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Resumo

Esta tese foca-se na avaliação e comparação de dois modelos de determinação de preços

de opções: o modelo de Heston (1993), que integra volatilidade estocástica, e o modelo de

Bates (1996), que expande o modelo de Heston ao incluir saltos (jumps) nos preços dos

ativos.

Embora o modelo de Black-Scholes (1973) e Merton (1973) tenha sido amplamente

utilizado para a avaliação de opções, o seu pressuposto de volatilidade constante resulta

em imprecisões quando comparado com os preços observados no mercado. Em contraste,

os modelos de Heston e Bates procuram refletir de forma mais fiel as condições reais do

mercado.

Descreveremos ambos os modelos com o devido destaque dos seus principais pressupos-

tos e parâmetros. De seguida, o objetivo é calibrar e aplicar ambos os modelos utilizando

dados reais de opções sobre o ı́ndice S&P500 e, após um análise emṕırica e devidos testes

aos resultados obtidos, determinar se a introdução de jumps no modelo de Bates oferece

uma vantagem significativa na determinação dos preços.

Palavras-chave: Modelo de Heston, Modelo de Bates, Volatilidade Estocástica,

Jumps.
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Abstract

This thesis focuses on the evaluation and comparison of two option pricing models: the

Heston model (1993), which incorporates stochastic volatility, and the Bates model (1996),

which extends the Heston model by adding jumps to asset prices.

Although the model of Black-Scholes (1973) and Merton (1973) has been widely used

for option pricing, his assumption of constant volatility leads to inaccuracies when com-

pared to market-observed prices. In contrast, the Heston and Bates models aim to more

accurately reflect real market conditions.

We will describe both models, highlighting their key assumptions and parameters.

Following this, the goal is to calibrate and apply both models using real data from S&P

500 index options and, after empirical analysis and relevant tests, determine whether

the introduction of jumps in the Bates model provides a significant advantage in price

determination.

Keywords: Heston Model, Bates Model, Stochastic Volatility, Jumps.
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CHAPTER 1

Introduction

The world of financial derivatives has evolved significantly over the past few decades,

with options playing a crucial role in investment strategies, risk management, and port-

folio optimization. The Black-Scholes-Merton (BSM) model, introduced by Black and

Scholes (1973) and Merton (1973), revolutionized options pricing with its closed-form so-

lution for European options. However, it assumes constant volatility, which often leads

to pricing inaccuracies in real-world scenarios. Empirical evidence from financial mar-

kets, particularly the volatility smile and the occurrence of price jumps, has prompted

researchers to develop more sophisticated models.

One of the most prominent model to address these limitations is the Heston model

(1993), which introduces stochastic volatility, allowing the volatility of the underlying

asset to vary over time. This feature makes the model more capable of capturing the

complex volatility patterns observed in financial markets. Furthermore, recognizing that

asset prices can experience sudden jumps, the Bates (1996) model extends the Heston

framework by incorporating both stochastic volatility and jumps, offering a more com-

prehensive approach to pricing options in volatile markets.

Given the S&P 500 index’s pivotal role as a global financial benchmark, this thesis

aims to explore the calibration and empirical performance of the Heston and Bates models

when applied to S&P 500 index options. Through a comparative analysis, this research

seeks to assess the pricing accuracy, ability to capture market dynamics, and practical

applicability of both models. A key focus of the study is to evaluate whether the inclusion

of jumps in the Bates model offers a significant advantage in option pricing, particularly

in capturing sudden market shifts. The findings will provide insights into the limitations

and strengths of these models, contributing to both academic literature and informed

financial decision-making.
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CHAPTER 2

Literature Review

This chapter provides a comprehensive review of some foundational concepts and def-

initions relevant to this study. We begin by introducing key stochastic processes and

mathematical tools necessary for understanding option pricing models, including the He-

ston and Bates models. These initial definitions set the groundwork for the subsequent

discussion on stochastic volatility and jump-diffusion models.

The chapter will then focus on the Heston model, a widely-used stochastic volatility

model, followed by an exploration of its limitations, particularly in handling sudden price

jumps. To address these limitations, we introduce the Bates model, which extends the

Heston framework by incorporating jumps into the asset price dynamics. This extension

aims for a more comprehensive representation of real-world market behaviors, particularly

during periods of high volatility or significant price shifts.

2.1. Necessary Initial Definitions

Before delving into the specifics of the Heston and Bates models, it is essential to first

review some concepts used in their formulation. This section covers key stochastic pro-

cesses and transforms, such as martingale processes, Wiener processes, Poisson processes,

characteristic functions, and the Fourier transform.

2.1.1. Martingale Processes

AMartingale Process is a stochastic process where the future expected value of the process

is equal to its present value, conditional on all past information. Formally, a stochastic

process Mt, t ≥ 0, defined on a filtered probability space (Ω,Ft,P) is called a martingale

if it satisfies the following conditions:

(1) E[|Mt|] < ∞ for all t ≥ 0;

(2) Ms = E[Mt|Fs] for all s ≤ t, where Fs represents the information available up to

time s;

(3) The process Mt is adapted to the filtration Ft, meaning that the value of Mt at

time t only depends on information up to that time.

In simpler terms, a martingale is a process where the conditional expected value of

future observations, given the past and present, is always equal to the current value. This

property makes martingales particularly useful in the modeling of financial markets, where

no arbitrage opportunities are present, and price changes are considered to be ”fair” over

time.
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Martingales play a central role in modern probability theory, particularly in the context

of financial mathematics. They serve as the foundation for pricing derivative securities

and constructing hedging strategies, as the absence of arbitrage in financial markets is

closely related to the martingale property.

2.1.2. Wiener Processes

A Wiener process or Brownian motion is a real-valued stochastic process that plays a

key role in modeling continuous-time random behavior in financial markets. Formally, a

Wiener process Wt, t ≥ 0, is defined on a filtered probability space (Ω,Ft,P) and satisfies

the following conditions:

(1) W0 = 0, almost surely, meaning P(W0 = 0) = 1;

(2) W has independent increments, which implies that for any increasing sequence

of times t0, t1, . . . , tn, the random variables Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are

independent;

(3) W has stationary increments, meaning the distribution of Wt+h − Wt depends

only on h, and not on t;

(4) Wt ∼ N (0, t), meaning that the increments follow a normal (Gaussian) distribu-

tion with mean 0 and variance t.

It is possible to prove that this process is stochastically continuous and that it’s sample

path (trajectory) is continuous in t. This last property plays a critical role in the behavior

of diffusion models. However, as demonstrated by Cont and Tankov (2004), it becomes

less robust when jumps are introduced into the dynamics of asset prices. The Poisson

process, a fundamental example of a pure jump process, will be introduced next.

2.1.3. Poisson Processes

A Poisson process is a fundamental building block in jump-diffusion models, particularly

when modeling the random times at which jumps occur.

Let (τn)n∈N represent a sequence of random times, with each τn mapping from the

probability space Ω to the positive real line, R+. The counting process associated with

these random times is defined as:

N(t) =
∞∑
n=0

1τn≤t, (2.1)

where 1τn≤t is an indicator function, equal to 1 if τn ≤ t and 0 otherwise. This process

N(t) counts the number of random times smaller or equal to t.

A Poisson process with jump intensity λ > 0 is characterized by the probability

distribution:

P [N(t) = k] =
(λt)ke−λt

k!
, k ∈ N. (2.2)
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This counting process is generally not a martingale. However, it can be transformed

into a martingale by subtracting its expected value at time t, leading to the compensated

Poisson process:

NC(t) = N(t)− E[N(t)] = N(t)− λt. (2.3)

To model the jump sizes, we can extend the basic Poisson process by introducing a

compound Poisson process. Let (Yn)n∈N be a sequence of independent, identically dis-

tributed random variables representing the jump sizes, and N(t) as the Poisson process

that governs the jump times. The compound Poisson process is then defined as:

NY (t) =

N(t)∑
n=0

Yn. (2.4)

This extension allows for flexibility in financial modeling, enabling the inclusion of

different jump size distributions, such as normal or exponential distributions. In practice,

jump-diffusion models often use a combination of diffusion processes (captured by Brow-

nian motion) and jumps (captured by the Poisson process) to better represent sudden

market movements.

2.1.4. Characteristic Function

The characteristic function of a random variable X is defined as:

ϕX(t) = E[eitX ], (2.5)

where:

• ϕX(t) is the characteristic function;

• t is a real variable;

• E denotes the expected value;

• i is the imaginary unit (i2 = −1);

• X is the random variable.

The characteristic function has the following properties:

• ϕX(0) = 1 and |ϕX(t)| ≤ 1∀t ∈ R;
• The characteristic function always exists and is continuous;

• Random variables with the same characteristic function are identically distributed;

• It is possible to derive the moments of the random variable from ϕX(t).

When we say a characteristic function is in closed form, we mean that there is a direct

analytical expression for ϕX(t). For example, for a normally distributed random variable

X ∼ N(µ, σ2), the characteristic function has the following closed form:

ϕX(t) = eiµt−
1
2
σ2t2 . (2.6)
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This expression is direct and does not require integration or infinite sums to be calcu-

lated.

Having the characteristic function in closed form allows for efficient and precise option

pricing and other financial derivatives evaluations.

• Computational Efficiency: Allows for quick calculations by avoiding the need

for numerical integrations.

• Precision: Minimizes numerical errors that may occur in approximations or

integrations.

• Simplicity: Facilitates theoretical analysis and algorithm implementation.

2.1.5. The Fourier Transform

The Fourier transform is widely used in mathematical finance, especially for option pricing

models. There are several definitions but one of the most common forms encountered in

financial literature is the following:

f̂(u) =

∫ ∞

−∞
eiuxf(x) dx, (2.7)

where i =
√
−1 represents the imaginary unit. This form of the Fourier transform is

frequently used by researchers such as Carr and Madan (1999), Duffie, Pan, and Singleton

(2000), and others.

To recover the original function f(x), we use the inverse Fourier transform:

f(x) =
1

2π

∫ ∞

−∞
e−iuxf̂(u) du. (2.8)

Differentiation is straightforward with the Fourier transform, as it converts differenti-

ation into multiplication. For example, the Fourier transform of the first derivative f ′(x)

is given by:

f̂ ′(u) =

∫ ∞

−∞
eiuxf ′(x) dx = −iuf̂(u). (2.9)

Repeated application of integration by parts shows that the Fourier transform of the

n-th derivative of f is:

f̂ (n)(u) = (−iu)nf̂(u). (2.10)

This property makes Fourier transforms a powerful tool in the analysis and pricing of

financial derivatives.

2.2. Heston Model

In the two decades following its introduction in 1993, the Heston model has become one

of the most influential frameworks in the field of option pricing, particularly within the

paradigm of stochastic volatility modeling. To understand its prominence, it is necessary

to revisit a key event that reshaped financial markets: the stock market crash of October
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1987. This event exposed limitations in the Black-Scholes-Merton model, particularly in

its inability to handle the volatility skews and smiles that emerged post-crash. The Black-

Scholes-Merton framework assumes normally distributed returns with constant volatility,

a simplification that proved insufficient as empirical studies revealed more complex be-

havior in market data.

Market returns often exhibit skewness and kurtosis, characteristics such as ’fat tails’,

which deviate from normality, and volatility is known to fluctuate over time, typically

showing an inverse relationship with stock prices. As a result, many researchers sought

to address these shortcomings by incorporating time-varying volatility into their models.

One widely adopted approach is to allow volatility to follow its own stochastic process,

giving rise to stochastic volatility models, of which the Heston model is a key example.

Earlier models by Hull and White (1987), Wiggins (1987), Chensey and Scott (1989), and

Stein and Stein (1991) laid the foundation, but the Heston model has emerged as the

most important and widely used among them.

What sets the Heston model apart is its ability to generate option prices that reflect

skewness and kurtosis, while still allowing for an intuitive relationship between stock

prices and volatility. By introducing correlation between the processes driving the stock

price and its volatility, the Heston model is capable of reproducing the observed volatility

smiles and skews in a manner that aligns with real market conditions. Importantly, the

model offers a closed-form solution for option prices, which, although reliant on numerical

integration, remains computationally efficient and practical.

Another breakthrough of the Heston model lies in its use of characteristic functions for

option pricing. By focusing on the characteristic function of the terminal price distribution

rather than the distribution itself, the model initiated a new and more efficient approach

to pricing options, a methodology that has since become a cornerstone in financial math-

ematics. These factors collectively have cemented the Heston model as a benchmark in

stochastic volatility modeling, against which other models are often compared.

2.2.1. Assumptions of the Heston Model

The Heston model relies on several fundamental assumptions to simplify the complex

nature of option pricing. Below is a detailed look at these key assumptions:

(1) Geometric Brownian Motion: The model presumes that the underlying as-

set’s price follows a geometric Brownian motion, meaning that the logarithm of

the asset price evolves randomly over time.

(2) Stochastic Volatility: A distinctive feature of the Heston model is its treatment

of volatility as a stochastic process, where volatility is not fixed but instead

fluctuates according to its own random path over time.

(3) Mean Reversion: The volatility process in this model includes mean reversion,

suggesting that while volatility can deviate from its average level, it will eventu-

ally revert to a long-term equilibrium value. This assumption moderates extreme

changes in volatility.
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(4) Correlation between Returns and Volatility: There is an assumed cor-

relation between the asset’s returns and volatility changes, where large price

movements often coincide with increased volatility. This captures the tendency

of volatility to rise during periods of significant market activity.

(5) No Arbitrage: The model operates under the no-arbitrage condition, implying

that there are no opportunities for risk-free profit through trading strategies

involving the asset or its options.

(6) Constant Interest Rate: A constant risk-free interest rate is assumed through-

out the duration of the option, simplifying the discounting of future cash flows.

(7) Log-Normal Distribution: The asset price is assumed to follow a log-normal

distribution, consistent with the geometric Brownian motion assumption, and is

a common simplification in option pricing.

(8) Continuous Trading: The Heston model assumes that trading occurs continu-

ously in the underlying asset, without accounting for any sudden market jumps

or discontinuities.

(9) Efficient Market Hypothesis: The model presumes that the market is effi-

cient, meaning that all available information is instantly reflected in the asset’s

price, excluding the possibility of market inefficiencies or behavioral biases.

These assumptions are essential for the mathematical simplicity of the Heston model,

but they also come with limitations. While the model has become widely adopted, it is

crucial to understand the impact of these assumptions on its applicability to real-world

market conditions. As a result, practitioners and researchers often modify or extend the

Heston model to address specific market behaviors or data.

2.2.2. Mathematical Formulation of the Heston Model

Heston (1993) devised the stochastic volatility model for option pricing. The model as-

sumes that the underlying stock price, St, follows a Black-Scholes-Merton-type stochastic

process, but with a stochastic variance, vt, which is modeled by a Cox, Ingersoll, and Ross

(1985) process. Under the physical measure, the stochastic volatility model defines the

underlying asset process through the following bivariate system of stochastic differential

equations (SDEs):

dSt = µSt dt+
√
vtSt dW

S
t , (2.11)

dvt = κ(θ − vt) dt+ σ
√
vt dW

v
t , (2.12)

where:

• St is the price of the underlying asset at time t;

• vt is the instantaneous variance at time t;

• µ is the drift of the process for the stock;

• κ > 0 is the mean reversion speed for the variance;
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• θ > 0 is the mean reversion level for the variance;

• σ > 0 is the volatility of variance (volatility of volatility);

• v0 > the initial (time zero) level of the variance;

• W S
t and W v

t are two correlated Wiener processes with correlation ρ ∈ [−1, 1],

i.e.:

dW S
t dW

v
t = ρ dt. (2.13)

As shown above, this model treats the asset’s volatility as a stochastic process. This

approach enables the model to more accurately reflect the behavior of stock returns,

which often deviate from a normal distribution. It can account for features such as fat

tails and asymmetry in the distribution of returns.

2.2.3. Characteristic Function of the Heston Model

One of the advantages of the Heston Model is that the characteristic function of the

logarithm of the asset price can be expressed in closed form, which greatly facilitates the

evaluation of options via the Fourier transform. The closed-form characteristic function

for the Heston model can be obtained by the next theorem.

Theorem 2.1. Let Xt = log(St) represent the logarithm of the price variable. The

characteristic function of Xt, as presented by BañoRollin, FerreiroCastilla, and Utzet

(2009), is expressed as follows:

ϕT (u) = eA(u)+B(u)+C(u), (2.14)

where

A(u) = iu(X0 + rT ), (2.15)

B(u) = − (u2 + iu)(1− eϕ(u)T )v0
2ϕ(u)− (ϕ(u)− τ(u))(1− e−ϕ(u)T )

, (2.16)

C(u) = −kθ

ξ2

[
2 log

(
2ϕ(u)− (ϕ(u)− τ(u))(1− e−ϕ(u)T )

2ϕ(u)

)
+ (ϕ(u)− τ(u))T

]
, (2.17)

with τ(u) = k − iuρξ and ϕ(u) =
√
τ(u)2 + ξ2(u2 + iu).

2.2.4. Limitations and Critiques of the Heston Model

The Heston model, despite its significant contributions to option pricing, is not without

its limitations. One primary critique lies in the complexity of calibrating the model’s

parameters, which can be computationally intensive and prone to errors, particularly

when dealing with limited or noisy market data. Furthermore, the Heston model assumes

a constant mean reversion speed for volatility, which may not accurately capture the

variability in real-world market conditions.
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Another major drawback is the model’s failure to account for jumps or extreme events

in asset prices, as it assumes continuous price movements and a log-normal distribution.

This limits the model’s ability to capture real market phenomena such as sudden shocks,

which leads to inaccuracies in pricing options during times of high volatility or market

stress. Additionally, while the model assumes a constant risk-free interest rate, this does

not reflect the reality of fluctuating interest rates in financial markets.

In terms of practical application, the Heston model can be computationally demand-

ing, requiring significant resources for simulations, especially when applied to complex

financial instruments or for real-time decision-making. Moreover, the absence of closed-

form solutions in many cases necessitates the use of numerical methods, further compli-

cating its practical use.

Given these limitations, this thesis will now introduce a variation of the Heston model,

known as the Bates model, which incorporates jumps in asset prices. The Bates model

seeks to address some of the shortcomings of the Heston model by allowing for disconti-

nuities in asset prices, which can better capture extreme market events and enhance the

accuracy of option pricing under certain market conditions

2.3. Introduction of Jumps in the Heston Model

Having already discussed the limitations of the Heston model, particularly its inability

to capture extreme events due to the assumption of continuous asset price movements,

we now turn to an extension that addresses these shortcomings. While the Heston model

incorporates stochastic volatility, it assumes that asset prices move continuously, which

may not adequately reflect the reality of rare events such as market crashes or sharp price

swings. These events result in fat tails and asymmetries in return distributions, which

the Heston model alone struggles to model accurately. To overcome this limitation, we

will now introduce the Bates model.

2.3.1. The Bates Model

The Bates model extends the Heston model by incorporating a jump process modeled as

a compound Poisson process, that we defined in chapter 2, into the asset price dynamics.

This extension is designed to address one of the key limitations of the Heston model:

its inability to capture sudden and discrete price movements, such as market crashes or

significant downturns, which are common in real financial markets. These jumps are

often triggered by unexpected economic, political, or geopolitical events, leading to sharp

deviations from normal price behavior that the continuous framework of the Heston model

alone cannot adequately represent.

By combining stochastic volatility with a jump component, the Bates model offers

greater flexibility in modeling both the continuous fluctuations in asset prices and the

occurrence of extreme events. This enhanced framework allows the Bates model to more

accurately capture the skewness and fat tails observed in the distribution of asset returns,

features that are often reflected in the implied volatility surface. As a result, the Bates
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model is particularly effective in improving the pricing of options, especially in markets

where large price swings and volatility spikes are more prevalent.

In the following sections, we will explore the mathematical formulation of the Bates

model in detail, illustrating how the addition of jumps to the stochastic volatility process

aims to enhance its ability to model real-world financial data and improves upon the

Heston model’s option pricing capabilities.

2.3.2. Mathematical Formulation of the Bates Model

The dynamics of the underlying asset price St in the Bates model are governed by the

following stochastic differential equations (SDEs):

dSt = µSt dt+
√
vtSt dW

S
t + (Y − 1)St − dNt, (2.18)

dvt = κ(θ − vt) dt+ σ
√
vt dW

v
t , (2.19)

where:

• S(t) is the price of the underlying asset at time t;

• µ is the rate of return of the asset;

• V (t) is the stochastic volatility process, which follows the second SDE;

• κ is the speed of mean reversion of the variance;

• θ is the long-term variance;

• ν is the volatility of volatility (vol of vol);

• W1(t) and W2(t) are two correlated Wiener processes with correlation ρ;

• dN(t) is a Poisson process capturing the occurrence of jumps;

• Y is the jump size, which follows a log-normal distribution with parameters µJ

(mean jump size) and σJ (jump volatility);

• λ is the jump intensity, representing the average frequency of jumps over time.

2.3.3. Characteristic Function of the Bates Model

The characteristic function of the Bates model combines the characteristic function of the

Heston model, which describes the stochastic volatility, with a term that captures the

jump distribution, modeled as a Poisson process with log-normal jumps.

The characteristic function of the Bates model is expressed as:

ϕBates(u, t) = exp (ϕHeston(u, t) + λ (ϕJump(u)− 1)T ) , (2.20)

where:

• ϕHeston(u, t) is the characteristic function of the Heston model;

• ϕJump(u) is the jump characteristic function, given by:

ϕJump(u) = exp

(
iuµJ − 1

2
σ2
Ju

2

)
. (2.21)
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Here, µJ represents the average jump size, while σJ is the volatility associated with

jumps. The term λ represents the intensity of the Poisson process, describing the expected

frequency of jumps within the time interval T .
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CHAPTER 3

Methodology

3.1. Data Preparation

In order to compare the performance of the Bates and Heston models, S&P500 index call

option prices were utilized. The market data for the S&P500 index options, traded on ex-

changes such as the Chicago Board Options Exchange and the New York Stock Exchange

Arca Options, was sourced from the Refinitiv database. The analysis was conducted using

data from specific days from February 2021 to February 2022. We calibrated the models

with data from the days 2021-02-03, 2021-05-03, 2021-08-03, 2021-11-03 and 2022-02-03

in order to later forecast the days 2021-02-04, 2021-05-04, 2021-08-04, 2021-11-04 and

2022-02-04, respectively.

Moneyness is defined as the percentage difference between the current underlying price

and the strike price, calculated as:

Moneyness(%) =
S

K
.

For this analysis, moneyness is categorized as follows: OTM if S/K < 0.95, ATM if

0.95 ≤ S/K < 1.05, and ITM if S/K ≥ 1.05. Options that were significantly deep in-

the-money or deep out-of-the-money are less liquid and their market prices may deviate

substantially from their true values. Specifically, an option is classified as very deep in-

the-money when its moneyness exceeds 12%, and very deep out-of-the-money when its

moneyness falls below -12%. We excluded these type of options. Additionally, options

with fewer than 7 days or more than 180 days until expiration were excluded due to their

high sensitivity to liquidity-related biases.

Table 1 provides a summary of the in-sample properties of the S&P500 index options

used in this study, including the average call prices, standard deviation of the prices, the

total number of observations for each financial metric, and the time to maturity.
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Table 1.
Properties of the S&P500 index call options in-sample. The annotated num-
bers represent the average closing prices of the call options, the standard
deviation of the prices {provided in braces}, and the total number of ob-
servations (given in parentheses) for each category of moneyness and time
to maturity. S refers to the spot level of the S&P500 index, and K denotes
the strike price. ITM, ATM, and OTM correspond to in-the-money, at-the-
money, and out-of-the-money options, respectively.

Moneyness (S/K) τ < 1 month 1 ≤ τ < 3 months τ ≥ 3 months

0.4174 8.0655 36.5964

OTM < 0.95 {0.6029} {8.4699} {22.4696}

(197) (404) (488)

69.0310 114.3557 180.9689

ATM [0.95, 1.05[ {68.0045} {76.3940} {79.7588}

(435) (769) (883)

339.4929 373.4587 427.4420

ITM ≥ 1.05 {74.1654} {70.4385} {66.4807}

(255) (452) (523)

3.2. Procedures

We used the implementation of the Heston and Bates models for pricing S&P 500 in-

dex options using the Attari (2004) approach. This method provides an alternative to

traditional Fourier-based pricing models by reducing the calculation to a single numer-

ical integration, which results in a significant improvement in computational efficiency

while maintaining accuracy. Attari’s method builds upon earlier work by Lewis (2001),

offering a more straightforward approach for computing option prices by leveraging the

characteristic function of the underlying asset’s log return.

3.2.1. Attari (2004) Representation

The terminal stock price under the risk-neutral measure will be expressed as:

ST = Ste
rτ+x(t,T ),

where x(t, T ) denotes the stochastic component of the stock price process. The call price

is given by:

C(K) = e−rτEQ[ST |ST > K]−Ke−rτEQ[1ST>K ]. (3.1)

For the sake of simplicity, we assume a zero dividend yield. The formula (3.1) can be

rewritten in terms of expectations of the stochastic variable x, which leads to:
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C(K) = e−rτEQ[ST |ST > K]−Ke−rτEQ[1ST>K ]

= StE
Q[ex|x > ζ]−Ke−rτEQ[1x>ζ ] (3.2)

= StΦ1 −Ke−rτΦ2,

where ζ = ln
(

Ke−rτ

St

)
. The two expectations, EQ[e

x|x > ζ] and EQ[1x>ζ ], are taken under

the risk-neutral density for x, q(x). These expectations lead to two probability terms:

Φ1 = EQ[ex|x > ζ] =

∫ ∞

ζ

exq(x) dx =

∫ ∞

ζ

p(x) dx. (3.3)

Φ2 = EQ[1x>ζ ] =

∫ ∞

ζ

q(x) dx.

Since exq(x) > 0 and 0 ≤ Φ1 ≤ 1, then p(x) = exq(x) can be the density function. The

characteristic functions for q(x) and p(x) are denoted as φ2(u) and φ1(u), respectively.

Using the relationship between these characteristic functions, we have:

φ1(u) =

∫ ∞

−∞
eiuxp(x) dx =

∫ ∞

−∞
eiuxexq(x) dx =

∫ ∞

−∞
ei(u−i)xq(x) dx = φ2(u− i). (3.4)

This allows the computation of the call price to be transformed into integrals involving

the characteristic function. Specifically, having in consideration that we can express

Pr(lnST > k), where k = Ln(K), using the density:

Pr(lnST > k) =

∫ ∞

k

f(x)dx =
1

2π

∫ ∞

k

(∫ ∞

−∞
e−iuxφ(u)du

)
dx

=
1

2π

∫ ∞

−∞
φ(u)

(∫ ∞

k

e−iuxdx

)
du.

The first expectation Φ1 can then be written as:

Φ1 =
1

2π

∫ ∞

−∞
φ1(v)

(∫ ∞

ζ

e−ivx dx

)
dv =

1

2π

∫ ∞

−∞
φ2(v − i)

(∫ ∞

ζ

e−ivx dx

)
dv. (3.5)

Substitute the change of variable u = v − i in function (3.5):

Φ1 =
1

2π

∫ ∞

−∞
φ2(u)

(∫ ∞

ζ

e−i(u+i)x dx

)
du. (3.6)

By performing a change of variables and simplifying the inner integral, this becomes:

Φ1 =
eζ

2π

∫ ∞

−∞

φ2(u)e
−iuζ

i(u+ i)
du+ 1. (3.7)

For the second expectation Φ2, we use the Gil-Pelaez (1951) formula
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Pr(lnST > k) =
1

2
+

1

2π

∫ ∞

−∞
φ(u)

e−iuk

iu
du,

which leads to:

Φ2 =
1

2
+

1

2π

∫ ∞

−∞

φ2(u)e
−iuζ

iu
du. (3.8)

Substituting these into the call price (3.2) equation results in:

C(K) = St

[
1 +

eζ

2π

∫ ∞

−∞

φ2(u)e
−iuζ

i(u+ i)
du

]
−Ke−rτ

[
1

2
+

1

2π

∫ ∞

−∞

φ2(u)e
−iuζ

iu
du

]
. (3.9)

If we substitute ζ = ln
(

Ke−rτ

St

)
and use the fact that we only need to consider the

real part of the integrals, we obtain:

C(K) = St −
Ke−rτ

2
− Ke−rτ

π

∫ ∞

0

ℜ
[
φ2(u)e

−iuζ

(
1

iu
− 1

i(u+ i)

)]
du. (3.10)

In the bracketed term of the last integral in Equation (3.37), multiply the second

fraction by u− i in the numerator and denominator. The integrand becomes

ℜ
[
φ2(u)e

−iuζ

(
1− i/u

u2 + 1

)]
. (3.11)

Now expand φ2(u) = R2(u)+iI2(u), where R2(u) and I2(u) are the real and imaginary

parts of φ2(u), respectively, and expand e−iuζ = cos(uζ) − i sin(uζ). Substitute into the

integrand (3.38) and regroup the real terms. The integrand becomes

A(u) =
R2(u) + I2(u)/u

1 + u2
cos(uζ) +

I2(u)−R2(u)/u

1 + u2
sin(uζ). (3.12)

Attari’s (2004) formula for the call price is, therefore:

C(K) = St −
1

2
Ke−rτ −Ke−rτ 1

π

∫ ∞

0

A(u) du. (3.13)

This formulation is particularly efficient because it reduces the problem of pricing a

European call option to a single numerical integration, which can be handled effectively

using numerical methods like Gauss-Laguerre quadrature.

3.2.2. Numerical Integration and Implementation

The implementation was performed using Python, with adaptations based on code pro-

vided by Rouah (2013) and by Kienitz and Wetterau (2012). For both the Heston

and Bates models, the integral formulations derived above were computed using Gauss-

Laguerre quadrature, a numerical method that is particularly well-suited for handling

integrals over infinite domains. The integrand decays rapidly as u increases, allowing the

integral to be truncated efficiently without losing accuracy.
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3.2.3. Calibration

Both models were calibrated using S&P 500 Index call option data, with the calibration

process aimed at minimizing the Root Mean Squared Error (RMSE). It is calculated as

follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Pobserved,i − Ppredicted,i)
2, (3.1)

where:

• Pobserved,i is the observed option price;

• Ppredicted,i is the predicted option price from the model;

• n is the total number of observations.

3.3. Forecasting Accuracy

To assess whether there were significant differences in the forecasting accuracy between the

models, Heston and Bates, we conducted statistical tests. Specifically, we compared the

mean squared errors of the forecasts using two well-known methods: The Diebold-Mariano

(DM) test and the Wilcoxon Signed-Rank (WS) test (Diebold and Mariano, 1995). These

tests allowed us to evaluate if the observed differences in forecasting performance of both

models were statistically significant.

3.3.1. Diabold Mariano Test

The Diebold-Mariano (DM) test is used to evaluate whether there are significant differ-

ences in the predictive accuracy of two competing forecasting models.

Following Park, Kim, and Lee (2014), we define the series of forecasting errors as

follows:

et,i = ŷt,i − yt for i = 1, 2,

where yt represents the actual option prices of the time series and ŷt,i corresponds to the

forecasted values. To compare the forecasting performance of the two models, we calculate

the difference in the errors using a loss function h(.). We will be using the squared-error

loss function which gives us:

dt = h(et,1)− h(et,2) = e2t,1 − e2t,2.

The null hypothesis of the DM test is:

H0 : E(dt) = 0,

implying that there is no significant difference between the forecasting errors of the two

models. The test statistic is computed as:

DM =
d√

2πf̂d(0)/T
,
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where d =
∑T

t=1(h(et,1)− h(et,2))/T and f̂d(0) is the spectral density of dt.

3.3.2. Wilcoxon Signed Tank Test

The Wilcoxon Signed Rank Test is a non-parametric statistical test used to compare

paired observations. The null hypothesis of the test is:

H0 : Median(dt) = 0,

where dt represents the difference in forecasting errors at time t. The Wilcoxon test is

based on the ranks of the differences, testing whether the median of these differences is

significantly different from zero. The test statistic is given by:

WS =
T∑
t=1

I+(dt)Rank(|dt|),

where:

I+(dt) =

1 if dt > 0

0 otherwise
.
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CHAPTER 4

Results

This chapter outlines the findings from the comparative analysis between the Heston and

Bates models. It covers a detailed discussion of the performance evaluation metrics, and

the statistical tests employed to assess the effectiveness of both models.

4.1. Forecasting Performance

Table 2 presents the RMSE values obtained on the forecasts done for each model, catego-

rized by sample groups. The columns are organized by ’days to expiration,’ and moneyness

is represented as S/K. The best performance in each category is highlighted in bold.

Table 2. RMSE values obtained forecasting with each model, categorized
by moneyness and time-to-maturity.

Moneyness (S/K) Model τ < 1 month 1 ≤ τ < 3 months τ ≥ 3 months

< 0.95 Heston 0.5796 1.5500 4.0715

Bates 0.8539 1.6139 4.0011

[0.95, 1.05[ Heston 5.9338 6.3584 6.9336

Bates 5.9047 6.4258 6.9252

≥ 1.05 Heston 2.7480 5.0031 6.2874

Bates 2.4958 4.9149 6.2419

For out-of-the-money (OTM) options (S/K < 0.95), the Heston model demonstrates

superior accuracy for shorter maturities, achieving a lower RMSE of 0.5796 compared to

the Bates model’s 0.8539. For maturities between 1 and 3 months, the Heston model

continues to outperform with an RMSE of 1.5500, while the Bates model’s RMSE is

1.6139. For longer maturities (above 3 months), the Bates model shows a slight edge,

with an RMSE of 4.0011 versus 4.0715 for the Heston model. These results suggest that

the Heston model is more accurate in pricing OTM options for shorter maturities, while

the Bates model becomes more effective for extended periods.

For at-the-money (ATM) options (0.95 ≤ S/K < 1.05), both models show a compa-

rable performance for maturities shorter than one month, with the Bates model delivering

a slightly lower RMSE of 5.9047 for compared to 5.9338 for the Heston model. In the

1 to 3-month maturity range, the Heston model marginally outperforms with an RMSE

of 6.3584, while the Bates model follows closely with an RMSE of 6.4258. For longer

maturities (over 3 months), both models perform similarly, with RMSE values of 6.9336
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and 6.9252 for the Heston and Bates models, respectively. These results indicate that for

ATM options, both models perform similarly across all maturities, with a slight advantage

for the Heston model in the 1 to 3-month maturity range.

For in-the-money (ITM) options (S/K ≥ 1.05), the Bates model consistently out-

performs the Heston model across all maturity categories. For maturities under one

month, the Bates model records a lower RMSE of 2.4958, compared to 2.7480 for the

Heston model. In the 1 to 3-month range, the Bates model again demonstrates superior

accuracy with an RMSE of 4.9149, compared to the Heston model’s RMSE of 5.0031. For

longer maturities, the Bates model maintains its lead, showing an RMSE of 6.2419 versus

6.2874 for the Heston model. This suggests that the Bates model is a stronger choice for

pricing ITM options.

In summary, these results suggest that the Heston model generally provides better

accuracy forOTM options at shorter maturities, while the Bates model is more effective

for longer maturities in these options. For ATM options, both models perform similarly

with minor variations, and the Bates model shows a consistent advantage for ITM

options, regardless of maturity.

4.1.1. Results of the Statistical Tests

Table 3 presents the comparison statistics for pricing errors between the Heston and Bates

models. It provides the p-values at the 95% significance level, indicating whether there is

a statistically significant difference between the two models. The DM-test and WS-test

refer to the p-values obtained from the Diebold-Mariano and Wilcoxon Signed-Rank tests,

respectively. Significant results at α = 0.05 are highlighted in bold.

Table 3. Comparison statistics for pricing errors. The table provides p-
values at the 95% significance level to evaluate the difference between the
Heston and Bates models.

Moneyness (S/K) Test τ < 1 month 1 ≤ τ < 3 months τ ≥ 3 months

< 0.95 DM 0.0000 0.0494 0.0030

WS 0.0000 0.0347 0.0000

[0.95, 1.05[ DM 0.2272 0.0000 0.2449

WS 0.0093 0.0002 0.0000

≥ 1.05 DM 0.0000 0.0000 0.0000

WS 0.0000 0.0000 0.0000

The results of both the Diebold-Mariano (DM) test and the Wilcoxon signed-rank

(WS) test provide statistical evidence of significant differences in forecasting performance

20



between the Heston and Bates models across various categories of moneyness and time-

to-maturity.

For OTM options (S/K < 0.95), the DM test shows highly significant results for

maturities below 1 month and above 3 months, with p-values of 0.0000 and 0.0030, re-

spectively. For the maturity range of 1 to 3 months, the p-value is 0.0494, which is just

within the significance threshold, suggesting a significant difference less marked. The WS

test also reveals significance across all maturities, with p-values of 0.0000 for maturities

shorter than 1 month and above 3 months, and a p-value of 0.0347 for the 1 to 3 months

range. These results indicate that for OTM options, both tests suggest statistically sig-

nificant differences between the Heston and Bates models for all maturities, although the

level of significance is less pronounced in the intermediate maturity range.

For ATM options (0.95 ≤ S/K < 1.05), the DM test shows a significant difference

only for maturities between 1 and 3 months, with a p-value of 0.0000. For shorter (below

1 month) and longer (above 3 months) maturities, the p-values are 0.2272 and 0.2449,

respectively, which are above the 0.05 threshold, indicating no statistically significant

difference between the models in these categories. Conversely, the WS test shows a

significant difference for all maturities, with p-values of 0.0093, 0.0002, and 0.0000 for the

three maturity intervals, respectively. This implies that for ATM options, the DM test

identifies significant differences only in the intermediate maturity range, while the WS

test suggests significant differences across all maturities.

For ITM options (S/K ≥ 1.05), both the DM and WS tests indicate significant

differences across all maturity categories, with p-values of 0.0000 in each case. This

suggests a highly significant difference between the Heston and Bates models for ITM

options, regardless of time-to-maturity.

In summary, the results highlight considerable differences in the forecasting perfor-

mance of the Heston and Bates models, particularly for OTM and ITM options.
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CHAPTER 5

Conclusions

In conclusion, the empirical comparison between the Heston and Bates models in the con-

text of S&P 500 index options has provided important insights into the pricing dynamics

of these sophisticated financial instruments. This thesis has thoroughly explored both

models, highlighting their relative strengths and weaknesses through a detailed analysis

of real market data.

Our findings indicate that the Heston model demonstrates better performance in

capturing the pricing dynamics of out-of-the-money (OTM) options with small maturities.

The model’s ability to account for time-varying volatility allows for a more accurate rep-

resentation of option prices, particularly during periods of increased volatility. However,

despite its effectiveness, the complexity and computational demands of the Heston model

remain a key consideration, especially when used in real-time trading or risk management

applications.

The introduction of jumps in the Bates model was intended to enhance pricing

accuracy by incorporating sudden market shifts. The results suggest that the Bates

model provides an improvement for in-the-money (ITM) options, particularly for short-

term maturities. However, for at-the-money (ATM) options, the Bates model does not

appear to offer significant advantages over the Heston model, suggesting that the added

complexity of jump modeling may only yield meaningful benefits in markets experiencing

extreme volatility or frequent abrupt price movements.

Additionally, this research has underscored the importance of accurate calibration

and parameter estimation for both models. Poorly calibrated parameters can lead to

significant pricing errors, diminishing the theoretical advantages of these advanced mod-

els. Moreover, the computational efficiency of the numerical methods used to solve the

models’ equations can substantially impact their practical applicability, especially in high-

frequency trading environments.

In summary, the choice between the Heston and Bates models largely depends on

the specific requirements of market participants. While the Bates model may be advan-

tageous in markets with frequent large jumps, the Heston model remains a robust and

computationally efficient choice for most practical applications. Investors, risk managers,

and traders should carefully evaluate the trade-offs between model complexity and per-

formance, selecting the approach that best aligns with the market environment and the

characteristics of the options being priced.
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