that the calibration of the Heston single inte-

grand formulation is not biased, a p-value p = 0.24041 and a confidence interval ci =
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[-0.00008, 0.00002] with 95% confidence. For puts, h

tion of the Heston single integrand formulation is biased, a p-value p =

confidence interval ci =

average.

1 indicating that the calibra-
0.00297 and a
[0.00003, 0.00013] with 95% confidence, overestimating on

The results of the Student’s t-test for the FFT formulation were the following. For
calls, h = 1 indicating that the calibration of the FFT formulation is biased, a p-value p

= 0.00000 and a confidence interval ci =

[-0.00059,

-0.00052] with 95% confidence,

underestimating on average. For puts, h = 1 indicating that the calibration of the FF'T

formulation is biased, a p-value p =

0.00000 and a confidence interval ci

-0.00043] with 95% confidence, underestimating on average.
The results of the Student’s t-test for the FRFT formulation were the following. For

calls, h =

= 0.00000 and a confidence interval ci =

[-0.00048,

= [-0.00050,

1 indicating that the calibration of the FRFT formulation is biased, a p-value p
-0.00041] with 95% confidence,

underestimating on average. For puts, h = 1 indicating that the calibration of the FRFT

formulation is biased, a p-value p =

0.00000 and a confidence interval ci

-0.00038] with 95% confidence, underestimating on average.

= [-0.00044,

We now present three tables, one for each formulation, with the statistical analysis for

both option types.

Parameters Mean Standard deviation Minimum Maximum Median

K 2.45826 (2.39274) 1.30101 (1.26987) 0.03106 (0.03161) | 10.12063 (9.71708) | 2.33011 (2.25972)
0 0.16328 (0.16722) 0.38352 (0.38671) 0.03310 (0.03400) 1.99889 (1.99917) 0.06594 (0.06718)
o 1.10840 (1.10854) 0.37104 (0.36371) 0.53844 (0.56752) 2.00000 (2.00000) 1.00184 (1.00864)
v 0.04367 (0.04361) 0.05938 (0.05896) 0.00446 (0.00454) | 0.68689 (0.68076) 0.02857 (0.02853)
p -0.78994 (-0.79602) 0.04911 (0.04968) -0.99900 (-0.99900) | -0.62707 (-0.64965) | -0.78342 (-0.78972)
Time 2.46352 (2.20492) 1.35965 (1.46534) 0.57407 (0.49430) | 14.18748 (19.73512) | 2.19143 (1.87640)
Error -0.00003 (0.00008) 0.00090 (0.00088) -0.00290 (-0.00344) | 0.00452 (0.00478) | -0.00002 (0.00012)

TABLE A.1.4. MSE Heston single integrand - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 4.03894 (3.11105) 4.06383 (1.92079) 0.00459 (0.00468) | 20.00000 (19.91529) 2 77239 (2.64978)

[4 0.08920 (0.10108) 0.17299 (0.19479) 0.00001 (0.00049) | 2.00000 (2.00000) .05569 (0.05832)

o 1.08141 (1.11478) 0.52413 (0.47830) 0.00001 (0.00001) | 2.00000 (2.00000) 0 97671 (1.00922)

Vg 0.04243 (0.04292) 0.06009 (0.05923) 0.00001 (0.00001) | 0.68272 (0.67846) 0.02647 (0.02825)

p -0.75848 (-0.76931) 0.28726 (0.27402) -0.99900 (-0.99900) | 0.99900 (0.99900) | -0.79558 (-0.80426)
« 14.31171 (14.29673) 3.11921 (3.25353) 8.25000 (8.25000) | 25.00000 (25.00000) | 13.75000 (13.50000)
Time 0.67593 (0.76498) 0.61831 (0.58711) 0.05984 (0.10257) | 8.19054 (7.68872) 0.57931 (0.66276)

Error -0.00056 (-0.00046) 0.00066 (0.00062) -0.00505 (-0.00468) | 0.00211 (0.00193) | -0.00038 (-0.00025)

TABLE A.1.5. MSE FFT - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 4.73338 (3.00947) 5.18192 (1.80947) 0.03253 (0.00001) | 20.00000 (11.78514) | 2.79818 (2.54828)

0 0.10785 (0.11979) 0.26332 (0.27658) 0.00652 (0.01870) | 2.00000 (2.00000) 0.05554 (0.05995)

o 1.03053 (1.14631) 0.54825 (0.42917) 0.00001 (0.00005) | 2.00000 (2.00000) 0.95710 (1.02733)

Vg 0.04214 (0.04305) 0.06024 (0.05913) 0.00001 (0.00001) | 0.68344 (0.67843) 0.02548 (0.02810)

p -0.71420 (-0.81047) 0.39886 (0.06294) -0.99900 (-0.99900) | 0.99900 (0.04976) | -0.79272 (-0.80250)
@ 14.44306 (14.03675) 4.08586 (4.19084) 5.75000 (5.50000) | 25.00000 (25.00000) | 13.75000 (13.50000)
Time 0.40103 (0.44803) 0.39009 (0.47142) 0.02280 (0.02115) | 5.71388 (5.30612) 0.33215 (0.36033)

Error -0.00045 (-0.00041) 0.00056 (0.00056) -0.00305 (-0.00291) | 0.00159 (0.00165) | -0.00025 (-0.00019)

TABLE A.1.6. MSE FRFT - calls (puts) statistical analysis
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The tables above summarize the statistical analysis for the three formulations covering
both option types. On average, the damping factor o was similar between the FFT and
FRFT formulations. We explained earlier that we used the equation (2.81) to price OTM,
ATM and I'TM options for a wide range of maturities, by using this formulae for OTM
options and for very short maturities, the integrand of the equation (2.81) can be high
oscillatory, these high oscilations explains the high values of a. We can see that on
average, the calibration time for puts was faster than the calibration time for calls for the
Heston single integrand formulation and the other way around for the FFT and FRFT
formulations. The FRFT formulation, was, on average, the fastest followed by the FFT

and Heston single integrand for both option types, which was expected.
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A.2.

RMSE loss function

The following tables present the percentage errors between the averaged market-

implied volatilities and the averaged implied volatilities generated by the Heston single

integrand formulation, the FFT formulation and the FRFT formulation, broken down

by moneyness and time-to-maturity categories.

while negative values indicate underestimating.

Positive values indicate overestimating,

Call (Put) options

Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 1.36 (1.59) |-2.13 (-2.83) | -1.32 (-1.64) | 0.38 (0.87) 1.86 (2.77)
Jan 2018 [0.94,0.97) | 3.65 (2.00) |-0.94 (-2.00) | -1.39 (-1.18) | -0.12 (0.71) 1.18 (2.21)
[0.97,1.00) | 5.27 (1.03) |-0.24 (-1.21) | -1.33 (-1.00) | -0.45 (0.30) 0.63 (1.43)
May_2022 [1.00,1.03) | 3.54 (2.59) |-0.47 (-0.64) |-1.49 (-0.97) | -0.78 (-0.06) 0.24 (0.86)
[1.03,1.06) | 0.97 (1.69) |-1.01 (-0.44) |-1.68 (-0.96) | -0.95 (-0.25) 0.02 (0.51)
[1.06,1.12) | -2.83 (-0.26) | -1.70 (-0.44) | -1.63 (-0.75) | -0.90 (-0.22) 1.70e-03 (0.30)
[0.88,0.94) | -4.83 (0.09) | -3.73 (0.16) | -1.12 (2.92) | 0.70 (4.16) 1.09 (4.06)
Jan 2018 [0.94,0.97) | 0.89 (1.30) | 0.37 (-0.75) | -0.11 (0.60) | -0.40 (1.65) -0.28 (1.76)
[0.97,1.00) | 6.36 (-1.75) | 1.46 (-1.36) |-0.34 (-0.54) | -0.95 (0.36) -0.70 (0.57)
Dec_2018 [1.00,1.03) | 4.49 (2.96) | 0.64 (-0.28) |-1.16 (-0.54) | -1.43 (-0.17) -1.00 (-0.02)
[1.03,1.06) | -0.21 (1.74) | -0.78 (0.28) |-2.26 (-0.45) | -1.93 (-0.37) -1.26 ( 0.25)
[1.06,1.12) | -7.61 (-1.62) | -3.23 (-0.15) | -3.63 (-0.42) | -2.33 (-0.28) -1.36 (-0.22)
[0.88,0.94) | -5.95 (-1.17) | -3.39 (-4.22) | -1.23 (-1.62) | 0.76 (1.44) 2.01 (3.47)
Jan 2019 [0.94,0.97) | 5.24 (1.76) |-0.35 (-2.37) | -0.99 (-0.51) | 0.17 (1.74) 0.76 (2.93)
[0.97,1.00) | 7.20 (0.68) | 0.12 (-1.30) |-1.23 (-0.64) | -0.48 (0.73) 0.04 (1.58)
Dec_2019 [1.00,1.03) | 3.67 (2.66) |-0.34 (-0.66) | -1.50 (-0.89) | -0.94 (-0.08) -0.38 (0.57)
[1.03,1.06) | 0.05 (1.78) |-0.99 (-0.25) |-1.72 (-0.91) | -1.15 (-0.42) -0.40 (0.09)
[1.06,1.12) | -5.79 (-1.16) | -1.82 (0.03) |-1.47 (-0.34) | -0.79 (-0.09) 0.09 (0.14)
[0.88,0.94) | 2.43 (0.22) |-1.88 (-3.60) |-1.28 (-1.93) | 0.82 (0.85) 2.27 (2.64)
Jan 2020 [0.94,0.97) | 3.88 (2.61) |-1.52 (-1.47)|-1.86 (-1.34) | -0.18 (0.55) 1.32 (1.99)
[0.97,1.00) | 3.85 (3.36) |-1.24 (-0.85) | -1.86 (-1.23) | -0.47 (0.22) 1.00 (1.47)
Dec_2020 [1.00,1.03) | 2.77 (2.82) |-1.31 (-0.80) |-1.91 (-1.25) | -0.59 (0.01) 1.00 (1.35)
[1.03,1.06) | 1.60 (1.64) |-1.40 (-0.93) |-1.89 (-1.27) | -0.46 (-0.02) 1.07 (1.28)
[1.06,1.12) | -0.16 (-0.17) | -1.31 (-1.01) | -1.51 (-1.16) | -0.07 (0.08) 1.33 (1.15)
[0.88,0.94) | -0.26 (1.82) | -1.79 (-2.52) | -1.80 (-2.13) | -0.17 (0.26) 2.07 (2.86)
Jan 2021 [0.94,0.97) | 4.94 (1.74) |-1.45 (-3.45) | -1.53 (-1.87) | 0.14 (0.65) 2.03 (2.83)
[0.97,1.00) | 7.09 (-0.31) | -0.28 (-1.93) | -1.16 (-1.14) | -0.07 (0.61) 1.34 (2.11)
Dec_2021 [1.00,1.03) | 5.00 (2.78) |-0.45 (-0.88) | -1.35 (-0.88) | -0.64 (0.20) 0.47 (1.22)
[1.03,1.06) | 1.62 (2.15) |-1.23 (-0.58) | -1.76 (-0.88) | -1.22 (-0.20) -0.25 (0.52)
[1.06,1.12) | -3.13 (0.37) |-2.29 (-0.56) | -2.17 (-0.81) | -1.77 (-0.50) -0.88 (-0.06)
[0.88,0.94) | -1.53 (-2.83) | -0.76 (-2.88) | -0.68 (-1.52) | 0.20 (0.41) 1.24 (2.12)
Jan 2022 [0.94,0.97) | 1.84 (0.06) |-0.47 (-1.07) | -1.02 (-0.80) | -0.64 (0.02) 0.18 (1.11)
[0.97,1.00) | 2.04 (1.40) |-0.05 (-0.27) | -1.06 (-0.80) | -0.97 (-0.49) -0.26 (0.39)
Dec_2022 [1.00,1.03) | 1.27 (1.17) | 0.10 (-0.07) |-0.95 (-0.85) | -0.92 (-0.70) -0.27 (0.04)
[1.03,1.06) | 0.48 (0.64) | 0.25 (0.05) |-0.57 (-0.68) | -0.55 (-0.60) | -9.00e-03 (6.30e-03)
[1.06,1.12) | -0.77 (-0.42) | 0.69 (0.42) | 0.18 (-0.16) | 0.25 (-0.17) 0.64 (0.25)

TABLE A.2.1. RMSE Heston single integrand - implied volatility percent-
age errors
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Call (Put) options

Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 3.46 (0.16) -5.96 (-9.35) -6.98 (-7.48) -6.31 (-4.41) -4.96 (-3.11)
Jan 2018 [0.94,0.97) | 0.96 (-1. 86) -6.40 (-6.50) -7.59 (-5.81) -7.36 (-4.79) -6.75 (-4.54)
[0.97,1.00) | -5.00 (-5.14) -9.77 (-8.03) | -11.68 (-8.28) | -12.21 (-8.41) | -11.76 (-9.13)
May72022 [1.00,1.03) | -3.84 (-3.15) | -9.18 (-6.60) | -10.67 (-6.92) | -10.58 (-7.12) | -9.88 (-7.05)
[1.03,1.06) | -4.15 (-2.81) -9.15 (-5.70) | -11.73 (-6.64) | -12.63 (-7.82) | -12.12 (-8.50)
[1.06,1.12) | -4.01 (-2.77) | -7.95 (-4.80) | -10.56 (-5.62) | -11.02 (-6.45) | -10.80 (-7.16)
[0.88,0.94) | 1.82 (3.91) -3.34 (-9.08) -2.74 (-8.40) -0.33 (-6.25) -1.93 (-7.59)
Jan 2018 [0.94,0.97) | -1.23 (-8.10) | -5.45 (-12.80) | -5.02 (-10.54) | -3.96 (-9.69) | -6.84 (-12.30)
[0.97,1.00) | -7.55 (-16.08) | -7.63 (-15.00) | -6.98 (-12.34) | -5.86 (-10.87) | -7.94 (-13.63)
Dec_2018 [1.00,1.03) | -1.85 (-8.99) | -6.74 (-12.06) | -7.50 (-10.49) | -7.25 (-10.94) | -9.27 (-14.24)
[1.03,1.06) | -0.96 (-7.16) -5.06 (-8.99) -6.69 (-8.33) -7.30 (-8.47) | -8.26 (-11.14)
[1.06,1.12) | -1.81 (-5.41) | -4.49 (-7.24) | -6.15 (-7.39) | -7.51 (-7.11) | -8.16 (-10.98)
(0.88,0.94) | 2.06 (-0.53) | -4.47 (-10.25) | -2.81 (-6.60) | -0.13 (-1.19) | -1.26 (-1.74)
Jan 2019 [0.94,0.97) | 2.40 (-2.21) -4.43 (-6.08) -3.69 (-3.40) -1.41 (1.28) -5.24 (-1.33)
[0.97,1.00) | -3.91 (-3.82) -6.59 (-4.28) -6.32 (-3.35) -4.20 (0.55) -8.09 ( 2.81)
Dec_2019 [1.00,1.03) | -0.65 (-0.25) -6.24 (-3.03) -7.02 (-3.20) -5.63 (-0.44) 55 (-3.42)
[1.03,1.06) | 1.20 (-0.10) | -4.46 (-2.08) | -6.22 (-2.82) | -6.02 (-0.98) | -8.93 (-3.22)
[1.06,1.12) | 212 (-1.96) | -2.61 (-1.30) | -5.11 (-1.98) | -5.65 (-0.91) | -8.53 (-2.72)
[0.88,0.94) | 1.52 (-4.09) -4.97 (-8.25) -4.55 (-4.94) -3.55 (-0.53) 1.02 (2.04)
Jan 2020 |10940.97) | 420 (147) | 342 (-2.02) | 410 (183) | -3.60 (020) | -0.11 (L82)
(0.97,1.00) | -0.42 (1.58) | -6.49 (-2.32) | -8.09 (-2.74) | -7.21 (-0.73) | -2.16 (-0.10)
Dec;020 [1.00,1.03) | -2.25 (1.17) | -7.35 (-2.10) | -7.49 (-2.54) | -5.96 (-0.93) | -2.75 (0.27)
[1.03,1.06) | -4.13 (0.53) -8.59 (-2.14) | -10.25 (-2.60) | -8.44 (-1.16) -4.79 (-0.11)
[1.06,1.12) | -5.83 (-1.06) | -8.64 (-2.26) | -10.51 (-2.60) | -8.16 (-1.44) | -4.56 (-0.30)
[0.88,0.94) | 4.39 (0.96) |-11.56 (-15.27) |-15.32 (-15.87) | -15.51 (-15.10) | -13.80 (-13.18)
an 2021 |10940.97) | 655 (:0.34) |-14.75 (-14.99) | 15,97 (-14.78) | -16.10 (-14.98) | -14.20 (-12.98)
(0.97,1.00) | -13.04 (-15.21) | -20.19 (-19.03) | -22.49 (-20.56) | -24.30 (-22.09) | -23.49 (-21.68)
Dec_2021 [1.00,1.03) | -10.05 (-11.46) |-17.21 (-15.76) | -19.06 (-16.82) | -19.68 (-18.33) | -17.67 (-16.21)
[1.03,1.06) | -9.24 (-10.04) |-17.24 (-14.65) | -20.07 (-16.78) | -22.87 (-19.76) | -22.48 (-20.28)
[1.06,1.12) | -6.27 (-7.05) |-13.65 (-11.79) | -16.30 (-13.66) | -18.56 (-15.95) | -18.97 (-16.31)
(0.88,0.94) | -4.56 (-9.11) | -4.52 (-9.24) | -4.24 (-4.85) | -2.77 (-1.18) | -3.28 (1.04)
Jan 2022 [0.94,0.97) | 0.84 (-2.51) -1.37 (-1.38) -4.01 (-1.20) -3.93 (-0.13) -5.21 (0.59)
[0.97,1.00) | -1.79 (1.10) -3.39 (-0.40) -5.84 (-1.25) -5.43 (-0.66) -6.74 (-0.33)
Dec_2022 [1.00,1.03) | -3.42 (0.82) -4.33 (-0.39) -6.53 (-1.45) -6.72 (-1.06) -7.73 (-0.94)
[1.03,1.06) | -4.00 (0.12) | -4.00 (-0.51) | -6.19 (-1.40) | -6.37 (-1.17) | -7.27 (-1.08)
[1.06,1.12) | -4.54 (-1.20) | -4.03 (-0.44) | -5.97 (-1.26) | -6.26 (-1.18) | -7.26 (-1.26)

TABLE A.2.2. RMSE FFT - implied volatility percentage errors
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Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 4.04 (-0.18) -6.07 (-9.19) -7.00 (-7.25) -5.88 (-4.30) -4.61 (-2.49)
Jan 2018 [0.94,0.97) | 0.67 (-1.75) -6.84 (-6.31) -7.84 (-5.67) -6.65 (-4.15) -6.78 (-4.41)
[0.97,1.00) | -5.78 (-4.98) | -10.23 (-7.74) | -12.15 (-8.09) | -11.34 (-7.05) | -10.75 (-7.75)
May72022 [1.00,1.03) | -4.38 (-2.40) | -9.45 (-6.10) | -10.95 (-6.69) | -9.52 (-5.64) | -9.90 (-6.35)
[1.03,1.06) | -4.30 (-2.25) -9.14 (-5.50) | -11.97 (-6.59) | -11.63 (-6.59) | -11.41 (-7.18)
[1.06,1.12) | -4.15 (-2.47) | -7.89 (-4.42) | -10.86 (-5.47) | -10.56 (-5.58) | -10.43 (-6.38)
[0.88,0.94) | 0.70 (2.94) -4.50 (-8.60) -4.02 (-8.42) -0.87 (-6.03) -5.11 (-8.79)
an 201 |10940.97) | 219 (:8.35) | 6.83 (12.32) | 744 (-11.48) | 382 (:8.13) |-10.51 (-13.83)
[0.97,1.00) | -8.30 (-17.40) | -9.67 (-14.91) |-10.06 (-14.13) | -5.67 (-8.56) |-12.00 (-15.17)
Dec_2018 [1.00,1.03) | -2.12 (-9.13) | -8.44 (-12.06) | -9.89 (-12. 27) 6.96 (-9.05) | -12.98 (-15.54)
[1.03,1.06) | -0.53 (-7.24) -5.98 (-9.13) -8.40 (-9.55) -6.44 (-7.06) |-10.90 (-11.76)
[1.06,1.12) | -1.07 (-5.18) | -4.72 (-7.02) | -6.92 (-7.98) | -6.70 (-6.77) |-10.35 (-11.06)
(0.88,0.94) | 4.41 (1.14) | -4.54 (-7.60) | -4.11 (-5.62) | -1.90 (-0.78) | -4.20 (-1.76)
Jan 2019 [0.94,0.97) | 1.25 (-0.47) -6.84 (-5.96) -6.82 (-4.17) -4.39 (0.60) -9.66 (-3.27)
0.97,1.00) | -6.73 (-3.78) | -9.45 (-5.70) | -9.04 (-5.21) | -6.57 (-1.11) | -11.44 (-4.76)
Dec_2019 [1.00,1.03) | -2.11 (-0.66) | -7.81 (-4.31) | -8.71 (-4.77) | -7.16 (-1.79) | -12.19 (-5.89)
[1.03,1.06) | 0.10 (-0.59) | -5.25 (-3.31) | -7.17 (-4.10) | -6.68 (-2.06) | -10.70 (-4.33)
[1.06,1.12) | 1.80 (-2.13) | -2.75 (-2.14) | -5.29 (-2.83) | -5.64 (-1.52) | -9.71 (-4.13)
[0.88,0.94) | 2.96 (-3.48) -4.91 (-7.82) -5.05 (-4.59) -3.91 (-1.07) 0.27 (2.53)
Jan 2020 [0.94,0.97) | 4.36 (1.38) -3.37 (-2.72) -4.13 (-2.27) -2.59 (-0.07) -0.86 (1.71)
(0.97,1.00) | -1.09 (1.20) | -7.94 (-3.23) | -9.24 (-3.27) | -9.34 (-2.48) | -2.83 (0.49)
Dec;020 [1.00,1.03) | -2.50 (1.32) | -7.78 (-2.34) | -7.70 (-2.64) | -5.37 (-1.34) | -3.03 (0.57)
[1.03,1.06) | -4.44 (0.23) -9.35 (-2.86) | -10.76 (-3.09) | -9.97 (-2.44) -5.18 (0.11)
[1.06,1.12) | -6.25 (-1.02) | -9.40 (-2.64) | -11.34 (-2.86) | -9.18 (-1.96) | -4.60 (-0.11)
0.88,0.94) | 3.24 (-2.09) |-11.70 (-15.95) | -14.64 (-14.72) | -13.42 (-12.28) | -12.24 (-9.91)
on 2021 |10940.97) | 735 (:012) |-13.73 (12.82) | 15.37 (-12.34) | -13.38 (-10.84) | -13.14 (-10.28)
0.97,1.00) | -14.64 (-12.21) | -18.19 (-15.07) | -22.18 (-17.09) | -20.16 (-15.53) | -20.20 (-16.42)
Dec_2021 [1.00,1.03) | -11.69 (-7.71) |-15.78 (-11.95) | -19.09 (-13.78) | -16.71 (-12.17) | -17.03 (-12.35)
[1.03,1.06) | -9.79 (-6.63) |-15.48 (-11.56) | -20.20 (-14.39) | -19.29 (-14.19) | -20.32 (-15.75)
[1.06,1.12) | -6.90 (-5.51) | -12.44 (-9.10) |-16.80 (-11.73) | -16.70 (-11.86) | -17.95 (-13.26)
[0.88,0.94) | -4.54 (-8.86) -3.18 (-9.05) -2.27 (-5.94) -0.47 (-1.95) 0.24 (-0.23)
Jan 2022 [0.94,0.97) | 3.17 (-1.63) 1.25 (-2.13) -0.76 (-2.59) -0.87 (-1.07) -0.86 (-0.95)
[0.97,1.00) | 2.37 (0.66) 0.40 (-1.65) -2.02 (-2.74) -2.37 (-1.55) -2.76 (-1.78)
Dec_2022 [1.00,1.03) | 0.21 (0. 74) -1.14 (-1.23) | -3.28 (-2.51) | -3.26 (-1.73) | -3.63 (-2.05)
[1.03,1.06) | -1.31 (-0.33) | -1.68 (-1.25) | -3.45 (-2.33) | -3.59 (-1.74) | -3.91 (-2.06)
[1.06,1.12) | -3.27 (-1.51) | -2.40 (-1.10) | -3.84 (-2.08) | -3.97 (-1.70) | -4.55 (-2.11)

TABLE A.2.3. RMSE FRFT - implied volatility percentage errors

By inspecting the tables above, the Heston single integrand produced good results
for any given sample period across the moneyness and time-to-maturity categories, the
FFT and the FRFT produced worst results but comparable between each other. For each
model formulation, we can also see that both calls and puts produced similar levels of
mispricing for these same categories for all sample periods.

The results of the Student’s t-test for the Heston single integrand formulation were the
1 indicating that the calibration of the Heston single integrand
[-0.00117,
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following. For calls, h =

formulation is biased, a p-value p = 0.00000 and a confidence interval ci =



-0.00101] with 95% confidence, underestimating on average. For puts, h = 1 indicating
that the calibration of the Heston single integrand formulation is biased, a p-value p =
0.00000 and a confidence interval ci = [-0.00029, -0.00019] with 95% confidence,
underestimating on average.

The results of the Student’s t-test for the FFT formulation were the following. For
calls, h = 1 indicating that the calibration of the FFT formulation is biased, a p-value p
= 0.00000 and a confidence interval ci = [-0.00061, -0.00052] with 95% confidence,
underestimating on average. For puts, h = 1 indicating that the calibration of the FF'T
formulation is biased, a p-value p = 0.00000 and a confidence interval ci = [-0.00101,
-0.00090] with 95% confidence, underestimating on average.

The results of the Student’s t-test for the FRFT formulation were the following. For
calls, h = 1 indicating that the calibration of the FRFT formulation is biased, a p-value p
= 0.00000 and a confidence interval ci = [-0.00048, -0.00041] with 95% confidence,
underestimating on average. For puts, h = 1 indicating that the calibration of the FRFT
formulation is biased, a p-value p = 0.00000 and a confidence interval ci = [-0.00084,
-0.00074] with 95% confidence, underestimating on average.

We now present three tables, one for each formulation, with the statistical analysis for

both option types.

Parameters Mean Standard deviation Minimum Maximum Median

K 1.57734 (3.21192) 1.42162 (1.62784) 0.01162 (0.03025) | 9.29185 (12.01448) | 1.48376 (3.04001)
0 0.50470 (0.12047) 0.73685 (0.27446) 0.03042 (0.03228) 1.99858 (1.99899) 0.10947 (0.06533)
o 0.95627 (1.23016) 0.42595 (0.36418) 0.23837 (0.54573) 2.00000 (2.00000) 0.90184 (1.15123)
o 0.04324 (0.04285) 0.05667 (0.06094) 0.00616 (0.00383) | 0.65455 (0.68535) 0.02753 (0.02696)
p -0.78374 (-0.79038) 0.04542 (0.06032) -0.99271 (-0.99900) | -0.60237 (-0.58335) | -0.78279 (-0.78531)
Time 6.15500 (2.80888) 4.23292 (1.68779) 0.83886 (0.54345) | 31.94626 (15.42622) | 4.92947 (2.42948)
Error -0.00109 (-0.00024) 0.00137 (0.00089) -0.00818 (-0.00401) | 0.00163 (0.00280) |-0.00060 (-0.00017)

TABLE A.2.4. RMSE Heston single integrand - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 4.86949 (3.85350) 3.45058 (1.87325) 0.03437 (0.03309) | 19.52024 (15.96551) 3 86320 (3.54293)

[4 0.10045 (0.07710) 0.24337 (0.10827) 0.02082 (0.01929) 2.00000 (1.99225) .05517 (0.05856)

o 1.38549 (1.24387) 0.46607 (0.38006) 0.27892 (0.38924) 2.00000 (2.00000) 1 30768 (1.16844)

v 0.04290 (0.04204) 0.05724 (0.06094) 0.00044 (0.00001) | 0.65716 (0.68189) 0.02735 (0.02658)

p -0.78510 (-0.81157) 0.06585 (0.06538) -0.99853 (-0.99900) | -0.56131 (-0.56609) | -0.77333 (-0.80461)
« 14.77246 (14.17446) 4.14660 (3.11610) 9.00000 (9.25000) | 25.00000 (25.00000) | 13.00000 (13.25000)
Time 0.91833 (0.80694) 1.01412 (0.59582) 0.02993 (0.02774) | 8.70647 (8.61818) 0.72527 (0.72052)

Error -0.00056 (-0.00096) 0.00078 (0.00091) -0.00604 (-0.00523) | 0.00202 (0.00251) | -0.00027 (-0.00071)

TABLE A.2.5. RMSE FFT - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 4.48775 (3.76743) 3.09259 (1.88286) 0.03579 (0.03167) | 19.17004 (11.95100) | 3.67024 (3.43872)

0 0.09660 (0.09258) 0.22202 (0.19452) 0.02063 (0.02361) 1.99998 (1.99972) 0.05519 (0.05959)

o 1.34698 (1.24505) 0.46599 (0.38229) 0.52709 (0.46854) 2.00000 (2.00000) 1.27159 (1.16627)

Vg 0.04315 (0.04209) 0.05693 (0.06089) 0.00036 (0.00001) | 0.65521 (0.68192) 0.02820 (0.02660)

p -0.78339 (-0.80882) 0.06333 (0.06516) -0.99835 (-0.99900) | -0.60027 (-0.47199) | -0.77346 (-0.80306)
@ 13.75204 (14.08575) 4.95664 (4.01325) 7.00000 (5.50000) | 25.00000 (25.00000) | 13.00000 (13.25000)
Time 0.58379 (0.44896) 0.66846 (0.37508) 0.01968 (0.01794) 5.69296 (6.20455) 0.44202 (0.38578)

Error -0.00045 (-0.00079) 0.00061 (0.00081) -0.00363 (-0.00388) | 0.00156 (0.00257) | -0.00027 (-0.00061)

TABLE A.2.6. RMSE FRFT - calls (puts) statistical analysis

o8




The tables above summarize the statistical analysis for the three formulations covering
both option types. On average, the damping factor o was similar between the FFT and
FRFT formulations. Here, the value of the damping factor « is again high for the same
reasons discussed before in the MSE section. We can see that on average, the calibration
time for puts was faster than the calibration time for calls across every formulation. The
FRFT formulation, was, on average, the fastest followed by the FFT and Heston single

integrand for both option types, which was expected.
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A.3. IVRMSE loss function

The following tables present the percentage errors between the averaged market-
implied volatilities and the averaged implied volatilities generated by the Heston single
integrand formulation, the FFT formulation and the FRFT formulation, broken down

by moneyness and time-to-maturity categories. Positive values indicate overestimating,

while negative values indicate underestimating.

Call (Put) options
Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 1.10 (1.10) -2.20 (-1.51) | -1.24 (-0.54) | 0.50 (1.50) | 2.18 (3.18)
Jan 2018 [0.94,0.97) | 4.38 (3.47) -0.05 (-0.71) | -0.57 (-0.65) | 0.56 (0.91) | 1.76 (2.38)
[0.97,1.00) | 7.60 (4.61) 1.00 (-0.05) |-0.40 (-0.73) | 0.28 (0.33) | 1.18 (1.54)
May72022 [1.00,1.03) | 5.53 (4.05) 0.67 (-0.09) | -0.63 (-0.96) | -0.08 (-0.15) | 0.74 (0.92)
[1.03,1.06) | 2.67 (2. 12) -0.04 (-0.41) |-0.90 (-1.13) | -0.32 (-0.41) | 0.45 (0.54)
[1.06,1.12) | -1.56 (-1.17) | -0.82 (-0.88) |-0.96 (-1.11) |-0.35 (-0.47) | 0.31 (0.28)
[0.88,0.94) | -3.85 (-2.26) | -2.52 (0.66) -0.26 (3.26) | 0.42 (3.55) | 0.82 (3.20)
Jan 2018 [0.94,0.97) | 3.49 (3.90) 2.83 (2.38) 2.30 (2.47) | 0.74 (2.11) | 0.06 (1.92)
[0.97,1.00) | 11.85 (6.62) 4.33 (2.38) 2.21 (1.29) | 0.31 (0.58) | -0.52 (0.78)
Dec_2018 [1.00,1.03) | 9.69 (6.96) 3.38 (1.97) 1.41 (0.46) |-0.15 (-0.17) | -1.09 (0. 08)
[1.03,1.06) | 4.91 (3. 75) 1.85 (1. 23) 0.32 (-0.19) | -0.65 (-0.69) | -1.51 (-0.29)
[1.06,1.12) | -3.35 (-2.62) | -0.57 (-0.49) |-0.95 (-1.07) | -1.01 (-1.11) | -1.72 (-0.50)
[0.88,0.94) | -5.15 (-2.72) | -4.23 (-0.62) | -1.86 (0.98) | -0.58 (2.81) | 1.56 (3.96)
Jan 2019 [0.94,0.97) | 8.01 (5.46) 2.20 (0.33) 1.07 (0.46) | 1.50 (1.87) | 1.43 (2.52)
[0.97,1.00) | 12.39 (5.69) 3.03 (0.34) 0.88 (-0.37) | 0.88 (0.47) | 0.53 (1.08)
Dec72019 [1.00,1.03) | 8.07 (4.43) 2.20 (0.04) 0.27 (-0.92) | 0.11 (-0.40) | -0.16 (0.12)
[1.03,1.06) | 3.81 (2.18) 1.07 (-0.21) |-0.25 (-1.12) | -0.40 (-0.70) | -0.44 (-0.30)
[1.06,1.12) | -2.28 (-2.19) | 7.80e-03 (-0.55) | -0.24 (-0.82) | -0.36 (-0.41) | -0.27 (-0.19)
[0.88,0.94) | 1.42 (0.46) -2.11 (-2.18) | -0.86 (-0.75) | 1.84 (1.86) | 3.44 (3.81)
Jan 2020 [0.94,0.97) | 3.19 (2.76) -1.67 (-1.78) | -1.42 (-1.41) | 0.53 (0.62) | 2.29 (2.60)
[0.97,1.00) | 3.78 (3.46) -1.30 (-1.31) | -1.49 (-1.48) | 0.06 (0. 15) 1.73 (2.01)
Dec72020 [1.00,1.03) | 2.75 (2.74) -1.32 (-1.27) | -1.57 (-1.55) | -0.14 (-0.09) | 1.63 (1.79)
[1.03,1.06) | 1.47 (1. 62) -1.44 (-1.27) | -1.59 (-1.53) | -0.07 (-0.05) | 1.59 (1.74)
[1.06,1.12) | -0.32 (-0.10) | -1.34 (-1.14) |-1.31 (-1.25) | 0.27 (0.22) | 1.61 (1.71)
[0.88,0.94) | -1.31 (-0.56) | -2.65 (-2.47) |-2.16 (-1.72) | -0.69 (0.52) | 1.72 (2.92)
Jan 2021 [0.94,0.97) | 5.98 (4.04) -0.42 (-1.50) | -0.87 (-0.98) | 0.70 (1.09) | 2.43 (3.03)
[0.97,1.00) | 10.40 (5.78) 1.44 (0.03) -0.13 (-0.48) | 0.85 (0.88) | 2.04 (2.24)
Dec_2021 [1.00,1.03) | 7.23 (5.14) 1.10 (0.14) -0.29 (-0.62) | 0.37 (0. 25) 1.31 (1.27)
[1.03,1.06) | 3.09 (2. 40) 9.30e-03 (-0.51) | -0.76 (-1.03) | -0.21 (-0.39) | 0.65 (0.43)
[1.06,1.12) | -2.36 (-1.76) | -1.38 (-1.49) |-1.28 (-1.49) | -0.81 (-1.03) | 0.05 (-0.35)
[0.88,0.94) | -1.15 (-0.77) | -0.82 (-1.17) |-0.40 (-0.48) | 0.89 (0.94) | 2.21 (2.35)
Jan 2022 [0.94,0.97) | 1.19 (1.24) -0.89 (-0.78) | -1.02 (-0.76) | -0.37 (-0.14) | 0.70 (0.96)
[0.97,1.00) | 1.75 (1.90) -0.51 (-0.34) | -1.22 (-0.97) | -0.93 (-0.74) | 0.01 (0. 20)
Dec72022 [1.00,1.03) | 1.35 (1.43) -0.33 (-0.20) | -1.21 (-1.04) | -1.05 (-0.91) | -0.19 (-0.10)
[1.03,1.06) | 0.87 (0.82) -0.10 (-0.06) | -0.88 (-0.83) | -0.79 (-0.73) | -0.08 (-0.07)
[1.06,1.12) | -0.08 (-0.25) 0.48 (0.39) -0.16 (-0.24) | -0.09 (-0.16) | 0.42 (0.29)
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TABLE A.3.1. IVRMSE Heston single integrand - implied volatility per-
centage errors




Call (Put) options

Sample period S/K Time-to-maturity
21-70 71-120 121-170 171-220 221-270
0.88,0.94) | 6.88 (4.61) | -0.69 (2.61) | 0.85 (-0.24) | 0.98 (0.90) | 1.30 (2.46)
Jan 2018 |0-940.97) | 682 (487) | 0.53 (-0.69) | -0.03 (:021) | -1.05 (-043) | 147 (-0.05)
0.97,1.00) | 1.20 (1.32) | -3.22 (-2. 53) 73.83 (-2.58) | -5.29 (-3.40) | -6.28 (-3.05)
May72022 [1.00,1.03) | 1.25 (1.98) | -3.38 (-2.55) | -4.14 (-3.05) | -5.84 (-4.00) | -6.18 (-3.73)
[1.03,1.06) | 0.94 (1.31) | -3.46 (-2.63) | -4.77 (-3.56) | -6.72 (-4.93) | -7.67 (-4.55)
[1.06,1.12) | 0.35 (-0.08) | -3.05 (-2.82) | -4.40 (-3.74) | -6.57 (-5.19) | -7.16 (-5.05)
0.88,0.94) | 1.13 (2.54) | -6.57 (-4.96) | -3.14 (-3.03) | -4.74 (-1.28) | -0.59 (-2.28)
Jan 2018 |0:940.97) | 405 (2.45) | -7.94 (-657) | -5.92 (-4.97) | -8.30 (-4.06) | -5.66 (-5.85)
[0.97,1.00) | -12.76 (-10.81) | -11.71 (-9.21) | -9.66 (-7.49) | -10.14 (-5.67) | -8.89 (-7.85)
Dec;018 [1.00,1.03) | -6.95 (-3.43) | -9.63 (-6.86) | -9.10 (-6.64) | -11.41 (-6.64) | -9.02 (-7.89)
[1.03,1.06) | -4.56 (-2.78) | -7.53 (-5.53) | -8.73 (-6.26) | -9.36 (-6.11) | -9.09 (-7.68)
[1.06,1.12) | -4.28 (-2.99) | -6.35 (-4.85) | -7.53 (-5.66) | -0.88 (-6.52) | -8.75 (-7.58)
0.88,0.94) | 311 (2.23) | -3.21 (-2.58) | -1.11 (0.56) | 3.21 (1.79) | -1.27 (4.10)
Jan 2019 094097 | 217 (2.95) | -2.25 (-169) | -1.86 (080) | 242 (121) | -5.15 (LOL)
0.97,1.00) | -4.46 (0.32) | -5.33 (-2.21) | -5.05 (-0.60) | -0.74 (-1.31) | -7.98 (-1.08)
Dec;Olg [1.00,1.03) | -1.37 (1.99) | -4.55 (-2.16) | -5.16 (-1.88) | -2.22 (-2.58) | -8.67 (-2.87)
[1.03,1.06) | -1.25 (1.53) | -4.41 (-1.85) | -5.77 (-2.35) | -3.45 (-3.19) | -8.79 (-3.51)
[1.06,1.12) | -0.53 (-0.11) | -2.57 (-1.32) | -4.29 (-2.01) | -3.50 (-3.18) | -7.98 (-3.79)
0.88,0.04) | 6.45 (2.28) | 1.01 (2.44) | 3.80 (147) | 3.83 (2.30) | 4.85 (4.57)
Jan 2020 | 10940.97) | 1140 (8.00) | 491 (L08) | 4.05 (184) | 2.65(1.36) | 3.41 (2.60)
0.97,1.00) | 8.99 (5.73) | 3.08 (-0.29) | 1.65 (-0.50) | 0.02 (-0.50) | 1.22 (1.21)
Dec 2020 |[1-001.03) | 7.17 (388) | 2.42 (:0.97) | 144 (0.97) | -0.60 (-1.33) | 2.21 (0.67)
[1.03,1.06) | 5.91 (3.23) | 1.74 (-1.31) | 0.48 (-1.21) | -1.58 (-2.06) | 0.45 (0.32)
[1.06,1.12) | 4.16 (1.39) | 1.16 (-1.78) | 0.38 (-1.62) | -1.44 (-2.22) | 0.22 (-0.23)
0.88,0.04) | 6.15 (2.57) | -2.87 (-5.44) | -3.06 (4.41) | 4.18 (-2.84) | -3.47 (-0.59)
Jan 2021 [0.94,0.97) 4.51 (2.00) -2.10 (-2.79) | -4.31 (-3.72) | -6.49 (-3.37) | -6.03 (-2.33)
0.97,1.00) | -1.65 (:0.37) | -850 (-5.02) | -10.39 (-6.75) | -13.49 (-7.76) | -14.08 (-6.91)
Dec 2021 |1-001.03) | -2.36 (0.73) | -9.05 (-4.74) |-10.68 (-6.54) | -13.18 (-7.85) | -13.89 (-7.40)
[1.03,1.06) | -2.72 (-0.25) | -9.48 (-5.19) |-11.23 (-7.61) | -14.50 (-9.23) | -16.21 (-8.983)
[1.06,1.12) | -2.78 (-1.67) | -8.29 (-5.30) | -10.55 (-7.57) | -13.44 (-9.19) | -14.52 (-9.36)
0.88,0.94) | -0.04 (1.79) | 0.35 (0.54) | 2.14 (1.79) | 451 (3.11) | 5.44 (4.23)
Jan 2025 | 1094097) | 749 (751) | 513 (5.10) | 3.85 (3.40) | 360 (253) | 3.60 (2.30)
0.97,1.00) | 7.49 (7.45) | 4.16 (3.98) | 1.94 (1.65) | 1.57 (0.35) | 1.14 (0.39)
Dec 2029 |1-00.1.03) | 5.60 (5.61) | 3.14(2.65) | 0.88(0.38) | 0.20 (-0.71) | 0.15 (0.91)
[1.03,1.06) | 3.55 (3.78) | 2.03 (1.94) | -0.22 (-0.24) | -0.68 (-1.38) | -0.86 (-1.52)
[1.06,1.12) | 141 (1.42) | 1.05(0.74) | -0.81 (-1.10) | -1.37 (-2.23) | -1.56 (-2.43)

TABLE A.3.2. IVRMSE FFT - implied volatility percentage errors
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Call (Put) options
Sample period S/K Time-to-maturity

21-70 71-120 121-170 171-220 221-270
[0.88,0.94) | 11.48 (8.82) 1.60 (0.57) 2.51 (0.61) 1.42 (1.25) 3.10 (4.78)
[0.94,0.97) | 10.07 (6.99) 2.33 (1.62) 1.87 (0.19) | 0.07 (-0.68) | 0.89 (1.66)

Jan 2018
B [0.97,1.00) | 1.77 (1.96) | -2.55 (-0.97) | -2.57 (-2.42) |-4.27 (-3.43) | -3.50 (-1.24)
[1.00,1.03) | 2.27 (2.03) | -2.17 (-1.46) | -2.55 (-3.25) |-4.57 (-4.25) | -3.56 (-2.38)

May 2022
[1.03,1.06) | 1.75 (2.22) | -2.57 (-1.22) | -3.27 (-3.10) |-5.64 (-5.13) | -4.96 (-3.02)
[1.06,1.12) | 0.88 (0.69) | -2.45 (-1.72) | -3.44 (-3.46) | -5.56 (-5.46) | -5.23 (-3.71)
[0.88,0.94) | 9.08 (18.80) | -3.51 (17.80) | -0.40 (11.49) | -2.89 (5.93) | -4.13 (15.84)
Jan 2018 [0.94,0.97) | -0.76 (7.40) | -8.89 (7.98) | -6.71 (4.01) |-6.98 (-1.48) | -10.41 (6.75)
B [0.97,1.00) | -13.88 (-6.15) | -13.91 (-1.26) | -10.63 (-3.42) | -9.37 (-3.76) | -13.71 (0.86)
[1.00,1.03) | -6.71 (-0.05) | -10.73 (0.74) | -9.43 (-1.97) |-9.76 (-4.28) | -13.01 (0.32)

Dec 2018
[1.03,1.06) | -4.46 (0.93) | -8.23 (1.50) | -8.34 (-1.62) |-8.39 (-3.21) | -11.77 (0.47)
[1.06,1.12) | -3.21 (0.34) | -6.36 (0.92) | -6.59 (-1.70) |-8.00 (-4.23) | -10.57 (-0.51)
[0.88,0.94) | 3.63 (0.09) | -3.12 (-4.90) | -1.87 (-2.75) | 1.99 (1.64) | -3.26 (-0.24)
[0.94,0.97) | 2.22 (0.59) | -3.91 (-4.08) | -3.69 (-2.25) | 0.21 (0.73) | -7.63 (-2.79)

Jan 2019
B [0.97,1.00) | -6.24 (-3.92) | -7.81 (-4.83) | -7.16 (-3.83) |-3.09 (-1.11) | -10.12 (-5.25)
[1.00,1.03) | -3.10 (-1.35) | -6.34 (-4.44) | -6.89 (-4.27) |-3.99 (-2.83) | -10.06 (-6.27)

Dec 2019
[1.03,1.06) | -2.08 (-0.67) | -5.40 (-3.10) | -6.57 (-3.79) |-4.70 (-2.88) | -9.76 (-6.04)
[1.06,1.12) | -1.36 (-1.80) | -3.39 (-2.37) | -4.93 (-3. 21) -4.18 (-2.81) | -8.31 (-5.80)
[0.88,0.94) | 10.01 (7.13) | 0.43 (-0.25) 1.28 (2.13) 1.51 (1.41) 3.81 (7.31)
[0.94,0.97) | 12.26 (9.41) 1.13 (1.86) 0.47 (1.63) |-0.41 (-0.27) | 2.46 (4.21)

Jan 2020
B [0.97,1.00) | 5.22 (5.44) | -3.49 (-0.60) | -4.14 (-1.60) |-6.14 (-4.19) | 0.21 (1.87)
[1.00,1.03) | 4.44 (2.77) | -2.64 (-1.93) | -3.00 (-2.77) |-4.30 (-4.46) | 0.30 (0.69)

Dec 2020
[1.03,1.06) | 3.96 (4.35) | -2.98 (-1.24) | -3.03 (-1.64) |-5.75 (-5.94) | -0.53 (1.39)
[1.06,1.12) | 2.37 (2.48) | -2.88 (-1.82) | -3.22 (-2.14) |-4.71 (-5.56) | -1.23 (0.88)
[0.88,0.94) | 16.67 (2.07) | 8.23 (-5.89) | 7.14 (-4.49) | 1.57 (-2.43) | 4.87 (0.26)
[0.94,0.97) | 16.37 (3.13) | 11.39 (-0.28) | 7.36 (-2.20) | 1.41 (-2.63) | 3.40 (-0.55)

Jan 2021
B [0.97,1.00) | 7.47 (0.80) 4.02 (-1.66) | 1.04 (-4.58) |-4.44 (-5.78) | -4.05 (-3.90)
[1.00,1.03) | 6.24 (1.91) 2 98 (-2.06) | 0.55 (-5.00) |-5.18 (-6.15) | -3.76 (-4.86)

Dec 2021
[1.03,1.06) | 3.72 (0.90) 55 (-2.86) | -1.84 (-5.89) |-7.01 (-7.41) | -7.01 (-6.87)
[1.06,1.12) | 1.58 (-0.96) —0.77 (-3.55) | -2.99 (-6.16) |-7.36 (-7.84) | -7.45 (-7.61)
[0.88,0.94) | 0.34 (6.24) -0.41 (1.44) 1.96 (4.13) 2.94 (4.52) 4.59 (5.13)
[0.94,0.97) | 7.99 (10.86) 5.47 (5.52) 3.82 (4.49) 2.46 (3.09) 2.70 (2.79)

Jan 2022
B [0.97,1.00) | 8.57 (10.62) 4.90 (5.00) 2.36 (2.84) 0.84 (1.29) 0.88 (0.90)
[1.00,1.03) | 6.61 (7.57) 3.69 (3.40) 1.00 (1.15) |-0.39 (-0.17) | -0.45 (-0.59)

Dec 2022
[1.03,1.06) | 4.35 (5.33) 2.30 (2.29) -0.06 (0.11) |-1.28 (-1.08) | -1.48 (-1.54)
[1.06,1.12) | 2.00 (2.52) 1.33 (1.15) | -0.88 (-0.91) | -1.96 (-1.95) | -2.33 (-2.50)

TABLE A.3.3. IVRMSE FRFT - implied volatility percentage errors

By inspecting the tables above, the Heston single integrand produced good results

for any given sample period across the moneyness and time-to-maturity categories, the

FFT and the FRF'T produced worst results but comparable between each other. For each

model formulation, we can also see that both calls and puts produced similar levels of

mispricing for these same categories for all sample periods.

The results of the Student’s t-test for the Heston single integrand formulation were the

following. For calls, h =

formulation is biased, a p-value p =
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0.00000 and a confidence interval ci

1 indicating that the calibration of the Heston single integrand

[0.00028,




0.00067] with 95% confidence, overestimating on average. For puts, h = 1 indicating
that the calibration of the Heston single integrand formulation is biased, a p-value p
= 0.00030 and a confidence interval ci = [0.00021, 0.00069] with 95% confidence,
overestimating on average.

The results of the Student’s t-test for the FFT formulation were the following. For
calls, h = 1 indicating that the calibration of the FFT formulation is biased, a p-value p
[-0.00056, -0.00050] with 95% confidence,

underestimating on average. For puts, h = 1 indicating that the calibration of the FF'T

= 0.00000 and a confidence interval ci =

0.00000 and a confidence interval ci =

formulation is biased, a p-value p =

-0.00051] with 95% confidence, underestimating on average.
The results of the Student’s t-test for the FRFT formulation were the following. For

calls, h =

= 0.00000 and a confidence interval ci =

[-0.00042,

[-0.00057,

1 indicating that the calibration of the FRFT formulation is biased, a p-value p
-0.00037] with 95% confidence,

underestimating on average. For puts, h = 1 indicating that the calibration of the FRFT

formulation is biased, a p-value p =

0.00000 and a confidence interval ci

-0.00038] with 95% confidence, underestimating on average.

= [-0.00043,

We now present three tables, one for each formulation, with the statistical analysis for

both option types.

Parameters Mean Standard deviation Minimum Maximum Median

K 2.01801 (2.50198) 1.80900 (2.05177) 0.02566 (0.02830) | 19.94577 (19.93600) | 1.76149 (2.14293)
0 0.19310 (0.15910) 0.24412 (0.21038) 0.01123 (0.01146) 1.76311 (1.31547) 0.10098 (0.08720)
o 0.98578 (1.09640) 0.42188 (0.40369) 0.25306 (0.27361) 1.99907 (1.99909) 0.94044 (1.04664)
o 0.04522 (0.04414) 0.05904 (0.05918) 0.00653 (0.00012) | 0.66134 (0.65771) 0.02859 (0.02800)
p -0.80014 (-0.78370) 0.07185 (0.07053) -0.99863 (-0.99865) | -0.12721 (-0.18216) | -0.79781 (-0.78675)
Time 3.70263 (3.25651) 4.59755 (3.59450) 0.44364 (0.45605) | 32.42315 (35.25967) | 2.04291 (2.06357)
Error 0.00048 (0.00045) 0.00335 (0.00410) -0.00721 (-0.00802) | 0.06930 (0.06792) |-0.00005 (-0.00007)

TABLE A.3.4. IVRMSE Heston single integrand - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 4.86286 (4.47421) 2.28139 (2.03638) 1.15707 (0.08298) | 15.25511 (15.20703) | 4.52960 (4.24268)

0 0.06248 (0.06595) 0.03006 (0.05572) 0.01954 (0.02078) 0.18481 (1.59602) 0.05625 (0.05667)

o 1.33321 (1.26153) 0.37502 (0.35684) 0.38029 (0.56758) 1.99995 (1.99994) 1.31145 (1.22894)

Vo 0.04308 (0.04289) 0.06046 (0.06014) 0.00216 (0.00007) 0.66190 (0.65826) 0.02704 (0.02707)

p -0.78365 (-0.80720) 0.07081 (0.07167) -0.99898 (-0.99897) | -0.49777 (-0.60260) | -0.77035 (-0.80084)
@ 15.29446 (16.13022) 3.90768 (3.98635) 10.00000 (10.00000) | 25.00000 (25.00000) | 13.75000 (14.75000)
Time 0.82638 (0.96990) 1.28849 (1.45824) 0.02976 (0.04130) 9.41132 (9.18008) 0.55169 (0.61586)

Error -0.00053 (-0.00054) 0.00053 (0.00052) -0.00434 (-0.00403) | 0.00115 (0.00188) | -0.00041 (-0.00043)

TABLE A.3.5. IVRMSE FFT - calls (puts) statistical analysis

Parameters Mean Standard deviation Minimum Maximum Median

K 4.52784 (4.20732) 2.14787 (2.00449) 0.11086 (0.03033) | 15.09135 (14.13811) | 4.38418 (4.00746)

[4 0.06767 (0.07528) 0.06246 (0.10489) 0.02139 (0.02275) 1.40343 (1.92801) 0.05743 (0.05891)

o 1.30312 (1.26178) 0.38009 (0.36722) 0.23259 (0.50778) 1.99995 (1.99999) 1.25257 (1.22703)

Vg 0.04316 (0.04276) 0.06035 (0.06021) 0.00180 (0.00075) 0.66199 (0.65816) 0.02726 (0.02675)

P -0.78241 (-0.80288) 0.06889 (0.06797) -0.99898 (-0.99900) | -0.56715 (-0.57695) | -0.76951 (-0.79868)
«@ 14.69896 (15.19170) 4.52332 (4.44722) 6.75000 (6.00000) | 25.00000 (25.00000) | 13.25000 (14.00000)
Time 0.62093 (0.57533) 1.06207 (0.88410) 0.03130 (0.02189) 6.65846 (6.26406) 0.35901 (0.35849)

Error -0.00040 (-0.00041) 0.00046 (0.00044) -0.00280 (-0.00235) | 0.00115 (0.00137) | -0.00022 (-0.00029)

TABLE A.3.6. IVRMSE FRFT - calls (puts) statistical analysis
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The tables above summarize the statistical analysis for the three formulations covering
both option types. On average, the damping factor a was similar between the FFT
and FRF'T formulations. Here, the value of the damping factor « is again high for the
same reasons discussed before in the MSE section. We can see that on average, the
calibration time for puts was faster than the calibration time for calls for the Heston
single integrand formulation and for the FRFT formulation and the other way around for
the FFT formulation. The FRFT formulation, was, on average, the fastest followed by
the FFT and Heston single integrand for both option types, which was expected.
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Appendix B. Evolution plots
Here, we present the evolution plots for each Heston model parameter. Each param-

eter has its own section, where we show its evolution across all combinations of model

formulations and loss functions.
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B.1. Evolution
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B.2. Evolution plots
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B.3. Evolution plots of o
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B.4. Evolution
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B.5. Evolution plots of p
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