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Resumo 
 

A métrica de medição de risco mais geralmente usada, o Value-at-Risk (VaR), subestima o 

risco que os investidores e as instituições enfrentam ao assumir a existência de mercados 

perfeitos, onde os preços dos ativos não são impactados pelas ações dos agentes de mercado. 

Na prática, tanto os investidores como as instituições enfrentam uma miríade de riscos que não 

são completamente capturados pela estimação tradicional do VaR, a qual considera apenas risco 

de mercado. Nesta dissertação exploramos como se conseguem produzir resultados mais 

precisos para ativos ilíquidos ao medir e incorporar o risco de liquidez na estimação do VaR. 

Deste modo, utilizamos os modelos Generalized Auto Regressive Conditional 

Heteroskedasticity (GARCH), student t GARCH, e o Fractionally Integrated GARCH 

(FIGARCH) de modelação de volatilitidade para o cálculo do VaR. Além disso, uma vez que a 

literatura sobre o VaR ajustado pela liquidez tende a focar-se no VaR normal paramétrico, 

expandimos a análise para incluir os modelos volatility-adjusted historical VaR e Monte Carlo 

VaR. A performance de cada modelo é avaliada através de um backtest usando os testes 

Unconditional Coverage e BCP. Os resultados deste estudo demonstram que ignorar o efeito 

da liquidez pode levar à subestimação do risco em ativos ilíquidos. 
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Abstract 
 

The industry standard risk measurement metric, the Value-at-Risk (VaR), understates the actual 

risk investors and institutions face by assuming perfect markets, where asset prices are 

unaffected by market players’ actions. In practice, investors and institutions are faced with a 

multitude of risks which aren’t fully captured with the standard VaR estimation approach, 

which solely captures market risk. In this dissertation we’ll explore how modelling liquidity 

risk and incorporating it into the VaR estimation can produce more accurate measurements of 

risk for illiquid assets. We’ll use the standard Generalized Auto Regressive Conditional 

Heteroskedasticity (GARCH) volatility model, as well as the student t GARCH and the 

Fractionally Integrated GARCH (FIGARCH) for the VaR estimation. Furthermore, since the 

liquidity-adjusted VaR literature tends to focus on the parametric normal VaR model, we extend 

the analysis to include the volatility-adjusted historical VaR and Monte Carlo VaR models. 

Each model’s performance will be assessed though a backtest using the Unconditional 

Coverage and BCP test. The results from this study show that ignoring the liquidity effect can 

produce an underestimation of risk for illiquid assets. 
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Introduction 

With each passing year, financial institutions are faced with ever-increasing regulations that 

reflect the highly volatile and complex environment in which they operate. Regulators 

worldwide continue to strengthen their oversight and control, as even small disruptions can 

create financial instability (Allen et al., 2018). This instability arises from the complex and 

interconnected ecosystem of the markets in which these institutions operate. 

Financial institutions face a myriad of risks, some undiversifiable, such as market risk, 

which is shared by all market makers, and some which can be mitigated through enough 

operational scrutiny, such as liquidity risk or operational risk. Regulatory bodies aim to 

strengthen the operational infrastructure of these institutions to ensure that they maintain sound 

risk management practices, such as imposing regulatory capital requirements, liquidity 

provisions requirements, stress testing requirements, among others. 

This dissertation will focus on the modelling of market risk, which arises from the 

fluctuations in market prices of financial assets. The foremost standard metric to measure 

market risk is the Value-at-Risk (VaR), used by banks, investors, and other financial 

practitioners worldwide. It can be defined as a statistical measure that indicates the potential 

loss limit of an asset/portfolio that may be breached given a pre-determined confidence level 

over a given future time horizon (Alexander, 2009). One of the main drawbacks of the VaR is 

that it is estimated under the assumption of perfect markets, wherein investors have no influence 

over asset prices, and as such understates the actual risks institutions and investors face, such 

as credit risk, liquidity risk, among others. 

Our main focus will be to implement the cost of the liquidity risk into the VaR. We will 

compute the percentual VaR for two portfolios, one denoted as the illiquid portfolio and another 

denoted as the liquid portfolio. Each of the portfolios is comprised of 10 stocks of U.S. equity, 

all equally weighted, which were chosen based on their intraday traded volume for a period of 

10 years, from 2nd January 2014 to 31st December 2023. The stocks with the lowest traded 

volume will be part of the illiquid portfolio and those with the highest traded volume will be 

part of the liquid portfolio. We expect assets with low trading activity to present higher 

illiquidity, as there are fewer buyers and sellers that are actively participating in their market. 

Since the liquidity is scarcer, we expect their bid-ask spread to be larger than for actively traded 

assets, and as such we will be using the bid-ask spread to measure the added cost of liquidity 

that an investor or institution would face if they were to hold these assets. Our end goal is to 

understand whether including the cost of liquidity in the VaR estimation provides more accurate 
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results for illiquid assets and reduces in a significant way the exceedances of the VaR models, 

where an exceedance is defined as every instance where the observed portfolio loss is lower 

than the VaR estimate for that same day (Alexander, 2009). 

To estimate the VaR, we must first model the volatility of the returns. We will be estimating 

the volatility through three different models: the GARCH, the student t GARCH and the 

FIGARCH models. 

Next, we estimate the VaR using three different models: the parametric normal VaR, the 

volatility-adjusted historical VaR, and the Monte Carlo VaR. The cost of liquidity is computed 

using the relative portfolio bid-ask spread and is then added to the VaR estimates to obtain the 

liquidity adjusted VaR. As such, we will be evaluating 9 different models, as each VaR model 

is computed using each of the three differing volatilities. Each of the 9 models is estimated 

twice, once as the non-adjusted VaR, and another as the liquidity adjusted VaR. 

Finally, we will perform a backtest to assess each model’s performance. Using the 

Unconditional Coverage (UC) test developed by Kupiec (1995), we will determine whether the 

number of exceedances of each model falls in line with the expected exceedance rate. The 

exceedance rate is the most useful indicator to measure a model’s validity since it holds 

significant regulatory importance and is a direct measure of risk (Jorion, 2006). Additionally, 

for those models that passed the UC test, we will be computing the BCP test (Berkowitz et al., 

2011) to test the autocorrelation of the exceedances, from lag 1 up to lag 5. 

Results show that incoporating the cost of liquidity into the VaR substantially decreases the 

number of exceedances presented by the illiquid portfolio for all models, while not having as 

substantial an impact on the liquid portfolio models. Furthermore, some non-adjusted VaR 

models that were rejected by the UC test are accepted once the liquidity component is included 

in the VaR estimation. 

This dissertation is organized as follows: Chapter 1 covers the most relevant literature; 

Chapter 2 presents the data and portfolio details; Chapter 3 presents all the methodology 

employed; and Chapter 4 reveals the result of the backtest and the model selection. 
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1. Literature review 

1.1. Liquidity 

Many consider a perfectly liquid market one in which a security can be easily traded into cash 

without incurring in additional costs. Kyle (1985) expanded this notion by taking into account 

three transactional properties of markets that impact a continuous auction equilibrium: 

“tightness”, the cost of liquidating a position in a short amount of time; “depth”, being able to 

buy/sell any given amount of a security beyond the bid-ask spread; and “resiliency”, the speed 

from which prices recover from a random shock. This heuristic study of liquidity was based on 

Black’s (1971) definition and study of liquid markets. Considering the three transactional 

properties of markets developed by Kyle (1985), Black’s perfectly liquid market should be 

infinitely tight, not infinitely deep, and resilient enough so that prices tend to their underlying 

value. 

Risk refers to the uncertainty of future outcomes. In order to understand the future value of 

an asset or portfolio, modelling and hedging risk is essential. The most commonly used metric 

for measuring market risk is the Value-at-Risk (VaR). It is a statistical measure that indicates a 

loss threshold of an asset/portfolio that may be breached given a pre-defined confidence level, 

over a selected time horizon (Alexander, 2009). The standard VaR model assumes infinite depth 

and perfect markets, wherein market makers have no influence over the prices of traded assets. 

By failing to account for the impact of liquidating a position, the standard VaR understates 

actual risk by ignoring the depth, tightness, and resiliency of liquidity. 

According to Bangia et al. (2008), quantifying liquidity can be approached from an 

endogenous or exogenous perspective. Endogenous liquidity arises from the interactions 

between market participants and is influenced by the size of the position held, while exogenous 

liquidity is the result of market characteristics and is shared by all market players, unaffected 

by the actions of any one agent. 

Endogenous models focus on optimal executions strategies with fixed or floating intraday 

time horizons to solve for the liquidation problem. However, the implementation of most 

endogenous models is not straightforward due to their complexity and can be quite 

computationally intensive. Conversely, exogenous models are easier to implement, as they 

assume that market makers are atomistic by nature, not having any impact on prices regardless 

of the quantities sold. In a practical context however, the existence of adverse selection and 

moral hazard leads to the classic lemons problem: as progressively more quantities of an asset 

are sold, the market will suspect that the reason behind the selling is not inherently positive.  
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1.2. Endogenous models 

An ad hoc measure to account for the liquidity component in the VaR is an increase of the time 

horizon, that is, extending the holding period of less liquid positions by assuming that a 

lumpsum sale at the end of the liquidation period will occur. This method was proposed and 

used by JPMorgan in its RiskmetricsTM model (J.P. Morgan and Reuters, 1996).  

If the log prices are independent and follow an elliptical distribution, the 1-day VaR can be 

upscaled to any 𝑡-day horizon by multiplying it by the square root of 𝑡. 

Adjusting upwards the time horizon ultimately reflects a subjective estimate of the 

liquidation period. Random shocks in the market can increase the illiquidity of an asset, and the 

time scaling modification to the VaR may underestimate potential losses. Furthermore, this 

method assumes that all the assets of a portfolio will be linearly liquidated over the same time 

period, not taking into consideration that each asset has a different level of liquidity. Lastly, this 

method does not consider that market makers can liquidate small portions of their portfolios on 

a daily basis, instead assuming that the liquidation of their entire position occurs at the end of 

a pre-specified period. 

Al Janabi (2008) developed a practical improvement over the square root of time 

modification when applied to a closed-form parametric VaR.  The author proposes the existence 

of a liquidity threshold, chosen by the trader, to measure which assets can be deemed liquid and 

illiquid. As such, liquidity is measured and driven by the size of the position. If the par value 

of an asset is 𝑛 times larger than the liquidity threshold, then the unwinding of the position will 

be affected by market risk variations for the additional 𝑡 days it will take to entirely liquidate 

the position. 

In the case of uncertainty when choosing an appropriate time horizon to scale the VaR, the 

scaling factor 𝑡 can be defined as a function of the trading volume of an asset such that: 

𝑡 =
𝑇𝑂𝑇𝐴𝐿 𝑇𝑅𝐴𝐷𝐼𝑁𝐺 𝑃𝑂𝑆𝐼𝑇𝐼𝑂𝑁 𝑆𝐼𝑍𝐸 𝑂𝐹 𝐴𝑆𝑆𝐸𝑇

𝐷𝐴𝐼𝐿𝑌 𝑇𝑅𝐴𝐷𝐼𝑁𝐺 𝑉𝑂𝐿𝑈𝑀𝐸 𝑂𝐹 𝐴𝑆𝑆𝐸𝑇
(1) 

Accordingly, the liquidity risk factor (overnight standard deviation of the illiquid position) 

is: 

𝜎𝑎𝑑𝑗 = 𝜎𝑡 (√
(2𝑡 + 1)(𝑡 + 1)

6𝑡
) (2) 

where 𝜎𝑡 is the 𝑡-day standard deviation and 𝑡 is the number of liquidation days defined in 

Equation 1. 
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We can then compute the liquidity adjusted VaR as: 

𝐿 − 𝑉𝑎𝑅𝑡 = 𝑉𝑎𝑅𝑡 ∗ √
(2𝑡 + 1)(𝑡 + 1)

6𝑡
(3) 

Al Janabi (2008) highlights several advantages of this model over the standard square root 

of time rule. Firstly, when 𝑡 > 1, 𝐿 − 𝑉𝑎𝑅𝑡 > 𝑉𝑎𝑅𝑡, since illiquid positions are exposed for a 

longer period of time to market risk. The difference between both corresponds to the residual 

market risk that remains when a position cannot be fully unwound due to illiquidity (Al Janabi, 

2008). Furthermore, in the case that we are computing the VaR for a single day (𝑡 = 1), then 

𝐿 − 𝑉𝑎𝑅𝑡 = 𝑉𝑎𝑅𝑡. Finally, the position is unwound at the rate that the market conditions are 

optimal, to effectively quantify liquidity effects. 

 

1.3. Exogenous models 

Berkowitz (2000) proposes that when the downward sloping demand curve is used to model 

the liquidity effect, the effect quantities have on prices cannot be separated, ensuring that both 

variables cannot be assessed independently. The author approached the modelling of the 

exogenous liquidity risk component not as a function of time, but through the downward sloping 

demand curve of assets. This exogenous liquidity risk is modelled through the assumption that 

a firm intends to raise a certain amount of cash to meet their obligations and recurs to the sale 

of assets to raise that cash. The issue ultimately becomes a maximization problem, where the 

portfolio owner must sell a given amount of assets 𝑀𝑡, during a given time horizon 𝑡, by 

affecting as little as possible the overall portfolio value: 

max
{𝑞𝑡}

𝐸𝑡 [∑ 𝑝𝑡𝑞𝑡

𝑇

𝑡

]  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑞𝑡 =

𝑇

𝑡

𝑀𝑡 (4) 

where 𝑝𝑡 is the price of the asset at time 𝑡 and 𝑞𝑡 is the quantity of the asset sold at time 𝑡. 

Bertsimas and Lo (1998) show that the optimal solution to the problem of maximization is to 

sell 𝑞𝑡
∗, which is obtained through:  

𝑞𝑡
∗ =

𝑀

𝑡
(5) 

After orderly liquidation, the asset’s price will depress due to, on the one hand, market-

wide factors shared by all market makers (𝑥𝑡), and on the other hand, possible shocks resulting 

from the market’s reaction to the firm’s actions (−𝜃𝑞𝑡
∗). Hence, in equilibrium: 

𝑝̂𝑡+1 = 𝑝𝑡 + 𝑥𝑡+1 − 𝜃𝑞𝑡
∗ (6) 
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The objective of the portfolio manager thus becomes to forecast the portfolio’s value after 

the sale of the assets occurs: 

𝑦̂𝑡+1 = 𝑄𝑡
′𝑝𝑡+1

′ = 𝑄𝑡
′(𝑝𝑡

′ + 𝑥𝑡+1 − 𝜃𝑞′𝑡
∗) (7) 

where 𝑄𝑡
′ is an 𝑁 × 1 vector of asset positions, 𝑝𝑡

′ is the 𝑁 × 1 vector of asset prices at 

equilibrium, and 𝑞′𝑡
∗ is the 𝑁 × 1 vector of asset quantities that must be sold to obtain profit 

maximization. Furthermore, 𝑄𝑡
′(𝑝𝑡 + 𝑥𝑡+1) represents the market risk component of portfolio 

risk, accounting for changes in asset values due to market movements shared by all market 

participants, and 𝑄𝑡
′(−𝜃𝑞𝑡

∗) measures the possible price drops from the market reaction to the 

asset sales (Berkowitz, 2000). 

Through a simple linear regression, it’s possible to obtain the values of the liquidity 

component 𝜃𝑞𝑡 and its variance, the latter being incorporated into the VaR model. 

Bangia et al. (2008) proposed modelling order processing costs to measure the exogenous 

liquidity risk faced by all market makers. The authors identified two distinct types of liquidity 

risk: exogenous and endogenous illiquidity. Endogenous illiquidity can be controlled by market 

makers and is defined as being the result of the sudden unloading of large positions that the 

market cannot easily absorb. This effect is driven by the size of the position – the larger the 

size, the larger the illiquidity, as transforming such a large position into cash would prove 

progressively more difficult. On the other hand, exogenous illiquidity is common to all market 

participants and is undiversifiable. This exogenous liquidity risk can be observed through the 

bid-ask spread. The costs arising from market transactions ultimately dictate how much a trader 

is willing to buy or sell a given asset, thus influencing the bid and ask prices in the market. 

As such, investors are faced with two types of risk: market risk, which is undiversifiable; 

and liquidity risk, which can in turn be separated into exogenous and endogenous illiquidity. 

Bangia et al. (2008) measure exogenous illiquidity and incorporate it into the VaR model 

through the bid-ask spread. 

When trying to liquidate a position quickly, or in adverse market conditions, traders don’t 

realize the mid-price when closing their order, they realize the mid-price minus the bid-ask 

spread (Bangia et al., 2008). Under this condition, mark to market pricing understates the actual 

risks faced as it assumes that all positions will be closed at the mid-price. According to Bangia 

et al. (2008), the key to implementing exogenous illiquidity into the standard VaR is to model 

the distribution of the deviation of the actual closing price from the mid-price. 

If the size of the position to be liquidated is lower than the quote depth, then a transaction 

is closed at the quote price, with a cost of immediate execution of half of the bid-ask spread. 
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Since the market has enough open orders to match the position that is going to be sold, the 

transaction will only be affected by exogenous risk. 

However, if the size of the position to be sold is higher than the quote depth, then the cost 

of the trade will be higher than the observable bid-ask spread. Furthermore, since endogenous 

risk is driven by the size of a position, this trade will be impacted by both exogenous and 

endogenous illiquidity. 

Figure 1.1 shows the relationship between the total position size and the liquidation price. 

As the position size increases, the liquidation will be increasingly affected by endogenous 

illiquidity, which can be identified by a larger bid-ask spread, and the cost of the trade will be 

higher than the observable bid-ask spread. 

 

Figure 1.1 

Effect of position size on liquidation value 

 

Note. Retrieved from Bangia et al. (2008). Modeling Liquidity Risk with Implications for 

Traditional Market Risk Measurement and Management. NYU Working Paper No. FIN-99-

062. 

 

To illustrate the computation of the VaR, we will be focusing on the standard parametric 

normal VaR model, which is further described in Section 3.2. alongside the other VaR models 

that are used in our case study. As such, the 100𝛼% parametric normal VaR is defined as: 

𝑉𝑎𝑅𝑡,𝛼 = −Φ−1(𝛼) × 𝜎𝑡 (8) 

where Φ−1(𝛼) is the standard normal 𝛼-quantile value and 𝜎𝑡 is the second conditional moment 

of the mid-price log returns at time 𝑡. 
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The above parametric model only considers the distribution of the mid-price. On average, 

it is expected for the bid price to be less than the mid-price by half the average relative spread, 

1

2
∗ 𝑆̅ (Bangia et al., 2008). Hence, since liquidation is not realized at the mid-price, the average 

parametric model needs to be modified to consider the exogenous cost of liquidity, which 

explains the deviation from the mid-price when settling a position. 

Formally, the exogenous cost of liquidity (𝐶𝑂𝐿𝑡) is defined as:  

𝐶𝑂𝐿𝑡 =
1

2
[𝑃𝑡(𝑆̅ + 𝑎 ∗ 𝜎̃𝑡)] (9) 

where 𝑃𝑡 is the observable mid-price at time 𝑡, 𝑆̅ is the average bid-ask relative spread, defined 

as ([𝐴𝑠𝑘𝑡 − 𝐵𝑖𝑑𝑡] 𝑀𝑖𝑑𝑡⁄ ), 𝜎̃𝑡 is the volatility of the relative spread at time 𝑡, and 𝑎 is a scaling 

factor that ensures (1 − 𝛼)% probability coverage, where 𝛼 corresponds to the significance 

level of the VaR model being estimated. 

When examining the statistical properties of the bid-ask spread, Affleck-Greaves et al. 

(2000) conclude that the raw spread, relative spread, and changes in spread present large 

deviations from normality. As such, because the cost of liquidity is based on the average relative 

spread, which is commonly far from normal, the scaling factor 𝑎 cannot be inferred based on a 

multivariate Gaussian distribution. 

Bangia et al. (2008) make the simplifying assumption that extreme spread events and 

extreme return events occur simultaneously. This assumption is sustained by the fact that risk 

managers are not interested in analysing and modelling average spreads, but rather extreme 

spreads in adverse market conditions. Furthermore, in periods of increased market volatility, 

the correlations between extreme spreads and extreme returns can be shown to be high enough 

to warrant a strong observable relationship between return risk and exogenous liquidity risk. 

The parametric normal liquidity adjusted VaR (𝐿 − 𝑉𝑎𝑅) for a single asset is thus: 

𝐿 − 𝑉𝑎𝑅𝑡 = 𝑉𝑎𝑅𝑡,𝛼 + 𝐶𝑂𝐿𝑡 = −Φ−1(𝛼) × 𝜎𝑡 +
1

2
[𝑃𝑡(𝑆̅ + 𝑎 ∗ 𝜎̃)] (10) 

The traditional portfolio level VaR uses the covariance matrix of returns to model portfolio 

risk. However, using the covariance matrix for the 𝐿 − 𝑉𝑎𝑅 would imply that the spreads follow 

a normal multivariate distribution, which may not accurately represent their actual distribution. 

The approach that we will follow is to compute the weighted average bid, ask, and mid prices 

at portfolio level, and use them to compute the relative average spread and the portfolio level 

cost of liquidity. 
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2. Data and descriptive statistics 

This study aims to examine the impact of modelling the liquidity effect of assets and 

incorporating it into the VaR. The object of study will be 2 different portfolios, each comprised 

of long positions of United States (U.S.) equity. One of the portfolios will be composed of 

highly liquid stocks, and the other portfolio will be composed of less liquid stocks, both based 

on the intraday average traded volume for a period of 10 years, from 2nd January 2014 to 31st 

December 2023. The local currency used will be the U.S. Dollar (USD). 

Each portfolio is composed of 10 stocks that are listed on the S&P500, all equally weighted, 

with each stock representing 10% of the total portfolio weight. The liquidity component will be 

modelled based on the bid-ask spread of the shares, which was obtained from Bloomberg. 

Timewise, we will be using daily data for a period of 10 years, from 2nd January 2014 to 31st 

December 2023. Table 2.1 shows the portfolio composition for each of the portfolios. 

 

Table 2.1 

Portfolio composition 

Stock Ticker Weight 

Teledyne Technologies TDY 10% 

Tyler Technologies Inc TYL 10% 

Zebra Technologies ZBRA 10% 

Jack Henry & Associates, Inc. JKHY 10% 

Bio-Rad Laboratories, Inc. BIO 10% 

Teleflex TFX 10% 

News Corp NWS 10% 

Nordson Corporation NDSN 10% 

Packaging Corp Of America PKG 10% 

Marketaxess Holdings Inc MKTX 10% 

Illiquid Portfolio Total   100% 

Apple AAPL 10% 

Advanced Micro Devices AMD 10% 

Nvidia NVDA 10% 

Bank of America Corp BAC 10% 

Wells Fargo & Co WFC 10% 

Pfizer PFE 10% 

Bristol-Myers Squibb Co BMY 10% 

Freeport-McMoRan FCX 10% 

AT&T Inc T 10% 

American Airlines Group AAL 10% 

Liquid Portfolio Total   100% 

Note. This table shows each stock and its respective weight in both the liquid and illiquid 

portfolio. 
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According to Bangia et al. (2008), in order to expand the liquidity adjusted VaR from a 

single financial instrument level to a portfolio level, we would need to use the covariance matrix 

of the assets’ returns and the bid-ask spread covariance matrix, the latter needed to quantify the 

liquidity effect. However, this imposes the assumption that spreads follow a multivariate 

normal distribution, which is rendered unrealistic as the spread distribution isn’t as well 

behaved as the return distribution (Affleck-Greaves et al., 2000). The solution proposed by the 

authors is to calculate the portfolio level bid and ask prices as the weighted average of the 

individual instruments. Hence, as we retrieve the individual bid and ask prices of each stock, 

we compute the weighted average bid and ask prices at portfolio level for each trading day. The 

portfolio mid prices, which are extrapolated as the average of the bid and ask quotes at the close 

of trading day 𝑡, are used to compute the daily log returns, which allow us to estimate the daily 

VaR in percentage points: 

𝑟𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
) (11) 

where 𝑟𝑡 represents the return at time 𝑡 and 𝑃𝑡 is the portfolio mid-price at time 𝑡. 

Table 2.2 displays the descriptive statistics of each portfolio’s daily returns. As is expected 

from financial return data (Fama, 1965), the returns for each portfolio show excess kurtosis 

(above 3), and negative asymmetry. As such, the unconditional distribution of the returns seems 

to deviate from a multivariate normal distribution, and using other non-normal distributions to 

fit the data may be more appropriate.  

 

Table 2.2 

Descriptive statistics of each portfolio’s returns  

Returns Mean Median Max Std Deviation Skewness Kurtosis 

Illiquid Portfolio 0.000498 0.000909 0.091059 0.012510 -0.321822 5.609848 

Liquid Portfolio 0.000103 0.001080 0.117231 0.027402 -20.189947 615.131034 

Note. Mean, median, maximum, standard deviation, skewness, and kurtosis of the daily returns 

for each portfolio, from 2nd January 2014 to 31st December 2023. 

 

It is also useful to analyze the distribution of the portfolio spreads, as we expect them to 

deviate from normality. Table 2.3 displays the descriptive statistics of the relative spreads of 

each portfolio. Both portfolios’ percentage spreads present very large kurtosis and positive 

asymmetry, suggesting that both follow a non-normal distribution. As expected of less liquid 

stocks, the illiquid portfolio exhibits a larger average relative spread when compared to the 

liquid portfolio, accounting for the added costs of holding these assets. 
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Table 2.3 

Descriptive statistics of each portfolio’s relative spreads 

Relative Spread Mean Median Max Std Deviation Skewness Kurtosis 

Illiquid Portfolio 0.052313 0.042589 1.723732 0.047270 18.637331 623.455412 

Liquid Portfolio 0.026203 0.024699 0.113590 0.011892 0.881406 24.171353 

Note. Mean, median, maximum, standard deviation, skewness, and kurtosis of the daily relative 

spreads for each portfolio, from 2nd January 2014 to 31st December 2023. 

 

To verify that the returns do not follow a normal distribution, the Jarque-Bera and the 

Shapiro-Wilk tests for normality were performed.  

The Jarque-Bera test (Jarque & Bera, 1987) is a goodness-of-fit test that tests the joint null 

hypothesis of the skewness and the excess kurtosis of the observations being 0. The Jarque-

Bera test makes use of the Lagrange Multiplier test to check the normality of the observations, 

such that the test statistic is given by: 

𝐿𝑀 = 𝑛 (
𝑆2

6
+

(𝐾 − 3)2

24
) (12) 

where 𝑛 is the number of observations in the sample, 𝑆 is the sample skewness and 𝐾 is the 

sample kurtosis. This test statistic is asymptotically distributed as a χ(2)
2  under normality, as it 

is the sum of squares of two asymptotically independent standard normal distributions 

(Bowman & Shenton, 1975). 

The Shapiro-Wilk test (Shapiro & Wilk, 1965) tests the null hypothesis that the 

observations in the sample come from a normally distributed population. The test statistic is 

given by: 

𝑊 =
(∑ 𝑎𝑖𝑋(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1

(13) 

where 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) are the ordered values of the vector of random variables 𝑋 =

(𝑋1, … , 𝑋𝑛), 𝑋̅ is the mean of the sample, and 𝑎𝑖 are tabulated coefficients. 

The results of the tests are displayed in Table 2.4. As is expected, for the returns of each 

portfolio we fail to accept the null hypothesis of both the Jarque-Bera and the Shapiro-Wilk test 

and can thus expect the returns to follow a non-normal distribution.  
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Table 2.4 

Jarque-Bera and Shapiro-Wilk test results  

 Test p-value Result 

Illiquid portfolio 
Jarque-Bera 0.00000** Non-Normal 

Shapiro-Wilk 0.00000** Non-Normal 

Liquid portfolio 
Jarque-Bera 0.00000** Non-Normal 

Shapiro-Wilk 0.00000** Non-Normal 

Note. Allows to conclude about the normality of the return distribution. ** denotes that the null 

hypothesis was rejected at the 1% significance level. 
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3. Methodology 

3.1. Volatility models 

In the context of financial data analysis, volatility (𝜎) represents the degree of variation in the 

prices of financial instruments over time. In this thesis we are interested in modelling the 

conditional volatility of daily returns, 𝜎𝑡. To model the volatility, we use three different models: 

the GARCH model with normal and student t-distributed innovations, and the FIGARCH 

model. 

For each model, we compute daily volatility estimates using the first 252 observations (i.e., 

1 trading year) as training data. Furthermore, to ensure that the estimates reflect the current 

market conditions, we re-estimate the model parameters every 21 trading days. 

 

3.1.1. GARCH model 

Bollerslev (1986) introduced a useful generalization of the standard Autoregressive Conditional 

Heteroskedasticity (ARCH) model proposed by Engle (1982). Both models allow the 

conditional volatility to change over time as a function of past errors while the unconditional 

volatility remains unchanged. 

The GARCH model captures the effects of long-term memory and volatility clustering 

more effectively than the standard ARCH model by incorporating both the lagged squared 

residuals and the lagged conditional variances. By including the lagged conditional variances 

as a variable, the GARCH model exhibits an adaptive learning behaviour. Furthermore, the 

GARCH model exhibits excess kurtosis which makes it useful for modelling the conditional 

volatility and heavy tails of financial market data simultaneously. 

The series of daily returns, 𝑟𝑡, is modelled as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡,  𝜀𝑡~𝑁(0, 𝜎𝑡
2) (14) 

where 𝜇 is the mean value of the returns and 𝜀𝑡 is the residual at time 𝑡. This error term 

represents the deviation of the observed return 𝑟𝑡 from the mean 𝜇. 

The GARCH (𝑝,𝑞) model defines the variance as: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1  (15)

where 𝜔 is a constant term in the regression, 𝛼𝑖 measures the impact of past squared errors, and 

𝛽𝑗 measures the persistence of past variances. For the model to be valid, the parameters must 

be subject to the following conditions: 𝜔 > 0, 𝛼𝑖 ≥ 0 and 𝛽𝑗 ≥ 0.  
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Since the only data available is 𝑟𝑡, the series of daily returns, all the GARCH model 

parameters are computed simultaneously using maximum likelihood. The 𝑝 and 𝑞 variables 

represent the order of the autoregressive component and the order of the moving average 

component, respectively. Thus, 𝑝 captures the lagged conditional variances while 𝑞 captures 

the lagged squared residuals. 

Even though several lag orders can be defined, Hansen and Lunde (2005) demonstrate that 

the GARCH (1,1) model isn’t outperformed by other volatility models of higher order. Since 

the GARCH (1,1) model is less computationally expensive and demonstrates comparable 

performance to higher order GARCH models, it will be used in this dissertation. It will also be 

used for every other volatility model employed in this dissertation, as they are all extensions of 

the GARCH model. 

Even though the leptokurtic nature of the GARCH model may be useful for modelling 

heavy tails in financial data series, the assumption of normality in the error term limits the 

model from properly modelling fat tails in the distribution. Bollerslev (1987) proposes a simple 

extension of the ARCH and GARCH models to allow the errors to be conditionally t-

distributed. 

The Student’s t-distribution is symmetric around 0 and has fatter tails than the Gaussian 

distribution, making it more appealing for the study of financial data (Bradley & Taqqu, 2003). 

In fact, several studies such as Fielitz and Roselle’s (1983) and Boothe and Glassman’s (1987) 

indicate that non-normal distributions may be preferred when dealing with financial datasets, 

as they accommodate more easily skewed distributions and other higher distribution moments. 

The t-distributed GARCH (𝑝,𝑞) model for the conditional variance is defined as: 

𝜎𝑡|𝑡−1
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗|𝑡−1−𝑗
2

𝑝

𝑗=1

(16) 

where 𝜀𝑡|𝜓𝑡−1~𝑓𝑣(𝜀𝑡|𝜓𝑡−1). 

As with the standard GARCH model, we will be using the GARCH (1,1)-t model. 

 

3.1.2. FIGARCH model 

The Integrated GARCH (IGARCH) was developed by Engle and Bollerslev (1986) as a solution 

to the short-term memory of standard linear models. As a non-linear model, the autocorrelation 

function of the IGARCH decays slowly over time, having infinite memory. However, this 
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means that any shock that occurs within the sample will never die out, making the estimators 

biased. 

As an improvement to the infinite persistence present in the IGARCH, Baillie et al. (1996) 

developed the Fractionally Integrated GARCH (FIGARCH) as a long memory model that 

allows a slow hyperbolic rate of decay for the lagged squared or absolute innovations. This is 

achieved by incorporating the fractional differencing parameter 𝑑 into the IGARCH model. 

This parameter allows the model to handle persistence in the volatility more flexibly, allowing 

it to decay slowly over time. For the model to be valid, it is necessary that 0 ≤ 𝑑 ≤ 1. 

The FIGARCH (𝑝,𝑑,𝑞) conditional volatility is thus: 

𝜎𝑡
2 = (𝜔 − 𝜀𝑡̅

2) + ∑ 𝛼𝑖(𝜀𝑡−𝑖
2 − 𝜀𝑡̅−𝑖

2 )

𝑞

𝑖=1

+ ∑ 𝛽𝑗(𝜎𝑡−𝑗
2 − 𝜀𝑡̅−𝑗

2 )

𝑝

𝑗=1

(17) 

where 𝜀𝑡
2 is the squared error, and 𝜀𝑡̅

2 is the squared average error. 

The model we will be using is the FIGARCH (1,𝑑,1) model. 

 

3.2. Value-at-Risk Models 

The Value-at-Risk (VaR) can be defined as the maximum expected loss of an asset/portfolio 

over a selected time horizon ℎ, for a given confidence level 𝛼. Moving forward we will be using 

a significance level of 𝛼 = 5% (which corresponds to a confidence level 1 − 𝛼 = 95%), and a 

time horizon of 1 day (ℎ = 1). As such, when applied to our data, we are (1 − 𝛼)% confident 

that the observed losses won’t exceed the VaR estimates in the next day. For more frequently 

traded assets such as stocks, the 1-day time horizon can accurately reflect their liquidity, as it 

assures that the risk assessments can be reflective of actual market conditions (Alexander, 

2009). It also reduces the need for market assumptions over longer periods, which can induce 

potential errors in risk estimates. 

In mathematical terms, the 100𝛼% ℎ-day Value-at-Risk (𝑉𝑎𝑅ℎ,𝛼) is minus the 𝛼-quantile 

of the ℎ-day return distribution. As mentioned by Alexander (2009), the 𝛼-quantile of the ℎ-

day distribution of a random variable 𝑋, denoted by 𝑥ℎ,𝛼, is defined by: 

𝑃(𝑋ℎ < 𝑥ℎ,𝛼) = 𝛼 (18) 

Given the probability function of 𝑋 is known, 𝑥ℎ,𝛼 can be obtained as: 

𝑥ℎ,𝛼 = 𝐹−1(𝛼) (19) 

where 𝐹−1 is the inverse cumulative distribution function of 𝑋. 
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As we expect our maximum loss to be exceeded for a given probability of 𝛼, the VaR is 

thus: 

𝑉𝑎𝑅ℎ,𝛼 = −𝑥ℎ,𝛼 (20) 

Assuming a stationary portfolio composition for the entire holding period, which starts on 

2nd January 2014 and ends on 31st December 2023, our goal is to generate a historical series of 

daily VaR estimates for each model in percentage terms. In this dissertation, the estimation 

methods that will be used are the parametric normal VaR, volatility-adjusted historical VaR and 

Monte Carlo simulation VaR. Each model will be estimated three times, alternating between 

the three volatility methods explained in Section 3.1. The liquidity adjusted VaR will be 

obtained by adding the exogenous cost of liquidity to each of the 9 VaR models. The series of 

daily VaR estimates for each model will be calculated for the 8-year period starting on January 

5, 2016 and ending in December 29, 2023. 

 

3.2.1. Normally distributed parametric VaR 

Parametric VaR methods assume a parametric distribution of the portfolio returns. Even though 

these methods are less computationally expensive, as they rely solely on computing the 

distribution parameters, they impose a parametric distribution over the portfolio returns which 

may not appropriately model their behavior. 

The parametric normal VaR makes the simplifying assumption that the portfolio returns, 

denoted as a continuous random variable 𝑋, are i.i.d. and follow a normal distribution. Thus, 

we assume 𝑋ℎ ~
𝑖.𝑖.𝑑.

𝑁(𝜇ℎ, 𝜎2
ℎ), where 𝜇 and 𝜎2 are forecasts of the mean and variance of the 

returns, respectively. 

Based on Equation 20, and noting that the returns follow a normal distribution, it gives that: 

𝑉𝑎𝑅ℎ,𝛼 = −Φ−1(𝛼) × 𝜎ℎ − 𝜇ℎ (21) 

where −Φ−1(𝛼) is the standard normal 𝛼-quantile value. 

According to Kim et al. (1999), the drift 𝜇ℎ can be dropped for shorter horizons as mean 

forecasts aren’t likely to produce accurate predictions of future returns. Furthermore, since the 

volatility 𝜎ℎ can be shown to produce higher estimates than the expected returns over short 

horizons, the forecasted returns’ distribution is drowned out by the volatility estimates on the 

short term, indicating that 𝜇ℎ won’t have a significant effect on the VaR. As such, since we are 

dealing with daily return data (ℎ = 1), we will be assuming a zero-mean estimate for the 

portfolio returns.  
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By dropping the drift adjustment from Equation 21, the 100𝛼% ℎ-day VaR is: 

𝑉𝑎𝑅ℎ,𝛼 = −Φ−1(𝛼) × 𝜎ℎ (22) 

 

3.2.2. Volatility-Adjusted Historical VaR 

Contrary to parametric models, which assume that the returns follow a specific parametric 

distribution, the historical simulation method is based on the empirical distribution of the 

returns, using the 𝛼 quantile of the empirical distribution to compute the VaR. As such, the 

historical simulation relies on the dependencies of the risk factors on expected returns and co-

movements between risk factors, and only makes the assumption that the future return 

distribution will be equal to the past return distribution. 

Formally, the 100𝛼% h-day historical VaR is the 𝛼 quantile of the empirical ℎ-day 

distribution of the returns. The historical VaR is estimated by following these steps: choose the 

sample size, 𝑛; compute the ℎ-day returns of the portfolio over the sample period; compute the 

empirical ℎ-day returns distribution by keeping the portfolio weights constant; sort the returns 

in an ascending order; and, finally, identify the 𝛼 quantile of interest. 

This method relies on the history of past changes of risk factors over the sample size, 

assuming that the current portfolio was held in the past. Thus, the choice of the sample size can 

significantly influence the accuracy of the risk estimates. By increasing the sample size, we can 

improve the precision of the empirical distribution, albeit at the cost of the historical distribution 

not reflecting current market conditions. This issue arises from the fact that the simple historical 

VaR assigns the same weight to each observation in the sample. If each return is given equal 

weight within the sample, we assume that all observations hold the same impact over the current 

market conditions. This approach can lead to ghost features in the return distribution, as an 

extreme observation holds the same influence on the day it occurs until the day it exits the 

sample, even though it may no longer be relevant. 

To face this issue, Hull and White (1998) propose adjusting the volatility of the entire series 

of returns while still assigning the same weight to each observation, so that the current volatility, 

and consequently the current market conditions, are properly reflected.  

By adjusting the series of returns 𝑟𝑡 using the volatility estimates (𝜎̂𝑡) and today’s volatility 

(𝜎̂𝑇), we obtain: 

𝑟̂𝑡 =
𝜎̂𝑇

𝜎̂𝑡
𝑟𝑡 (23) 
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where 𝑟̂𝑡 is the adjusted return at time 𝑡, 𝜎̂𝑡 is the volatility estimate at time 𝑡 (computed at the 

end of 𝑡 − 1), and 𝑇 is the VaR measurement date (𝑡 < 𝑇). 

To adjust 𝑟𝑡, we will need to wait until the end of day 𝑡 so that the portfolio return is 

observed. However, at the end of day 𝑡, we already know 𝜎̂𝑡+1, which is the most current 

estimate of the volatility. Therefore, the quality of the volatility adjustment can be improved by 

using 𝜎̂𝑇+1 and 𝜎̂𝑡+1: 

𝑟̂𝑡 =
𝜎̂𝑇+1

𝜎̂𝑡+1
𝑟𝑡 (24) 

We define the model that uses these adjusted returns as the volatility-adjusted historical 

VaR. To compute the ℎ-day volatility-adjusted historical VaR, we choose a sample size of one 

trading year (252 observations). This sample size is large enough to ensure that the empirical 

distribution of the returns can be properly estimated, whilst also considering enough 

observations to ensure that current market events are being reflected. 

 

3.2.3. Monte Carlo Simulation VaR 

The Monte Carlo simulation is a mathematical technique used to solve problems that may be 

deterministic by nature using repeated random sampling to obtain numerical results. In the 

context of VaR estimation, the Monte Carlo method is a non-parametric method which provides 

wide flexibility without assuming the distribution of the risk factors. It involves simulating the 

future price paths of assets a specific number of times in order to improve the modelling of 

uncertainty in the time series, and to provide a more in-depth explanation of the dynamic 

characteristics of the assets (Alexander, 2009). By exploring an extensive number of 

simulations, most of the possible future outcomes of the asset can be predicted, allowing the 

distribution of the assets at future dates to be estimated more accurately. 

Computing the Value-at-Risk through a Monte Carlo simulation can be done by taking a 

multivariate or a univariate approach, depending on the relationship between the variables. A 

multivariate distribution involves modelling the joint probability distribution of two or more 

uniform random variables, which is useful when the data is more complex and presents more 

risk factors, while the univariate distribution focuses on a single variable (Alexander, 2009).   

Simulating a univariate distribution consists in modelling the behavior of one single random 

variable, which is described by a single cumulative distribution function. Let 𝑢 be a uniform 

random variable obtained from the interval (0,1), generated from random sampling, and 𝑥 be 
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another uniform random variable with a continuous distribution function 𝐹. The value of the 

simulation for 𝑥 is obtained by: 

𝑥 = 𝐹−1(𝑢) (25) 

where 𝐹−1 is the inverse of the continuous distribution function of 𝑥. Hence, given a uniform 

random variable 𝑢, the corresponding simulation of 𝑥 is the 𝑢 quantile of its distribution.  

Since we are analyzing the portfolio returns, which can be effectively treated as a univariate 

time series, we will rely on the univariate distribution to describe the variability of the returns. 

 The Monte Carlo VaR is estimated by following these steps: simulate a distribution of the 

portfolio’s ℎ-day returns; sort the returns in an ascending order; and identify the 𝛼 quantile from 

the distribution of simulated returns. Therefore, the Monte Carlo VaR uses the empirical 

distribution of the simulated returns to obtain the 100𝛼% ℎ-day VaR. 

Choosing an appropriate number of simulations is paramount to obtaining accurate 

estimations, reducing statistical errors, and achieving better convergence of results. However, 

a trade-off occurs as we increase the number of repetitions, whereby the estimation process 

becomes progressively more computationally expensive to factor all the possible future path 

scenarios of the data. For the Monte Carlo simulation we will be running, we have decided to 

use 50,000 simulations to ensure accurate estimations. Furthermore, as with the volatility-

adjusted historical VaR, we will be using a sample size of 1 trading year for the Monte Carlo 

VaR estimation. 

 

3.2.4. Liquidity Adjusted VaR 

The purpose of the liquidity adjusted VaR (𝐿 − 𝑉𝑎𝑅) is to incorporate the effects of liquidity 

into the VaR model to fully explain total risk. As previously defined in Equation 10, 𝐿 − 𝑉𝑎𝑅 

is computed as the sum of the unadjusted VaR and the cost of liquidity (𝐶𝑂𝐿). Thus, in order 

to compute daily 𝐿 − 𝑉𝑎𝑅 estimates, we need to obtain daily VaR estimates through the models 

explained in the previous subsections, and daily 𝐶𝑂𝐿 estimates. 

Recalling Equation 9, 𝐶𝑂𝐿𝑡 is based on 𝑃𝑡, the mid-price at time 𝑡; 𝑆̅, the average relative 

bid-ask spread; 𝜎̃𝑡, the volatility of the relative bid-ask spread at time 𝑡; and 𝑎, which is a scaling 

factor that produces (1 − 𝛼)% coverage probability, where 𝛼 is the significance level of the 

VaR being estimated. Since we will be estimating the VaR using 𝛼 = 5%, 𝑎 will be a scaling 

factor which produce 95% coverage probability. To obtain a series of daily 𝐶𝑂𝐿𝑡 estimates, the 

daily relative spread was computed, and its arithmetic mean was extrapolated as 𝑆̅. Next, the 

relative spread volatility estimates, 𝜎̃, were obtained using the same volatility models described 
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in Section 3.1. Lastly, the scaling factor 𝑎 was computed as the difference between the 95th 

percentile spread and the average spread of the empirical data, scaled by the average volatility 

of each model, which outputs a factor that adjusts for the spread’s variation relative to volatility.  

Both the scaling factor 𝑎 and the mean relative spread 𝑆̅ are thus constants in the daily 

estimation of the exogenous cost of liquidity at every time 𝑡. The value of 𝑎 is dependent on 

the series of portfolio prices and specific volatility model being used, while 𝑆̅ is solely reliant 

on the portfolio prices being used. Therefore, we expect the scaling factor 𝑎 to be a scalar value 

that changes for each combination of portfolio returns and volatility models, whereas 𝑆̅ will be 

a scalar value that changes solely depending on the portfolio being analysed. The only variables 

that shift daily and allow for a dynamic series of 𝐶𝑂𝐿𝑡 estimates are the volatility estimates 𝜎̃𝑡 

and the observed mid-prices 𝑃𝑡 for each time 𝑡. 

However, since we are computing the percentual VaR, the observed mid-price at time 𝑡, 

𝑃𝑡, can be dropped from Equation 9, such that: 

𝐶𝑂𝐿𝑡 =
1

2
[(𝑆̅ + 𝑎 ∗ 𝜎̃)] (26) 

where 𝐶𝑂𝐿𝑡 is now interpreted as a percentage of the total value of the portfolio being analysed. 

 

3.3. Backtesting 

After estimating each of the unadjusted VaR models described in Section 3.2. and each 

corresponding 𝐿 − 𝑉𝑎𝑅 model, our objective is to evaluate the accuracy of each model. To do 

so, we will use the number of exceedances as our principal performance measure, where an 

exceedance is defined as an instance where the observed portfolio loss surpasses the VaR 

estimate for that same day (Alexander, 2009). For this purpose, we will conduct two well-

established statistical tests: the Unconditional Coverage (UC) test proposed by Kupiec (1995) 

and the BCP test introduced by Berkowitz et al. (2011). Both tests provide different insights 

into model performance: the UC test will measure the observed exceedance rate of the 

estimates, while the BCP test will evaluate the presence of autocorrelation between 

exceedances. 

From an exceedance rate perspective, we consider the models to perform properly when 

the actual exceedance rate is close to the expected exceedance rate for the given 𝛼 significance 

level. The importance of maintaining an appropriate exceedance rate stems from a regulatory 

perspective, as most regulators rely on this metric to assess the capital requirements imposed 

on institutions (Jorion, 2006). A large exceedance rate can be proof that the market risk is being 
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underestimated by the VaR models, which can cause regulators to increase the base capital 

requirements to hedge market risk. Hence, to remain within regulatory limits, the exceedance 

rate is an important tool to control to avoid excessive capital requirements. 

Additionally, examining the autocorrelations of exceedances will help detect exceedance 

clustering, which can be an indicator that the data isn’t adapting rapidly enough to harsh 

volatility moves in short periods of time. This isn’t observable when solely looking at the 

exceedance rate, which simply measures the total amount of exceedances without considering 

the time at which they occur. 

Even though both statistical tests provide different insights into the performance of the 

models, the exceedance rate remains the most useful indicator to measure since it holds 

significant regulatory importance and is a direct measure of risk, as it directly quantifies the 

frequency of model exceedances. As such, the main statistical test which will be used is the UC 

test, with the BCP test serving as an auxiliary tool to compare models which share similar UC 

test performances. This will be useful when choosing the most appropriate model, as even 

though a model can present an exceedance rate close to its expected exceedance rate, it can still 

fail the BCP test. 

Both the UC test and BCP test are performed for all model combinations during the test 

period spanning from January 5, 2016, to December 29, 2023. 

 

3.3.1. Unconditional Coverage test 

Introduced by Kupiec (1995), the UC test is a likelihood ratio test that examines whether the 

number of exceedances observed in a sample matches the expected exceedances given by the 

confidence level 𝛼 of the VaR model. 

Formally, the indicator function 𝐼𝛼,𝑡 for each 𝑛 observation in the sample can be defined 

as: 

𝐼𝛼,𝑡+1 = {  
1,  if 𝑟𝑡+1 < −𝑉𝑎𝑅1,𝛼,𝑡

0, otherwise
 (27) 

where 𝑟𝑡 is the observed return at time 𝑡 and 𝑉𝑎𝑅1,𝛼,𝑡−1 is the VaR estimate for day 𝑡. 

The null hypothesis tests whether the indicator function, which is assumed to follow an 

i.i.d. Bernoulli process, presents a constant exceedance rate in line with the expected 

exceedance rate given the significance level 𝛼 (Alexander, 2009). The null and alternative 

hypothesis are denoted as such: 

𝐻0: 𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥𝑝 ≡ 𝛼

𝐻𝑎: 𝜋𝑜𝑏𝑠 ≠ 𝜋𝑒𝑥𝑝

(28) 
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where 𝜋𝑜𝑏𝑠 is the observed exceedance rate in the sample and 𝜋𝑒𝑥𝑝 is the expected exceedance 

rate given the significance level 𝛼. The size of the sample is relevant to the accuracy of the UC 

test as the acceptance regions under the null hypothesis are larger for smaller sample sizes, 

which can lead to not rejecting the null even though it proves to be false. To overcome this, we 

will be using a sample size of 8 years to conduct the backtest. 

The UC test statistic is given by: 

𝐿𝑅𝑈𝐶 = (
𝜋𝑒𝑥𝑝

𝜋𝑜𝑏𝑠
)

𝑛1

(
1 − 𝜋𝑒𝑥𝑝

1 − 𝜋𝑜𝑏𝑠
)

𝑛0

(29) 

where 𝑛1 is the number of exceedances and 𝑛0 is the number of non-exceedances. 

Under the null hypothesis, the asymptotic distribution of the test statistic is a chi-square 

with one degree of freedom: −2 ln(𝐿𝑅𝑈𝐶)~χ(1)
2 . 

As we are estimating the daily VaR at the 𝛼% significance level, we consider the models 

to be properly specified if we fail to reject the null hypothesis at the (1 − 𝛼)% confidence level, 

reflecting that the actual observed exceedance rate is in line with the expected 𝛼 level 

exceedance rate. 

 

3.3.2. BCP test 

The BCP test (Berkowitz et al., 2011) is a Ljung-Box test that assesses the independence of the 

exceedances by checking for their first 𝐾 autocorrelations. If the VaR model is well specified, 

we expect the autocorrelations of the exceedances to be 0 for all lags, demonstrating that we 

cannot predict when the next exceedance will occur. Hence, the null and alternative hypothesis 

are defined as: 

𝐻0: 𝜌̂𝑘 = 0, ∀k ∈ {1, … , 𝐾}

𝐻𝑎: ∃𝑘 ∈ {1, … , 𝐾}  s. t.  𝜌̂𝑘 ≠ 0
(30) 

where 𝜌̂𝑘 is the lag 𝑘 sample autocorrelation of the output of the indicator function 𝐼𝛼,𝑡 described 

in Equation 27, and 𝐾 is the maximum autocorrelation lag in the test. 

The test statistic of the BCP test is given by: 

𝐵𝐶𝑃(𝐾) = 𝑇(𝑇 + 2) ∑
𝜌̂𝑘

2

𝑇 − 𝑘

𝐾

𝑘=1

(31) 

where 𝑇 is the sample size of the test.  

Under the null hypothesis, the asymptotic distribution of the BCP test statistic is a chi-

square with 𝐾 degrees of freedom: 𝐵𝐶𝑃(𝐾)~χ(𝐾)
2 .  
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The choice of the lag 𝐾 for backtesting is dependent on the user. There exists a compromise 

between the choice of a smaller and larger 𝐾: a larger 𝐾 aids in detecting non-independence at 

higher lags, but at the cost of a decrease in the power of the test. As the BCP test statistic follows 

a chi-square with 𝐾 degrees of freedom, increasing the number of degrees of freedom causes 

the distribution to become more spread out, decreasing the non-acceptance area and making the 

null hypothesis harder to reject. Therefore, we will begin with 𝐾 = 1 and increase it until 𝐾 =

5, to test for autocorrelation until the 5th lag. 
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4. Model selection and cost of liquidity analysis 

In this section we present the results of our empirical analysis. We present the validation of the 

estimates produced by each model for each portfolio, using the UC and BCP tests to evaluate 

their performance for the test period. Our goal will be to assess whether incorporating the cost 

of liquidity into the VaR improves the performance of each model. 

The test period is the 8-year period from January 5, 2016, to December 29, 2023, which 

constitutes a total number of observations of 𝑛 = 2011. Taking into account our significance 

level of 𝛼 = 5%, we will fail to reject the null hypothesis of the UC test if the total number of 

exceedances falls close to 100 exceedances. If the p-value of a model falls below 5%, we will 

reject the null hypothesis of the UC test, and the model is deemed to be poorly specified. For 

the models that present a p-value higher than 5%, and are thus accepted by the UC test, we will 

rely on the BCP test to compare which model is the best specified. 

We will first analyze the standard VaR models without considering the liquidity 

component, and then perform the same tests after applying the cost of liquidity to the VaR 

estimates, to understand whether incorporating the liquidity risk adds validity to the models. 

Table 4.1 presents each model that will be analyzed per portfolio, and its respective 

assigned number for ease of comparison. 

 

Table 4.1 

Model description and respective numbering 

Model Nº Description 

1 T+1 Volatility-adjusted Historical, 252 rolling observations, GARCH volatility 

2 
T+1 Volatility-adjusted Historical, 252 rolling observations, student t GARCH 

volatility 

3 
T+1 Volatility-adjusted Historical, 252 rolling observations, FIGARCH 

volatility 

4 Monte Carlo simulation, 252 rolling observations, GARCH volatility 

5 Monte Carlo simulation, 252 rolling observations, student t GARCH volatility 

6 Monte Carlo simulation, 252 rolling observations, FIGARCH volatility 

7 Parametric normal, GARCH volatility 

8 Parametric normal, student t GARCH volatility 

9 Parametric normal, FIGARCH volatility 

Note. Includes a brief description of each of the VaR models estimated, with a corresponding 

labeled number for ease of distinction and comparison.  
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4.1. Backtesting illiquid portfolio 

In Table 4.2 below we present the summary of the backtest for the non-adjusted VaR and the 

liquidity adjusted VaR of the illiquid portfolio, which includes the number of exceedances per 

model, the exceedance rate, and the p-value of the UC test. If the p-value falls below 5%, the 

UC test null hypothesis is rejected, and the model is considered poorly specified. As such, the 

values in bold denote the models which present a p-value above or equal to 5%, i.e., models 

that are accepted by the UC test.  

 

Table 4.2 

Summary of the backtest of the illiquid portfolio 

Model 

Class 

Model 

Nº 

Non-adjusted VaR Liquidity-adjusted VaR 

Nº 

Exceedances 

Exc. 

Rate 

(%) 

p-value 

(%) 

Nº 

Exceedances 

Exc. 

Rate 

(%) 

p-value 

(%) 

Historical 

1 102 5.07 88.23 97 4.82 71.49 

2 102 5.07 88.23 95 4.72 56.67 

3 110 5.47 34.05 99 4.92 87.37 

Monte 

Carlo 

4 119 5.92 6.62 111 5.52 29.26 

5 125 6.22 1.58 115 5.72 14.79 

6 123 6.12 2.62 110 5.47 34.05 

Parametric 

Normal 

7 106 5.27 58.03 97 4.82 71.49 

8 105 5.22 65.11 91 4.53 32.10 

9 108 5.37 45.11 100 4.97 95.51 

Note. For the illiquid portfolio we present the exceedance rate and the p-value of the UC test of 

each model. Highlighted in bold are the models accepted by the UC test, with p-values higher 

than 5%. Refer to Table 4.1 for the description of each model. 

 

Looking at the results of the non-adjusted VaR, almost all models pass the UC test, with 

the Monte Carlo models presenting the poorest results. Out of all 3 Monte Carlo models, only 

model 4, the model with standard GARCH volatility, passes the test with a p-value of 6.62%. 

Observing the results of the liquidity adjusted VaR, every model passes the UC test. Models 

5 and 6, which were previously rejected, are now accepted after incorporating the liquidity 

component, proving that when the cost of liquidity is incorporated, the total number of 

exceedances can decrease enough to add validity to a model. 

Overall, the models with the best UC test results for the non-adjusted VaR of the illiquid 

portfolio are the volatility-adjusted historical VaR models. For the liquidity adjusted models, 

model 9 presents the highest UC test p-value of 95.51%. After incorporating the liquidity 
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component into the VaR estimation of model 9, its UC test p-value increased from 45.11% to 

95.51%, substantially improving its accuracy. 

It may be interesting to note how the number of exceedances decreases when the cost of 

liquidity is considered. Since the illiquid portfolio is composed of less liquid assets, we expect 

the cost of liquidity to have a higher impact on the liquidity adjusted VaR when compared to 

the liquid portfolio. Table 4.3 shows the number of exceedances per model, for both the non-

adjusted and the liquidity adjusted VaR, as well as the difference of exceedances when the cost 

of liquidity is included in the VaR calculation of the illiquid portfolio. 

 

Table 4.3  

Comparison of exceedances between non-adjusted VaR and 𝐿 − 𝑉𝑎𝑅 of the illiquid portfolio 

  Non-adjusted VaR Liquidity-adjusted VaR   

Model Class Model Nº Nº Exceedances Nº Exceedances Exc. Difference 

Historical 

1 102 97 5 

2 102 95 7 

3 110 99 11 

Monte Carlo 

4 119 111 8 

5 125 115 10 

6 123 110 13 

Parametric Normal 

7 106 97 9 

8 105 91 14 

9 108 100 8 

Note. We display the difference in exceedances that arises from adding the cost of liquidity to 

the non-adjusted VaR models for the illiquid portfolio. Refer to Table 4.1 for the description of 

each model. 

 

As shown in Table 4.3, considering the cost of liquidity for the illiquid portfolio causes a 

significant decrease in the number of exceedances of the models, proving that the liquidity cost 

is a significant risk that should be modelled and accounted for when hedging the total portfolio 

risk. Models 6 and 8, for example, see a decrease of 13 and 14 exceedances, respectively. 

Since every single 𝐿 − 𝑉𝑎𝑅 model for the illiquid portfolio passes the UC test, we will use 

the BCP test to determine which model performs the best. Table 4.4 summarizes the results of 

the BCP test. 
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Table 4.4 

Illiquid portfolio - BCP test results 

Model 

Class 

Model 

Nº 

Standard VaR Liquidity adjusted VaR 

Lag 

1 

Lag 

2 

Lag 

3 

Lag 

4 

Lag 

5 
Lag 1 

Lag 

2 

Lag 

3 

Lag 

4 

Lag 

5 

Historical 

1 0.03 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

3 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 

Monte 

Carlo 

4 11.29 3.97 8.51 12.23 12.03 21.94 2.01 4.66 7.04 6.92 

5 10.57 0.59 0.47 0.35 0.78 2.49 0.24 0.27 0.27 0.60 

6 8.21 2.30 5.54 9.38 15.77 3.16 0.36 0.74 1.61 3.24 

Parametric 

Normal 

7 4.87 11.13 18.14 19.26 25.94 0.97 3.34 7.54 8.37 12.32 

8 1.29 2.42 5.80 3.90 7.17 0.24 0.84 2.27 3.20 6.08 

9 2.25 7.37 14.94 17.74 13.79 5.73 16.42 30.62 42.37 43.65 

Note. Showcases the p-values (%) of the BCP test at all lags for each model of the illiquid 

portfolio that passed the UC test. Highlighted in bold are the models accepted by the BCP test, 

with a p-value higher than 5%. Refer to Table 4.1 for the description of each model. 

 

For the non-adjusted VaR, no single model passes the BCP test at all lags. However, models 

5, 6, and 7 all pass the BCP test at 4 lags. For the liquidity adjusted VaR, the model with the 

best performance under the BCP test is model 9, which now manages to pass the test at all lags. 

Comparing the non-adjusted and liquidity adjusted lag 1 p-value of model 9, it seems that 

including the cost of liquidity in the VaR estimation lightens the existence of consecutive 

exceedances, since the p-value increases and model 9 passes the BCP test for lag 1. Similarly, 

the p-value of lag 1 for model 4 also increases when the cost of liquidity is included.  

With regards to models 5, 6, 7 and 8, including the cost of liquidity in the VaR estimation 

highlights an intriguing dynamic of the exceedance autocorrelations. For these models, when 

the liquidity component is considered, the number of exceedances decreases. However, the 

decrease in exceedances results in an increase of the autocorrelations at certain lags. Observing 

model 6, when the cost of liquidity is added to the VaR, the p-value of the autocorrelations at 

all lags significantly decreases – most notably at lag 5, where the non-adjusted VaR model 

passes the BCP test, but the 𝐿 − 𝑉𝑎𝑅 at the same lag fails the test. 

This is likely being caused by uncaptured dynamics of the models’ risks. When the 

exceedances decrease, we observe a slight increase in their clustering, indicating that the 

exceptions are becoming more predictable over time. 

Comparing the BCP test results of the non-adjusted VaR models, models 5, 6 and 7 present 

the best test results. However, models 5 and 6 are rejected by the UC test, and thus we choose 



 

29 

 

model 7 as the best non-adjusted VaR model for the illiquid portfolio, as it has a UC test p-

value of 58.03%. Considering that the exceedance rate will be our main metric of measurement 

for a model’s validity, it is worthy to note that the volatility-adjusted historical VaR models 

present the highest p-values of the UC test amongst the non-adjusted models. Nonetheless, they 

all fail the BCP test, presenting p-values no higher than 1%. As such, model 7 is considered the 

best non-adjusted VaR model for the illiquid portfolio. 

For the liquidity adjusted VaR, model 9 is the model with the best test performance, as it 

presents a UC test p-value of 95.51% and passes the BCP test at all lags. 

 

4.2. Backtesting liquid portfolio 

Following the same analysis done for the illiquid portfolio, in Table 4.5 we present the backtest 

results of the non-adjusted VaR and 𝐿 − 𝑉𝑎𝑅 of the liquid portfolio. The table includes the 

number of exceedances per model, the exceedance rate, and the p-value of the UC test. As per 

our previous analysis of the illiquid portfolio, the models accepted by the UC test are denoted 

by the values in bold. 

 

Table 4.5  

Summary of the backtest of the liquid portfolio 

Model 

Class 

Model 

Nº 

Non-adjusted VaR Liquidity adjusted VaR 

Nº 

Exceedances 

Exc. 

Rate 

(%) 

p-value 

(%) 

Nº 

Exceedances 

Exc. 

Rate 

(%) 

p-value 

(%) 

Historical 

1 115 5.72 14.79 110 5.47 34.05 

2 113 5.62 21.12 110 5.47 34.05 

3 120 5.97 5.31 116 5.77 12.24 

Monte 

Carlo 

4 103 5.12 80.28 98 4.87 79.33 

5 105 5.22 65.11 98 4.87 79.33 

6 93 4.62 43.42 92 4.57 37.51 

Parametric 

Normal 

7 87 4.33 15.63 81 4.03 3.87 

8 92 4.57 37.51 88 4.38 18.99 

9 80 3.98 2.95 76 3.78 0.88 

Note. For the liquid portfolio we present the exceedance rate and the p-value of the UC test of 

each model. Highlighted in bold are the models accepted by the UC test, with p-values higher 

than 5%. Refer to Table 4.1 for the description of each model. 
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With regards to the liquid portfolio, the only non-adjusted model which is rejected by the 

UC test is model 9, the parametric normal VaR model with FIGARCH volatility. Out of all the 

other models, the one with the highest UC test p-value is model 4, the Monte Carlo model with 

GARCH volatility. Observing the liquidity adjusted models, model 4 remains the model with 

the highest UC test p-value, now alongside model 5, which shares the same p-value. 

It is important to note that model 9, the model that is being rejected by the UC test, presents 

a lower exceedance rate than the models accepted by the UC test. The UC test functionally 

rejects not only models which are underestimated, and thus have a larger number of 

exceedances than expected, but also rejects models which are overestimated, with very few 

exceedances. In terms of capital allocation requirements, models with a large number of 

exceedances cause an underestimation of the relevant risk factors, which causes insufficient 

capital reserves being held by institutions, and may lead to non-compliance of the regulatory 

frameworks. In contrast, models with few exceedances cause an overestimation of the risk 

factors, and the excessive capital requirements that stem from these more conservative 

estimates can reduce operational efficiency, as well as cause difficulty in distinguishing which 

risks are being properly hedged. In our analysis of the liquid portfolio, the models which are 

being rejected by the UC test are so because of an exceedance overestimation. As such, models 

which were already rejected by the UC test due to being overestimated will still be rejected 

when the cost of liquidity is incorporated, as the number of exceedances is expected to become 

even more conservative if we include the added exogenous cost of liquidity.  

Indeed, observing Table 4.5, the liquidity adjusted model 9 is also rejected by the UC test 

due to an exceedance overestimation. Furthermore, model 7 is also rejected when the cost of 

liquidity is incorporated due to the same reason. 

Table 4.6 presents the difference of exceedances between the non-adjusted VaR and the 

𝐿 − 𝑉𝑎𝑅 models of the liquid portfolio, to understand how adding the cost of liquidity to the 

VaR estimate reduces the number of exceedances. As shown in Table 4.6, the cost of liquidity 

for the liquid portfolio contributes significantly less to overall risk compared to the illiquid 

portfolio. This result is expected since liquid assets have a larger trade volume than illiquid 

assets. The large number of market players willing to buy or sell these assets distributes the 

liquidity risk across the market, thereby reducing its impact. 
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Table 4.6 

Comparison of exceedances between standard VaR and 𝐿 − 𝑉𝑎𝑅 of the liquid portfolio 

  Non-adjusted VaR Liquidity adjusted VaR  

Model Class Model Nº Nº Exceedances Nº Exceedances Exc. Difference 

Historical 

1 115 110 5 

2 113 110 3 

3 120 116 4 

Monte Carlo 

4 103 98 5 

5 105 98 7 

6 93 92 1 

Parametric Normal 

7 87 81 6 

8 92 88 4 

9 80 76 4 

Note. We display the difference in exceedances that arises from adding the cost of liquidity to 

the non-adjusted VaR models for the liquid portfolio. Refer to Table 4.1 for the description of 

each model. 

 

Table 4.7 shows a summary of the BCP test results of the liquid portfolio. The table presents 

the p-value for all lags of the models which passed the UC test. 

 

Table 4.7 

Liquid portfolio - BCP test results 

Model 

Class 

Model 

Nº 

Standard VaR Liquidity adjusted VaR 

Lag 

1 

Lag 

2 

Lag 

3 

Lag 

4 

Lag 

5 

Lag 

1 

Lag 

2 

Lag 

3 

Lag 

4 

Lag 

5 

Historical 

1 6.73 0.00 0.00 0.00 0.00 3.16 0.00 0.00 0.00 0.00 

2 5.05 0.00 0.00 0.00 0.00 3.16 0.00 0.00 0.00 0.00 

3 12.71 0.00 0.00 0.00 0.00 7.71 0.00 0.00 0.00 0.00 

Monte 

Carlo 

4 21.13 0.39 1.06 1.83 2.81 28.48 2.40 5.81 6.96 10.70 

5 4.17 0.17 0.50 0.97 1.99 12.09 1.28 3.30 4.14 6.68 

6 72.43 5.58 8.76 7.51 12.46 68.67 4.61 9.63 7.63 12.46 

Parametric 

Normal 
8 0.31 1.25 2.99 2.58 4.99 0.60 2.30 5.62 3.32 6.26 

Note. Showcases the p-values (%) of the BCP test at all lags for each model of the liquid 

portfolio that passed the UC test. Highlighted in bold are the models accepted by the BCP test, 

with a p-value higher than 5%. Refer to Table 4.1 for the description of each model. 
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Among the non-adjusted models, the model with the best BCP test results is model 6, which 

passes the test at all lags. For the liquidity adjusted models, both models 4 and 6 pass the BCP 

test for all lags except lag 2, with model 6 presenting bigger p-values for all passing lags. 

Overall, for the non-adjusted models, model 6 presents the best backtest performance, as it 

is accepted by the BCP test at all lags and isn’t rejected by the UC test. For the liquidity adjusted 

models, both models 4 and 6 pass the BCP test for all lags expect lag 2, with model 6 slightly 

outperforming model 4 at every passing lag. However, model 4 presents a UC test p-value of 

79.33%, which is higher than model 6’s p-value of 37.51%. As mentioned in Section 3.3., the 

exceedance rate is the most relevant metric through which we can evaluate a model’s validity, 

while the BCP test would be used as an auxiliary tool to compare models with similar UC test 

results. Since model 4 presents a much higher UC test p-value, we consider model 4 to be the 

best liquidity-adjusted VaR model, and model 6 as the best non-adjusted VaR model due to its 

better performance in the BCP test. 

 

4.3. Backtesting conclusions 

Table 4.8 presents a summary for each portfolio of the models with the best backtest 

performance.  

 

Table 4.8 

Backtest result summary for all models analyzed  

 Illiquid portfolio Liquid portfolio 

 Non-adjusted 

VaR 
𝐿 − 𝑉𝑎𝑅 

Non-adjusted 

VaR 
𝐿 − 𝑉𝑎𝑅 

VaR 

Models 

Parametric 

Normal - 

GARCH 

Parametric 

Normal - 

FIGARCH 

Monte Carlo - 

FIGARCH 

Monte Carlo - 

GARCH 

Note. Highlights the models with the best backest results for each portfolio, distinguishing 

between non-adjusted VaR and 𝐿-𝑉𝑎𝑅. 

 

Regarding the liquid portfolio, the models that most properly capture the risk dynamics of 

the underlying returns are models 6 for the non-adjusted VaR, and model 4 for the liquidity 

adjusted VaR.  

With respect to the illiquid portfolio, model 7 is considered as the best model amongst the 

non-adjusted VaR models. However, it is outperformed by model 9 when the liquidity 

component is considered.  
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As shown in Tables 4.3 and 4.6, there is a stark distinction between the impact the cost of 

liquidity holds when dealing with illiquid assets. When the liquidity cost was incorporated into 

the VaR measures of the illiquid portfolio, the number of exceedances greatly decreased, 

showing that the standard VaR is uncapable of capturing the true underlying dynamics of less 

liquid assets. On the other hand, when the liquidity cost was incorporated into the VaR estimates 

of the liquid portfolio, there wasn’t a notable decrease in the number of exceedances, indicating 

that considering this cost didn’t provide substantial improvements to the non-adjusted VaR. On 

average, incorporating the cost of liquidity for the illiquid portfolio causes a decrease of 9 

exceedances per model, while incorporating the cost of liquidity for the liquid portfolio causes 

a decrease of 4 exceedances per model. 

Even though the 𝐿 − 𝑉𝑎𝑅 measures can start to deviate from the expected exceedance rate 

as they become more conservative, including the exogenous cost of liquidity is shown to 

substantially decrease the number of exceedances for less liquid assets. This demonstrates that 

liquidity risk is a major component of illiquid assets’ total risk, which should be properly 

modelled to fully capture their risk dynamics. 

  



 

34 

 

  



 

35 

 

Conclusion 

In this study, we explored whether Value-at-Risk estimation could be improved by 

incorporating the added cost of exogenous liquidity risk. Since the Value-at-Risk is a statistical 

estimate that only measures market risk, we expect liquidity risk to be prominent for less liquid 

assets, and as such modelling it to be necessary in order to fully capture the true risk dynamics 

that an investor or institution faces when holding these assets. 

Two portfolios were studied in this work, one comprised of less liquid U.S. equity stocks, 

and another comprised of more liquid U.S. equity stocks, chosen based on their intraday traded 

volume. The estimates for the VaR were computed using three different volatility models, 

GARCH, student t GARCH and FIGARCH. To diversify our results, we estimated the VaR 

using three different methods, the parametric normal VaR, the volatility-adjusted historical 

VaR, and the Monte Carlo VaR. Each model was backtested using the UC and BCP tests. 

The backtest performed on all models presented expected results. When comparing the non-

adjusted VaR and the liquidity adjusted VaR, there was a substantial difference in the reduction 

of exceedances observed between the liquid and the illiquid portfolio. Since liquid assets are 

less exposed to liquidity issues, we expect the non-adjusted Value-at-Risk to correctly model 

most of the risks faced by the investors or institutions that hold these assets. Contrarily, we 

expect the VaR of the illiquid portfolio to be underestimated by non-adjusted VaR models due 

to their illiquidity, which comprises a large part of the risk one is exposed to whilst holding 

these assets.  

For the illiquid portfolio, non-adjusted VaR models were shown to underestimate the actual 

risk, presenting an observed exceedance rate higher than the expected rate. When including the 

cost of liquidity, some models that failed to pass the UC test due to their large number of 

exceedances now presented an exceedance rate much more in accordance with the expected 

exceedance rate of 5%. As such, we conclude that adding the cost of liquidity to the VaR more 

accurately captures the true risk dynamics of illiquid assets. 

For the liquid portfolio, incorporating the liquidity component didn’t provide an increase 

in the accuracy of the models. Most models were accepted by the UC test and including the 

liquidity component did not decrease the number of exceedances enough to warrant an increase 

in accuracy. 

Overall, the parametric normal VaR models were more successful in modelling the risk of 

the illiquid portfolio, while the Monte Carlo models were more successful in modelling the risk 

of the liquid portfolio. On average, incorporating the cost of liquidity for the illiquid portfolio 
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caused a decrease of 9 exceedances per model, compared to the liquid portfolio’s average of 4, 

which showcases the importance of measuring liquidity risk for less liquid assets. 

For future research, it would be interesting to delve deeper into the behavior of the 

exceedances’ autocorrelations. For some liquidity adjusted models, the BCP test was rejected 

at the same lags where their non-adjusted counterpart was not rejected. Understanding this 

behavior would aid in highlighting the full impact that adding the cost of liquidity has on the 

VaR. Furthermore, it would also be interesting to incorporate the cost of liquidity into other 

types of assets such as bonds, which are largely dependent on their liquidity for their pay-off.  
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Annexes 

Annex A – Source Code 

### Required Libraries ### 

import pandas as pd 

import numpy as np 

from scipy.stats import skew, kurtosis, jarque_bera, shapiro, norm, chi2 

from arch import arch_model 

 

### Function to obtain descriptive statistics and normality test results of the portfolio returns 

and spreads ### 

def analyze_portfolio(returns, name): 

    return_stats = returns.describe() 

    if isinstance(return_stats, pd.DataFrame): 

        mean_return = return_stats.loc['mean', 'Returns'] 

        median_return = return_stats.loc['50%', 'Returns'] 

        max_return = return_stats.loc['max', 'Returns'] 

        std_return = return_stats.loc['std', 'Returns'] 

    elif isinstance(return_stats, pd.Series): 

        mean_return = return_stats.loc['mean'] 

        median_return = return_stats.loc['50%'] 

        max_return = return_stats.loc['max'] 

        std_return = return_stats.loc['std'] 

    else: 

        raise ValueError("Unexpected return_stats type") 

    statistics = pd.DataFrame({ 

        'Mean': [mean_return], 

        'Median': [median_return], 

        'Max': [max_return], 

        'Standard Deviation': [std_return], 

        'Skewness': [skew(returns)], 

        'Kurtosis': [kurtosis(returns)] 

    }, index=[f'{name} Returns']) 
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    ### Jarque-Bera test for normality ### 

    jb_stat, jb_pvalue = jarque_bera(returns) 

    jb_test_result = 'Normal' if jb_pvalue > 0.05 else 'Non-Normal' 

    ### Shapiro-Wilk test for normality ### 

    sw_stat, sw_pvalue = shapiro(returns) 

    sw_test_result = 'Normal' if sw_pvalue > 0.05 else 'Non-Normal' 

    normality_test_results = pd.DataFrame({ 

        'Test': ['Jarque-Bera', 'Shapiro-Wilk'], 

        'Test Statistic': [jb_stat, sw_stat], 

        'P-value': [jb_pvalue, sw_pvalue], 

        'Result': [jb_test_result, sw_test_result] 

    }) 

    return statistics, normality_test_results 

 

### Function to obtain the volatility estimates ### 

def compute_volatilities(returns, window_size=252, forecast_horizon=21): 

    num_forecasts = len(returns) - window_size     

    garch_volatilities = [] 

    t_garch_volatilities = [] 

    figarch_volatilities = [] 

    for i in range(num_forecasts): 

        window_data = returns[i:i + window_size] 

        ### GARCH(1,1) with Normal distribution ### 

        model_garch = arch_model(window_data, vol="GARCH", p=1, q=1) 

        results_garch = model_garch.fit(disp='off', options={'maxiter': 5000, 'ftol': 1e-5}) 

        forecast_garch = results_garch.forecast(horizon=forecast_horizon) 

        variance_garch = forecast_garch.variance.iloc[-1, 0] 

        volatility_garch = np.sqrt(variance_garch) 

        garch_volatilities.append(volatility_garch) 

        ### GARCH(1,1) with Student's t distribution ### 

        model_t_garch = arch_model(window_data, vol="GARCH", p=1, q=1, dist='t') 
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        results_t_garch = model_t_garch.fit(disp='off', options={'maxiter': 5000, 'ftol': 1e-5}) 

        forecast_t_garch = results_t_garch.forecast(horizon=forecast_horizon) 

        variance_t_garch = forecast_t_garch.variance.iloc[-1, 0] 

        volatility_t_garch = np.sqrt(variance_t_garch) 

        t_garch_volatilities.append(volatility_t_garch) 

        ### FIGARCH(1,d,1) ### 

        model_figarch = arch_model(window_data, vol="FIGARCH", p=1, q=1) 

        results_figarch = model_figarch.fit(disp='off', options={'maxiter': 5000, 'ftol': 1e-5}) 

        forecast_figarch = results_figarch.forecast(horizon=forecast_horizon) 

        variance_figarch = forecast_figarch.variance.iloc[-1, 0] 

        volatility_figarch = np.sqrt(variance_figarch) 

        figarch_volatilities.append(volatility_figarch)  

    volatility_df = pd.DataFrame({ 

        'GARCH_volatility': garch_volatilities, 

        't_GARCH_volatility': t_garch_volatilities, 

        'FIGARCH_volatility': figarch_volatilities 

    }, index=returns.index[window_size:]) 

    return volatility_df 

 

### Function to compute volatility-adjusted returns ### 

def vol_adjusted_returns(returns, volatilities): 

    adjusted_returns = pd.DataFrame(index=returns.index) 

    for model in volatilities.columns: 

        model_adjusted_returns = pd.Series(index=returns.index) 

        T = len(returns) 

        for t in range(T-1): 

            sigma_t = volatilities.iloc[t][model] 

            sigma_T = volatilities.iloc[t+1][model] 

            model_adjusted_returns.iloc[t] = (sigma_T / sigma_t) * returns.iloc[t] 

        adjusted_returns[model] = model_adjusted_returns 

    return adjusted_returns.dropna() 
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### Function to obtain historical VaR estimates ### 

def historical_var(returns, training_size=252, alpha=0.05): 

    historical_var_results = [] 

    for i in range(training_size, len(returns)): 

        returns_subset = returns.values[:i] 

        var_result = -np.percentile(returns_subset, 100 * alpha, axis=0) 

        historical_var_results.append(var_result) 

        var_df = pd.DataFrame(historical_var_results, columns=returns.columns, 

index=returns.index[training_size:]) 

    return var_df.dropna() 

 

### Function to obtain parametric normal VaR estimates ### 

def parametric_var(volatilities, confidence_level=0.95): 

    score = norm.ppf(confidence_level) 

    parametric_var = volatilities * score 

    return parametric_var 

 

### Function to obtain Monte Carlo VaR estimates ### 

def rolling_monte_carlo_var_with_volatility(portfolio_returns, volatilities, window_size=252, 

num_simulations=1000, confidence_level=0.95): 

    if not isinstance(portfolio_returns, pd.DataFrame): 

        raise ValueError("portfolio_returns should be a pandas DataFrame.") 

    if not isinstance(volatilities, pd.DataFrame): 

        raise ValueError("volatilities should be a pandas DataFrame.") 

    var_series = pd.DataFrame(index=portfolio_returns.index[window_size:], 

columns=portfolio_returns.columns, dtype=float) 

    for model in portfolio_returns.columns: 

        for i in range(window_size, len(portfolio_returns)): 

            window_returns = portfolio_returns[model].iloc[i - window_size:i] 

            window_volatilities = volatilities[model].iloc[i - window_size:i] 

            mean_return = np.mean(window_returns) 

            model_volatilities = window_volatilities.values 
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            simulated_returns = np.zeros((num_simulations, window_size)) 

            for j in range(num_simulations): 

                for k in range(window_size): 

                    sigma = model_volatilities[k]  # Volatility for the current day 

                    simulated_returns[j, k] = np.random.normal(mean_return, sigma) 

            initial_portfolio_value = 1 

            simulated_portfolio_values = initial_portfolio_value * (1 + 

simulated_returns).cumprod(axis=1) 

            simulated_portfolio_returns = np.diff(simulated_portfolio_values, axis=1) / 

simulated_portfolio_values[:, :-1] 

            var_percentile = np.percentile(simulated_portfolio_returns, (1 - confidence_level) * 

100, axis=0) 

            VaR = -var_percentile[-1]  # VaR is typically reported as a positive number 

            var_series.loc[portfolio_returns.index[i], model] = VaR 

    return var_series 

 

### Function to compute the cost of liquidity ### 

def COL(data, vol, alpha=95): 

    def spread_percentile(data): 

        return np.percentile(data, alpha) 

    percentile_spread = spread_percentile(data) 

    av_data_spread = data.mean() 

    a = {} 

    for model in vol.columns: 

        try: 

            model_vol = vol[model].iloc[:-1].mean() 

            a[model] = (percentile_spread - av_data_spread) / model_vol 

            print(f"Computed a for {model}: {a[model]}") 

        except ZeroDivisionError: 

            print(f"ZeroDivisionError for model {model}") 

            a[model] = np.nan 

    col = pd.DataFrame(index=vol.iloc[:-1].index) 

    for model in vol.columns: 
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        col[model] = 0.5 * (av_data_spread + a[model] * vol[model].iloc[:-1]) 

    return col 

 

### Function to obtain liquidity adjusted VaR ### 

def liquidity_adjusted_var(var, col): 

    var = var.reindex(col.index) 

    shifted_col = col.shift(1) 

    shifted_col.iloc[-1] = col.iloc[-2] 

    Lvar = var + shifted_col 

    Lvar = Lvar.dropna() 

    return Lvar 

 

### Function for the UC and BCP test ### 

### UC test ### 

def unconditional_coverage_test(violations, p=0.05): 

    T = len(violations) 

    N = np.sum(violations)  

    pi_hat = N / T  

    L0 = (1 - p) ** (T - N) * p ** N 

    L1 = (1 - pi_hat) ** (T - N) * pi_hat ** N 

    LR_uc = -2 * np.log(L0 / L1) 

    critical_value_uc = chi2.ppf(0.95, 1) 

    decision = "Reject" if LR_uc > critical_value_uc else "Do not reject" 

    return { 

        'Test Statistic': LR_uc, 

        'Critical Value': critical_value_uc, 

        'Decision': decision 

    } 

### BCP test ### 

def independence_test_lags(violations, max_lag=5): 

    T = len(violations) 

    V = np.array(violations) 
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    results = {} 

    for lag in range(1, max_lag + 1): 

        V_lag = np.roll(V, lag) 

        V_lag[:lag] = 0  

        N00 = np.sum((V == 0) & (V_lag == 0)) 

        N01 = np.sum((V == 1) & (V_lag == 0)) 

        N10 = np.sum((V == 0) & (V_lag == 1)) 

        N11 = np.sum((V == 1) & (V_lag == 1)) 

        p01 = N01 / (N00 + N01) 

        p11 = N11 / (N10 + N11) 

        L0 = ((1 - p01) ** N00) * (p01 ** N01) * ((1 - p01) ** N10) * (p01 ** N11) 

        L1 = ((1 - p01) ** N00) * (p01 ** N01) * ((1 - p11) ** N10) * (p11 ** N11) 

        LR_ind = -2 * np.log(L0 / L1) 

        critical_value_ind = chi2.ppf(0.99, 1) 

        decision = "Reject" if LR_ind > critical_value_ind else "Do not reject" 

        results[f'Lag {lag}'] = { 

            'Test Statistic': LR_ind, 

            'Critical Value': critical_value_ind, 

            'Decision': decision 

        } 

    return results 
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