
Improving Industrial Cybersecurity Training: Insights into
Code Reviews Using Eye-Tracking

Samuel Miguel Riegel Correia

Master in Computer Engineering

Supervisor:
Doctor Maria Cabral Diogo Pinto Albuquerque
Assistant Professor
Iscte – Instituto Universitário de Lisboa

Co-Supervisor:
Doctor Tiago Espinha Gasiba
Senior Key Expert and Cybersecurity Researcher
Siemens AG

September, 2024

Department of Information Science and Technology

Improving Industrial Cybersecurity Training: Insights into
Code Reviews Using Eye-Tracking

Samuel Miguel Riegel Correia

Master in Computer Engineering

Supervisor:
Doctor Maria Cabral Diogo Pinto Albuquerque
Assistant Professor
Iscte – Instituto Universitário de Lisboa

Co-Supervisor:
Doctor Tiago Espinha Gasiba
Senior Key Expert and Cybersecurity Researcher
Siemens AG

September, 2024

I am deeply grateful to my mother for her unwavering support throughout my academic
journey. Her encouragement, understanding, and sacrifices have been instrumental in

my success.

Acknowledgments

I extend my sincere thanks to my supervisors for their guidance and support through-
out the development of this project. Additionally, I am grateful to Siemens for their
support and collaboration, which greatly contributed to the success of my work.

iii

Resumo

À medida que as ciberameaças se tornam mais sofisticadas, os setores industriais
enfrentam novos desafios na salvaguarda de infra-estruturas críticas. Esta dissertação
explora o potencial de melhorar a formação em cibersegurança industrial através da ap-
licação de tecnologias de rastreamento ocular durante as revisões de código. Através
da analise dos processos cognitivos de profissionais de cibersegurança enquanto tentam
identificar vulnerabilidades no código de software, no que pode ser derivado de dados de
rastreio ocular, este trabalho visa fornecer informações valiosas para melhorar as práticas
de programação segura. Através de uma revisão sistemática da literatura, um inquérito, e
de experiências de rastreio ocular, este estudo identifica tarefas críticas no ciclo de vida do
desenvolvimento de software, avalia a eficácia de revisões de código e investiga a relação
entre os padrões de atenção visual e o sucesso na deteção de vulnerabilidades. Especifica-
mente, analiza a forma como os profissionais detectam algumas das vulnerabilidades de
cibersegurança mais predominantes, incluindo SQL injections e cross-site scripting. Os
resultados contribuem tanto para o conhecimento académico como para aplicações prát-
icas, abrindo o caminho para melhores metodologias de formação e reforçando as defesas
industriais em termos da cibersegurança no desevolvimento de software.

Palavras-Chave: revisão de código, cibersegurança, vulnerabilidades de código,
rastreamento ocular, programação

v

Abstract

As cyber threats become more sophisticated, industrial sectors face unprecedented
challenges in safeguarding critical infrastructure. This dissertation explores the poten-
tial of enhancing industrial cybersecurity training through the application of eye-tracking
technology during code reviews. By analysing the cognitive processes of cybersecurity
professionals as they identify vulnerabilities in software code, in what can be derived
from eye-tracking data, this work aims to provide valuable insights into improving secure
coding practices. Through a systematic literature review, survey, and eye-tracking exper-
iments, this study identifies critical tasks in the software development lifecycle, evaluates
secure code review effectiveness, and investigates the relationship between visual attention
patterns and vulnerability detection success. Specifically, it examines how professionals
detect some of the most prevalent cybersecurity vulnerabilities, including SQL injection
and cross-site scripting. The findings contribute to both academic knowledge and prac-
tical applications, paving the way for improved training methodologies and strengthening
industrial cybersecurity defences in software development.

Keywords: code reviews, cybersecurity, code vulberabilities, eye-tracking, program-
ming

vii

Contents

Acknowledgments iii

Resumo v

Abstract vii

List of Figures xi

List of Tables xiii

List of Acronyms xv

Chapter 1. Introduction 1
1.1. Context 1
1.2. Motivation 2
1.3. Research Questions 3
1.4. Outline 3

Chapter 2. Previous Work 5
2.1. State of the Art 5
2.2. Systematic Literature Review 8

Chapter 3. Methodology 19
3.1. Survey Design 19
3.2. Experiment Design 20
3.3. Evaluation 26

Chapter 4. Results 29
4.1. Survey Results 30
4.2. Experiment Results 31

Chapter 5. Discussion 41
5.1. Previous Work & Design of Study 41
5.2. RQ1 - What tasks in the software development lifecycle do industrial

cybersecurity professionals consider to be the most crucial in mitigating
cybersecurity vulnerabilities? 42

5.3. RQ2 - How successful are industrial cybersecurity professionals at conducting
secure code reviews? 43

ix

Improving Industrial Cybersecurity Training S. R. Correia

5.4. RQ3 - Is there a relation between the patterns revealed using eye-tracking
technology and the code reviewers’ success in spotting the vulnerabilities? 46

5.5. Threats to Validity 48

Chapter 6. Conclusions 51

References 55

Appendix A. Survey 63

Appendix B. Experiment Guide 67

Appendix C. Script to find number of occurrences of vulnerabilities 71

Appendix D. Code Snippets 73
D.1. Snippet 1 - CWE-787: "Out-of-bounds Write" 73
D.2. Snippet 2 - CWE-119: "Improper Restriction of Operations within the

Bounds of a Memory Buffer" 74
D.3. Snippet 3 - Placebo 1 75
D.4. Snippet 4 - CWE-20: "Improper Input Validation" 75
D.5. Snippet 5 - CWE-89: "SQL Injection" 76
D.6. Snippet 6 - CWE-89: Incorrect Solution 77
D.7. Snippet 7 - CWE-89: Correct Solution 78
D.8. Snippet 8 - Placebo 2 78
D.9. Snippet 9 - CWE-79: "Cross-site Scripting" 79
D.10. Snippet 10 - CWE-79: Solution 80

x

List of Figures

1 Gazepoint GP3 Eye-tracking device 7

2 Distribution of articles which refer "Eye-tracking" 2013-2023 12

3 Distribution of articles in selected topics with no filters 2013-2023 12

4 Distribution of articles in selected topics with the final filter 2018-2023 13

5 Code snippet containing vulnerability CWE-79 with "target" area highlighted
with a yellow rectangle 24

6 Importance given by participants to tasks in mitigating cybersecurity
vulnerabilities 31

7 Number of participants per number of vulnerabilities found 34

8 Average time participants spent looking at each code snippet containing
vulnerabilities 34

9 Average time participants spent looking at the target in each code snippet 35

10 Heatmaps for Code Snippet of CWE-89 35

11 Participants’ average fixation rate per number of vulnerabilities found 36

12 Timelines for changes in fixation rate and pupil dilation along the experiment 40

xi

List of Tables

1 Literature Review Research Questions 8

2 Systematic Literature Review Inclusion Criteria 9

3 Systematic Literature Review Exclusion Criteria 10

4 Number of articles for each filter and database 12

5 Number of articles for each category and database 13

6 Survey Data 20

7 Experiment Data 21

8 Top Vulnerabilities and Number of Registered Occurrences 23

9 Number of participants per age group 29

10 Number of participants per educational degree 29

11 Results on the analysis of code snippets with cybersecurity vulnerabilities 32

12 Average fixation rates of participants (fixations per second) 35

13 Pupil diameters of participants (in pupil diameter unit (PDU)) 37

14 Results on the analysis of proposed solution code snippets 37

15 Results on the analysis of placebo code snippets 38

16 Total Experiment Duration (Minutes:Seconds) 40

xiii

List of Acronyms

AOI: areas of interest

CSP: content security policy

CWE: common weakness enumeration

FOV: field of view

IDE: integrated development environments

LLM: large language model

LRRQ: literature review research questions

PDU: pupil diameter unit

SAST: static application security testing

UX: user experience

VR: virtual reality

XSS: cross-site scripting

xv

CHAPTER 1

Introduction

1.1. Context

The industrial sector is facing unprecedented challenges in cybersecurity as systems
become progressively interconnected and threats become increasingly sophisticated, fre-
quent, and costly [1]. The integration of digital technologies in industrial environments
exposes many new vulnerabilities which can be exploited by cybercriminals [2]. This
evolution has made cybersecurity a top priority for organizations, especially in critical
infrastructure sectors such as communications, energy, and transportation, where system
downtime or breaches can result in significant operational and financial losses.

Recent high-profile cyberattacks have highlighted the weaknesses in systems and ex-
isting security measures. As industrial environments adopt new technologies such as IoT,
cloud computing, and automation, the attack surface grows, making it essential to ad-
opt more stringent security practices. Governments and other regulatory bodies have
responded by introducing cybersecurity frameworks and standards that aim to improve
the resilience and imperviousness of industrial systems against cyber threats.

Secure coding is one of the most important areas of cybersecurity, with its primary
goal being the identification and elimination of vulnerabilities in software systems. A
cybersecurity vulnerability is a weakness or flaw in software that can be exploited by
attackers to compromise system security, potentially leading to unauthorised access, data
breaches, or other malicious activities. In this work, we will reference the common weak-
ness enumeration (CWE) vulnerability list [3]. This list not only catalogues vulnerabilities
but also outlines the relationships between various types of vulnerabilities.

Secure code reviews are an important task in the software development lifecycle, play-
ing a pivotal role in creating secure code and reducing these types of vulnerabilities. Code
reviewing is the practice of systematically examining source code to find defects and im-
prove code quality [4]. A secure code review focuses on finding possible cybersecurity
vulnerabilities. Code reviews are also commonplace in development lifecycles and have
been set as requirements in industrial standards such as the ISO/IEC 62443 series and
many others.

Due to their importance, code reviews have often been researched with the objective
of determining how to best conduct them. Code reviews mostly involve reading program
code while attempting to find flaws. According to our research, this makes eye-tracking
technologies an appropriate and popular approach when attempting to study profession-
als’ cognitive processes during this task, mainly because of the strong visual component
associated with the task.

1

Improving Industrial Cybersecurity Training S. R. Correia

Eye-tracking is a method used to collect information regarding individuals’ cognitive
processes using non-invasive methods [5, 6]. It can reveal to us the thought processes
of individuals while resolving tasks without causing any additional effort or distraction,
which is not the case when, for instance, conducting think-aloud studies [7]. Eye trackers
monitor individuals’ visual attention by collecting eye movement data and, with this data
they can, among other things, map a user’s gaze to a specific location of a screen the
user is looking at. These devices can also capture other important information such as
the saccades also known as rapid eye movements, blink rate, blink duration, and pupil
diameter, which allow for a more in-depth analysis of the user’s attention [8].

In our research, we focus on the area of study known as gaze tracking. Eye-tracking
and gaze-tracking are two terms that are often used interchangeably, even though a subtle
distinction exists. Eye-tracking mainly involves detecting eyes, obtaining a precise inter-
pretation of eye positions, and frame-to-frame tracking of detected eyes. Gaze tracking
or gaze estimation, however, is the process of modelling a person’s 3D line of sight or, in
other words, determining where a person is looking [9]. In a sense, gaze tracking is a use
case of eye-tracking technology.

The work we present here was, in part, initially introduced in a research paper written
for the 5th International Computer Programming Education Conference [10]. In that pa-
per, we provide a preliminary analysis of the importance of secure code reviews among in-
dustrial cybersecurity professionals, using data collected through surveys and eye-tracking
experiments. This dissertation extends the scope of the aforementioned conference paper.

Here, we delve deeper into the methodologies used, present new results, and employ
other analysis techniques to provide a more comprehensive understanding of our findings.
We present a detailed examination of the data collected and draw more significant con-
clusions about the role of eye-tracking in improving these practices. By expanding on the
initial research, this dissertation aims to contribute valuable insights into the enhancement
of cybersecurity measures within the software development lifecycle, specifically when it
comes to code reviews.

1.2. Motivation

Numerous research studies have successfully delved into the application of this tech-
nology to gain insights into the cognitive processes of individuals while undertaking pro-
gramming tasks [6, 11–13]. The promising results of these studies have paved the way for
further research and development in this field. However, very little research has focused
on cybersecurity.

Considering the increasing importance of cybersecurity in industrial settings, and the
potential consequences of overlooking these vulnerabilities, studying how processes, train-
ing, or artefacts related to security can be improved, is of great importance.

Recognising an opportunity to enhance internal processes related to cybersecurity,
Siemens decided to explore the potential of eye-tracking technology in this domain. By
2

Improving Industrial Cybersecurity Training S. R. Correia

investing in this project, the company aims to improve internal processes, while also con-
tributing to the scientific community by connecting behaviour analysis and eye-tracking in
the context of cybersecurity. This study took place, on-site, at Siemens Munich-Perlach.

In our work, we aim to explore this crucial subcategory of eye-tracking studies by
analysing tasks critical to cybersecurity, such as detecting cybersecurity vulnerabilities
in program code through code reviews. The study identifies key tasks in the software
development lifecycle, evaluates secure code review effectiveness, and investigates the
relationship between visual attention patterns and vulnerability detection success.

1.3. Research Questions

As a guideline for our work, we chose to address the following research questions:

RQ1 What tasks in the software development lifecycle do industrial cybersecurity pro-
fessionals consider to be most crucial in mitigating cybersecurity vulnerabilities?

RQ2 How successful are industrial cybersecurity professionals at conducting secure
code reviews?

RQ3 Is there a relation between the patterns revealed using eye-tracking technology
and the code reviewers’ success in spotting the vulnerabilities?

The first research question (RQ1) aims to understand how important experts consider
different types of tasks, including secure code reviews, in reducing cybersecurity vulnerab-
ilities. The second and third research questions were created to determine how proficient
experts are at identifying these vulnerabilities (RQ2) and what characteristics influenced
their performance (RQ3).

1.4. Outline

This document consists of six subdivided chapters. After this, Introduction chapter,
the Previous Work chapter presents the state of the art of industrial cybersecurity, stand-
ards, and code review research methods. We also conduct a systematic literature review
of publications related to our research.

In the Methodology chapter, we present a survey and an experiment involving eye-
tracking, with the results from these two parts being used to answer our research questions.

Next, the Results chapter, showcases the different results we obtained from both the
survey and the experiment. This chapter is followed by our Discussion presenting an
analysis of the aforementioned results and threats to their validity. Finally, in our sixth
chapter, Conclusion, we present our conclusions, limitations, and possible future work.

3

CHAPTER 2

Previous Work

In this chapter, we present the state of the art of industrial cybersecurity, research
on code reviews and eye-tracking technology. We also present previous work related to
the research we planned to conduct, which was gathered through a systematic literature
review.

2.1. State of the Art

In response to growing threats, cybersecurity standards have been developed to provide
structured guidelines for securing industrial systems. One of the most critical components
of these standards is the requirement for systematic code reviews, which are integral to
the validation of software security. Secure code reviews play a vital role in identifying
and addressing vulnerabilities early in the software development process, ensuring that
security is built into the product from the outset.

Several cybersecurity standards and frameworks mandate or recommend code reviews.
A foundational standard in this area is the NIST SP 800-53 (National Institute of Stand-
ards and Technology) [14], a security framework initially developed for U.S. federal agen-
cies. NIST SP 800-53 provides a set of guidelines for federal information systems, emphas-
ising the importance of secure code reviews as a method to identify security weaknesses.
While originally aimed at federal institutions, this standard has become widely adopted
across various sectors due to its robust security controls, which include recommendations
for both manual and automated code reviews to verify software security compliance.

The PCI DSS (Payment Card Industry Data Security Standard) [15], another influen-
tial security standard, is designed to protect cardholder data in payment systems. Man-
dated by the major credit card companies, PCI DSS applies to organizations that handle
branded credit cards from major schemes like Visa, MasterCard, and American Express
[16]. This standard specifically requires that organizations review code for vulnerabilit-
ies, either through manual code reviews or automated scanning tools. As financial data
remains a top target for cybercriminals, PCI DSS’s stringent security measures, including
mandatory code reviews, are critical for protecting sensitive financial information.

The OWASP ASVS (Application Security Verification Standard) [17] serves as an
industry-recognized framework for web application security, outlining best practices and
security verification techniques. OWASP ASVS recommends both manual and automated
code reviews as part of an organisation’s application security verification process. The
standard underscores the importance of code reviews in identifying a broad range of
security issues, from input validation errors to authentication weaknesses.

5

Improving Industrial Cybersecurity Training S. R. Correia

Another example of these standards is the IEC 62443 series (International Electro-
technical Commission), which provides a comprehensive framework for securing indus-
trial automation and control systems. The series is designed to address the full lifecycle
of cybersecurity, from product development to system maintenance, and emphasises the
use of code reviews to ensure that software meets security requirements. Specifically, IEC
62443-4-1 [18] outlines security development lifecycle requirements for industrial control
systems, recommending secure development practices such as testing and risk reduction,
which can include code reviews as part of ensuring secure software development. IEC
62443-4-2 [19] focuses on the technical security requirements for industrial automation
components, emphasising the importance of secure design and implementation.

By recommending or requiring code reviews, these standards emphasise the import-
ance of thorough scrutiny of source code to detect and eliminate security vulnerabilities.
As a verification and validation strategy, code reviews are effective in uncovering coding
errors, design flaws, and non-compliance with security protocols, all of which could be
exploited by malicious actors. Implementing code reviews as part of a broader security
strategy ensures that software is rigorously examined for potential risks, thereby reducing
the overall attack surface.

Through our research, we found that an often-seen approach in research on the topic
of code reviewing is the usage of eye-tracking devices due to their capability to expose
the cognitive processes of participants without much if any interference [6].

The upcoming systematic literature review section will delve deeper into studies con-
ducted on this topic, however, these studies primarily aim to understand how programmers
process information and solve problems during coding challenges. To do so, researchers
analyse data obtained from eye-tracking devices and identify areas of focus and attention
of the participants, measure their cognitive load, and evaluate the effectiveness of their
problem-solving strategies.

When it comes to the current state of the art of eye-tracking technology, there are
different types of devices. Remote eye-tracking, according to our research, is the most
popular and widespread option due to its flexibility, ease of use, and the multitude of
use cases (example seen in Figure 1). These remote devices are systems which do not
require direct contact with the participant, instead, the device is placed at a distance and
captures the position of the participant’s eyes.

These standalone devices use specialised cameras, typically with infrared capabilities,
which track the previously mentioned eye-specific information and give approximations of
the user’s gaze [8]. In the case of these infra-red-based eye-tracking devices, the invisible
infra-red light is directed into the eyes of the users, which is reflected by the retina,
causing the pupils to appear very bright. This so-called corneal reflection is captured by
the device’s cameras while image processing algorithms detect and track the eyes. Sharifa
et al. [12] discuss how this data can be further processed and modelled to obtain reliable
gaze location predictions.

6

Improving Industrial Cybersecurity Training S. R. Correia

Figure 1. Gazepoint GP3 Eye-tracking device

Tobii is a leading company in the field of gaze-tracking technologies [20]. They produce
mounted eye trackers, as well as head-mounted units in the form of glasses and virtual
reality (VR) headsets with embedded eye-tracking capabilities. The company provides
equipment for various applications, including scientific research, marketing, user exper-
ience (UX), healthcare, and automotive technology. Their success and recognition are
partly attributed to the development of technologies specifically designed for video games
and e-sports.

Other companies exist, offering comparable devices with similar performance and fea-
tures. Gazepoint [8] is a Canadian company that develops high-performance solutions
for eye-tracking, biometric research and neuromarketing. Their products and solutions
address the needs of researchers, development, marketing, UX, as well as education.

Siemens selected the Gazepoint GP3 eye-tracking device for this research due to its
precision and suitability for research applications. The GP3 is engineered to provide
reliable and accurate data, making it a valuable tool for studying the cognitive processes
of professionals during code reviews. Its proven integration capabilities with research
software and successful use in similar studies reinforced the decision to utilise this device
for conducting eye-tracking experiments in the context of this study.

While some cost-effective eye-tracking systems exist, the prices for these specialised
systems are usually very high, which can limit their access for research purposes. Altern-
ative solutions exist which do not require an eye-tracking device. An implementation of
such a system is GazeRecorder, which simply requires a webcam to function. Our research
has shown that it is possible to conduct gaze-tracking studies and obtain fairly reliable
recordings of gaze predictions of users with this program. According to our experience,
accuracy is this method’s biggest downside when compared to standalone gaze-tracking
devices. GazeRecorder has been successfully used in many research projects [21–23] and
is free for non-commercial uses.

Through our research, we found that eye-tracking usage has steadily increased over
recent years, with the creation of new user-friendly and cost-efficient systems being an

7

Improving Industrial Cybersecurity Training S. R. Correia

important factor in its popularisation. These systems are now commonly used for many
tasks such as UX studies, as input devices for applications, and in various research areas,
including programming and cybersecurity.

2.2. Systematic Literature Review

In this systematic literature review, we present the current state of research using eye-
tracking technologies in cybersecurity, programming, and UX. While our work focuses
on analysing processes related to cybersecurity, we also chose to include publications on
programming and UX as these subjects are also relevant to the context of our work.
Programming has a clear connection to cybersecurity, and the analysis of a task such as
a code review is closely tied to software development and programming. Furthermore, we
consider UX studies to be relevant to our work since the usage of eye-tracking in this field
is widespread and, as such, general procedures which can be applied to our study are well
documented and defined.

We will first outline our defined search criteria, followed by a presentation of the
conclusions regarding the research trends identified through this systematic literature
review.

2.2.1. Systematic Literature Review Criteria Definition

To conduct this systemic literature review, we defined several criteria which are presen-
ted here. The following literature review research questions (LRRQ), seen in Table 1, were
created to help guide the research procedure.

Table 1. Literature Review Research Questions

LRRQ1 How many articles on eye-tracking have been published over the years?

LRRQ2 How many articles specifically cover eye-tracking in programming, cybersecurity, or
user experience studies?

LRRQ3 What are common subjects that these studies cover?

LRRQ4 What studies have been conducted with eye-tracking?

After defining our research questions, we focused on creating a search prompt that
would help us answer these questions. This search prompt incorporated specific keywords
defined to obtain all articles which refer to eye-tracking and one of the aforementioned
subjects: cybersecurity, programming, or user experience.

This search prompt is composed of two parts conjoined by an "AND" to create the
intersection of results obtained from both. The first part specifies articles that refer to
eye-tracking technologies by using synonyms of this term and other spellings of it. The
second part defines the subjects that should be referred to in the publications. Note that
to obtain an answer to LRRQ1 only the first component of the search prompt, relative to
only eye-tracking, was used. The following corresponds to our basic search prompt:
8

Improving Industrial Cybersecurity Training S. R. Correia

(’Eye-tracking’ OR ’Eye Tracking’ OR ’Gaze-tracking’ OR ’Gaze Tracking’)
AND
(’Cybersecurity’ OR ’Programming’ OR ’Code’ OR ’User Experience’)

The appropriate translations of the keywords were also included to include articles
that are not only written in English but also in Portuguese, German, or Spanish:

(’Eye-tracking’ OR ’Eye Tracking’ OR ’Gaze-tracking’ OR ’Gaze Tracking’
OR ’Blickverfolgung’ OR ’Rastreamento Ocular’ OR ’Registro Visual’)
AND
(’Cybersecurity’ OR ’Cyber-Security’ OR ’Cyber Security’
OR ’Cybersicherheit’ OR ’Cibersegurança’ OR ’Seguridad Cibernética’
OR ’Programming’ OR ’Code’ OR ’Programmierung’ OR ’Programação’
OR ’Programación’ OR ’User Experience’ OR ’Benutzererfahrung’
OR ’Experiência de Utilizador’ OR ’Experiencia de Usuario’)

The inclusion criteria outlined in Table 2, define the characteristics that articles must
meet to be considered for inclusion.

Table 2. Systematic Literature Review Inclusion Criteria

IC0 Publication is written in English OR Portuguese OR German OR Spanish.

IC1 Publication includes the defined keywords either in the title OR abstract.

IC2 Publication defined in a relevant subject area such as Computer Science, or Engineering.

IC3 Publication openly accessible or within ISCTE’s scientific license.

IC4 Publication was released in the last 5 years (from 2018 onwards).

IC5 Publication type: article OR paper OR abstract.

IC6 Publication covers a technical aspect of creating an experiment on eye-tracking in one
of the desired fields OR describes and analyses the results of such a study.

IC7 Publication presents an analysis of subject behaviour with eye-tracking, in a field re-
lated to cybersecurity OR programming OR user experience related to the usage of an
application.

While we were able to apply most of these inclusion criteria automatically when search-
ing for publications, the last two required a manual review of the articles. This process
helped identify some relevant trends that have developed in the subject areas specified,
even if some publications were ultimately excluded based on some of the criteria.

Instead of individually applying each inclusion criterion, we chose to group these into
filters. Filters were applied gradually while registering the number of articles retained
after applying each one of these. Note that IC0 is always applied. The following are the
filters we created and the inclusion criteria they represent:

Filter 1: IC1
9

Improving Industrial Cybersecurity Training S. R. Correia

Filter 2: IC2 AND IC3
Filter 3: IC4 AND IC5
Filter 4: IC6 AND IC7
Exclusion criteria describe characteristics which should not be present in the included

articles, beyond what would correspond to a negation of the inclusion criteria. These
criteria required a manual review of the articles to be applied and were, for this reason,
applied at the same time as Filter 4. The exclusion criteria can be seen in Table 3.

Table 3. Systematic Literature Review Exclusion Criteria

EC1 Publication presents sub-par linguistic correctness.

EC2 Publication related to analysing a very specific demographic, such as individuals with
special needs.

EC3 Publication describes the use of eye-tracking technologies with something other than a
normal computer screen (mobile phone usage, virtual/augmented reality).

EC4 Publication describes the usage of eye-tracking for user inputs.

EC5 Publication describes the usage of eye-tracking data to dynamically adapt the content
presented to the user.

EC6 Publication describes the presentation of eye-tracking data to allow users to visualize
other users’ gazes.

Lastly, we defined which databases we would use to conduct our systematic literature
review. These databases were selected as they contain a vast amount of publications
from different fields of research including a large emphasis on articles related to computer
science. Additionally, these databases allowed us to apply many of the inclusion criteria
automatically, which greatly accelerated our review process. These are the databases we
chose to consult:

• ACM Digital Library
• Scopus
• IEEE Xplore
• b-on library (using EBSCOhost)

Due to the overlapping content of these databases, duplicate articles were removed
after all filters were applied. Consequently, the reported number of articles does not
account for duplicates discovered in multiple databases, except for the numbers presented
after applying all filters.

2.2.2. Systematic Literature Review Results

To determine the answer to LRRQ1, we first looked at the evolution of the number
of articles which refer to the term eye-tracking or one of its other forms and translations.
Figure 2 shows the number of articles that refer to eye-tracking between 2013 and 2023.
From this graph, we can see that there exists an established and growing interest in using
this technology for scientific research.
10

Improving Industrial Cybersecurity Training S. R. Correia

This analysis highlights the disparity in the number of publications we obtained from
each database. We observed that the Scopus and b-on databases presented, by a con-
siderable margin, the largest number of articles referring to eye-tracking. These two
are comprehensive multidisciplinary databases that include articles from various scientific
disciplines. In contrast, the ACM digital library and IEEE Xplore are much smaller and
specialize in certain disciplines, namely, engineering, technology, and computer science.

Note that duplicate articles may be considered in the numbers we present as these
were only removed after applying the final filter.

Next, we focused our research on determining the popularity of the usage of eye-
tracking technology in the use cases being considered. To do so, the previously defined
criteria were applied, step by step, and results were recorded. Table 4 presents the number
of articles obtained from each database after applying all filters and exclusion criteria
described in the previous section.

The number of articles per year was also analysed. This information gives us some
insight into how the popularity of our subjects has changed over the years. We present
two graphs: Figure 3 shows the number of articles published from 2013 onwards before
applying any filters; Figure 4 presents the number of articles obtained from each database
after applying all filters.

After applying all criteria and removing any duplicates, the total amount of articles
obtained after applying all filters is 124. Whereby four articles are on cybersecurity, 91
on programming, and 29 on UX.

Table 5 shows the number of articles corresponding to each category, divided by data-
bases. This table gives insight into LRRQ2 by presenting how many articles have been
published for each subcategory. As some of the publications we obtained are present in
multiple databases, the total number of articles differs from the sum of the articles found
in each of the databases.

Table 5 shows that the number of articles on cybersecurity studies is relatively small
compared to the other categories, representing only 3% of total publications. We found
only four articles in this category, these were analysed and presented in subsection 2.2.4.
Despite eye-tracking being commonly used to analyse user experiences, the number of
articles on UX was lower than anticipated, with less than one-fourth of articles retained
after applying all filters being related to UX.

The research questions LRRQ3 and LRRQ4, which require further analysis, are ad-
dressed in the following parts.

2.2.3. Trends in Research

In the publications we analysed, we found that articles on UX often included experi-
ments in which a group of users was asked to compare different implementations of user
interfaces [24–26]. Other topics included the use of eye-tracking as a user input [27] and
the usage of the live eye-tracking data to automatically modify the displayed content [28].

11

Improving Industrial Cybersecurity Training S. R. Correia

0

10000

20000

30000

40000

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Publications per year on "Eye-Tracking" - Stacked Area Chart

ACM

Scopus

IEEE

b-on

Figure 2. Distribution of articles which refer "Eye-tracking" 2013-2023

Table 4. Number of articles for each filter and database

Database No Filter F1 F2 F3 F4
ACM 3914 200 198 110 48
Scopus 16583 1094 248 187 46
IEEE 751 191 189 117 40
b-on 52439 967 335 179 39

0

2500

5000

7500

10000

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Publications per Year with No Filter - Stacked Area Chart

ACM

Scopus

IEEE

b-on

Figure 3. Distribution of articles in selected topics with no filters 2013-
2023

The usage of eye-tracking data to dynamically change the content presented to the user
is often referenced in the context of virtual or augmented reality applications. These
publications also mentioned several user experience testing strategies which would also
be relevant to our work, such as starting from the easiest tasks and working towards the
12

Improving Industrial Cybersecurity Training S. R. Correia

11

9
8

5
4

12

6

9

3

6

15

8

4

10
9

5
6

5

2

6

3

7

13

7

2018 2019 2020 2021 2022 2023

Publications per Year with Final Filter - Bar Chart

ACM

Scopus

IEEE

b-on

Figure 4. Distribution of articles in selected topics with the final filter
2018-2023

Table 5. Number of articles for each category and database

Database Cybersecurity Programming User Experience
ACM 2 41 5
Scopus 1 32 13
IEEE 3 28 9
b-on 1 27 11

TOTAL 4 (≈3%) 91 (≈74%) 29 (≈23%)

harder ones, making sure the participant feels comfortable to ensure that we obtain close
to real-world results, and other elements related to these types of experiments such as
practice runs and the creation of procedure guides.

As for the articles we discovered on programming, these included comparisons between
the way experienced and novice programmers look at code [29], how developers consult
documentation and search for guidance online [11, 30], and how model-generated code
compares to human-written code in terms of readability [31], among other topics.

Out of all of the articles on programming, analysis of how individuals look at code or
comparisons between how different groups of individuals look at code were, by far, the
most common subjects in the discovered articles.

Other studies sought to determine the effectiveness of sharing gaze data between users
to more accurately convey ideas between individuals. These articles usually focus on pair
programming, and attempt to help pairs of programmers to more easily follow each other’s
thought processes [32].

Many articles analysed several topics related to education, especially education related
to programming. For instance, researchers have leveraged eye-tracking devices to help
determine a student’s understanding of code [33, 34], while similar studies have been
conducted for other disciplines such as mathematics [35], or even to analyse how students
read English text [23]. Others also explored specific educational challenges related to the
education of children or individuals with certain conditions such as dyslexia [36]. The

13

Improving Industrial Cybersecurity Training S. R. Correia

vast majority of these articles on education had the objective of informing educators on
how to improve their teaching processes.

It was noted that for the topic of programming many articles explicitly mention educa-
tion and many more implicitly have an impact in this field. This comes from the fact that
many articles study how certain individuals read code, something that is very relevant
when attempting to educate people on the best practices of this task.

2.2.4. Trends in Cybersecurity Research

After applying all filters, we discovered four articles directly referring to cybersecurity.
Furthermore, three of these articles were related to coding practices from a cybersecurity
perspective and aim to further secure coding practices, while the last one describes the
procedure to conduct an eye-tracking study to help in training against phishing attacks.

On Integrating Security-Relevant Information in Non-Security API Documentation to
Support Secure Coding Practices by Gorski et al. [37] looks at how programmers read
documentation to implement certain features. Specifically, this article focuses on how
developers look at API documentation and content security policy (CSP) implementa-
tion. This revealed, among other findings, that programmers often solely concentrate on
code examples, overlooking essential information crucial to secure coding. The article
also highlights how documentation should be adapted or enhanced to more effectively
convey security-relevant information. The main conclusions include a recommendation to
integrate important cybersecurity information into the code examples.

Two studies identified in our review focused on how educational methods can be
adapted to enhance secure coding practices. Understanding and Improving Secure Coding
Behavior with Eye Tracking Methodologies by Davis and Zhu [38] conducts a study in
which students manually analysed source code, and were tasked to select the code snippet
which presented the best solution out of several options. From this study, the authors
determined that a "think before you act" approach is critical when solving these types of
problems, concluding that the most effective and efficient strategy to create secure code is
to fully understand the errors before attempting to fix them. In the study, this is reflected
by individuals who answered correctly having a higher fixation duration on each possible
answer.

This article uses CWE-based definitions to categorise and describe vulnerabilities.
The usage of these definitions is commonplace in the field of cybersecurity since they
provide a standardised framework and common language for identifying and discussing
software weaknesses. These definitions facilitate clearer communication among security
professionals by ensuring that everyone uses the same terminology and understands the
nature of vulnerabilities consistently. With CWE’s comprehensive list of known software
weaknesses, professionals can precisely identify the type and characteristics of a specific
14

Improving Industrial Cybersecurity Training S. R. Correia

weakness, which is essential for accurate documentation. Not only does CWE provide in-
depth descriptions of weaknesses and flaws, but it is essentially an ontology with relations
between issues and possible attack vectors that originate from these issues.

Moreover, CVEdetails.com [39] is an online database that catalogues software vul-
nerabilities, offering detailed information about each one, including its impact, severity,
and occurrences. This database aligns with the CWE framework, providing a structured
approach to understanding and addressing security weaknesses in software. Additionally,
we found CVEdetails.com to be useful in designing our study, particularly in determining
which types of vulnerabilities have the highest number of registered occurrences.

The previous article, as well as Minimizing Cognitive Load in Cyber Learning Ma-
terials by Bernard et al. [40], both present alternative learning frameworks. The latter
focuses on determining how cognitive load influences cybersecurity education and how to
avoid cognitive overload when working with this complex subject. It proposes a model
that "incorporated Bloom’s taxonomy and the design principles of segmentation and in-
teractivity" to reduce intrinsic and extraneous load while increasing germane load. This
article presents a study with the proposed learning framework vs a traditional learning
module and uses different eye-tracking metrics to measure these cognitive loads, specific-
ally fixation duration and pupil size.

Lastly, Eye-Tracking System as a Part of the Phishing Training by Madleňák and
Kampová [41], proposes the use of eye-tracking in phishing prevention. Phishing is one
of the most prevalent cyber threats we face today. These attacks use social engineering
techniques to gain the victims’ trust. As such, the most effective way of preventing this
type of attack is through training. The article focuses on enhancing anti-phishing training
through the use of eye-tracking. One of its stated claims is that through eye-tracking,
we can understand which elements of e-mails or websites users focus on and, with this
information, "gain insights into common mistakes and areas of vulnerability". The authors
also propose an experiment involving a mock phishing email to analyse users’ interactions
with potentially malicious content, relying on key eye-tracking metrics.

We found that articles related to eye-tracking use in cybersecurity are closely related
to education. The publications we highlighted were directly related to how we can create
better pedagogical frameworks to educate individuals on cybersecurity, or how we could
adapt provided learning materials such as API documentation to further safe cybersecurity
practices.

Most articles about programming may also be relevant to cybersecurity and to the
topic of reducing cybersecurity vulnerabilities, as analysing how individuals look at code
may also give some insight into how they deal with certain cybersecurity challenges.
Articles which focus on education are also relevant since, as we have seen, education is
essential when trying to guarantee safe behaviours, be they specific to coding or general
computer usage.

15

Improving Industrial Cybersecurity Training S. R. Correia

2.2.5. Surveys and Guides

A considerable amount of publications exist which specifically provide researchers with
guides on how to best conduct eye-tracking experiments involving programming code.

In Analysis of Software Developers’ Coding Behavior [42], the authors conduct a com-
prehensive review of objectives and techniques crucial to analysing software developers’
coding behaviour using eye-tracking. This publication consists of a systematic literature
survey and was significantly helpful in the design of our experiment. One of the elements
from this article that was particularly important for our study is a decision matrix de-
scribing each software development lifecycle task in terms of its properties, such as type
of stimuli, interactivity, viewing dimensions, and other characteristics. Each task in the
decision matrix is associated with possible approaches and visualisations to analyse the
eye-tracking data obtained from studying these tasks. From these tasks, we considered
the following to be crucial in cybersecurity and, additionally, be suitable candidates for
analysis through an eye-tracking study: code reviewing, analysis of static application
security testing (SAST) tool outputs, reading documentation, and researching online re-
sources (e.g. Stack Overflow).

This previously mentioned article, along with additional works [6, 43], provide survey
results from the analysis of publications involving the use of eye-tracking in computer
programming. These articles study all elements involved in these studies, from the eye-
trackers used to the analysis of the experiments’ results. These articles were instrumental
in defining our approach to conduct the experiment and in evaluating the data we would
obtain.

Some of the metrics these publications mentioned include fixation rate and pupil dia-
meter. Fixation rate, i.e., the number of fixations per second has been linked to cognitive
effort, interest, and exploration in tasks such as finding vulnerabilities in code [12, 43].
Pupil diameter is a relevant characteristic which has previously been linked to higher cog-
nitive workload. Studies incorporating both eye-tracking and magnetic resonance/spec-
trography, have shown that pupils can dilate up to 0.5 mm above their relative baseline
value during high cognitive loads [12, 13].

2.2.6. Tools

Beyond articles on these eye-tracking studies, many articles present tools to help in
the creation of such experiments involving programming, the most notable of which being
iTrace [44]. This tool helps create eye-tracking experiments in integrated development
environments (IDE) such as Visual Studio [45] and Eclipse [46], by matching the gaze
position of users with the fragments of code they are looking at. iTrace allows users to
freely navigate the code while enabling researchers to associate gazes to specific parts
of the code easily. By allowing individuals to use environments with which they are
familiar, users feel more comfortable and closer to their natural state when performing
these experiments.
16

Improving Industrial Cybersecurity Training S. R. Correia

iTrace is referenced in many of the articles we analysed and has been used in many eye-
tracking experiments involving the analysis of code-reading behaviours. Since its creation,
this tool has received updates, adding new features and plugins for other development
environments. Some updates to iTrace are presented in articles before their introduction
to the main application (e.g., [47] and [48]).

We have found that Drew T. Guarnera, Jonathan I. Maletic, and Bonita Sharif, some
of the authors of the original paper, are also prominent authors of articles on eye-tracking
for development environment experimentation. Not only are these authors featured in
articles related to the updates to the iTrace tool, but they have co-authored many other
articles on the research of cognitive processes of programmers using eye-tracking.

While iTrace allows researchers to obtain data which correlates to the exact positions
of specific code instructions, the majority of studies we observed conduct their research
using other methods such as areas of interest (AOI). These AOI are portions of the
screen, usually defined using rectangles, which contain related information. For instance,
a study may use AOI to differentiate parts of a coding question [49], to determine how a
user analysed each option in a multiple choice question [38], or to register when a user is
looking at code or at the information of the code’s author [50].

While the granularity of results obtained with iTrace may be appropriate for some
experiments, as we have seen, the usage of AOI is the standard approach for this type
of study. iTrace does not provide tools to create and evaluate AOI, however, while we
found no publications which explored this possibility, researchers could define these some
other way and profit from both the granular analysis provided by the tool and the results
obtained using AOI.

While we had initially planned to use iTrace for our study, due to technical reasons,
we were not able to do so. An issue presented itself which could not be easily addressed
even with the support from the tool’s developer and community. As such, an alternative
program was sought, as further efforts to resolve this issue would not be in the best
interest of the project.

Many other tools exist for this type of analysis, with most studies being conducted
with the companion programs provided by the eye-tracker manufacturers themselves (e.g.,
Tobii Pro Lab [51] or Gazepoint Analysis [52]). There also exist open-source tools like
the Open Gaze and Mouse Analyzer (OGAMA) [53] which presents itself as an excellent
alternative to these closed-source programs. OGAMA’s main features include the creation
of slideshows, recording gaze data, the database-driven preprocessing and filtering of gaze
data, the creation of attention maps, AOI definition, and replay [54]. Despite being
released over 15 years ago (in 2008) and no longer being actively developed by its original
author, this tool is still used in numerous recent publications to conduct eye-tracking
experiments [12, 33, 50]. For these reasons, OGAMA was chosen to be used in our study.

17

Improving Industrial Cybersecurity Training S. R. Correia

2.2.7. Conclusions on the Systematic Literature Review

By conducting this systematic literature review we were able to gather information on
eye-tracking research for the topics we are focused on. We found that this technology has
and continues to be used in several different forms with very distinct objectives, be it as
an input for an application, to evaluate different implementations of a certain system by
analysing how a user interacts with it, or to simply study how an individual reads program
code. Notably, very few publications exist which specifically focus on using eye-tracking
in cybersecurity research which further motivated us to continue our work.

We observed that research targeting how individuals analyse code frequently inter-
twines itself with education, as the insights gained from these projects can usually be
used to enhance educational processes. While our results show that the number of pub-
lications on cybersecurity was limited, the ones we identified consistently focused on edu-
cation. Similar to previous work, our research does not solely concentrate on education,
however, it will naturally involve this subject.

In the publications gathered, we observe a variety of approaches, even for similar
objectives. Specifically, there are differences in equipment, software, and techniques used
to evaluate and interpret the eye-tracking data. Most of the studies involving code did
not measure per-instruction fixations, but rather measured relatively large groupings such
as options in multiple choice questions or blocks of code, with relatively few going to the
lengths of registering per-instruction fixations and analysing this information. We believe
this might be due to issues related to the precision and accuracy of such measurements,
making the use of AOI in many cases preferable and more reliable.

This systematic literature review aided us in the selection of the tools we would use
in our study, as through it we were able to obtain insights into various equipment and
techniques for eye-tracking studies related to the work we planned on conducting. Pub-
lications we found particularly informative included the various surveys conducted on the
usage of eye-tracking in computer programming. The surveys found in those publications
reviewed a large variety of work conducted in this field and presented the equipment used,
techniques applied, and conclusions obtained. These studies influenced our formulation
and approach to conducting our study.

18

CHAPTER 3

Methodology

We approached our research questions through an empirical study, as the industrial
context of the dissertation allowed for such a study to be conducted. Our study consists
of two parts, a survey and an experiment where the survey aims to answer RQ1 while
the experiment tackles RQ2 and RQ3 . The survey and the eye-tracking experiment
were conducted with the same participants, with the survey preceding the code review
experiment.

3.1. Survey Design

A survey was created which collected participant demographics and responses to ques-
tions designed to answer RQ1 . With this data, we were also able to determine whether
any correlations existed between participants’ performance in the experiment and their
background information. The data collected through this survey is presented in Table 6.

The demographical background data we collected, marked BG, included: age, gender,
level of education, and years of work experience in cybersecurity. Additionally, a ques-
tion was included to determine the participant’s self-reported proficiency in the C++
programming language as this was the language of the code snippets the participants
would be presented with during the experiment. The participants’ self-reported C++
proficiency was recorded through a five-point Likert scale [55]. On this scale, a value of
one corresponds to novice, while five corresponds to expert-level proficiency.

Regarding the questions designed to answer RQ1 , marked A, participants were asked
to evaluate the following tasks also via a five-point Likert scale, where a rating of one
corresponds to not important, and five corresponds to very important. These questions
are represented by data points A1 through A4:

T1 Code reviewing
T2 Analysis of SAST tool outputs
T3 Reading documentation
T4 Researching online resources (e.g. Stack Overflow or other community-based

resources)

When selecting the tasks to be studied with this survey we chose some which we
considered relevant to the industry in terms of reducing or eliminating cybersecurity
vulnerabilities, based on the research we had conducted. Additionally, the tasks chosen
were also good candidates for eye-tracking studies since they involved patterns which
could be easily recorded and analysed with this technology. Furthermore, an open-ended
question was also included, corresponding to A5, which allowed participants to indicate

19

Improving Industrial Cybersecurity Training S. R. Correia

Table 6. Survey Data

BG1 Age

BG2 Gender

BG3 Education: Highest level of education completed

BG4 Experience: Years of work experience in cybersecurity

BG5 C++ Proficiency: Self reported proficiency in the C++ programming language

A1 Importance given to T1

A2 Importance given to T2

A3 Importance given to T3

A4 Importance given to T4

A5 Additional SW development tasks considered important

any other tasks they considered important, but which weren’t included in the previous
list.

This survey was created with Microsoft Forms [56], and participants responded to
it on a computer supplied by the researcher before conducting the experiment. A PDF
version of this survey can be found in Appendix A.

3.2. Experiment Design

To answer RQ2 and RQ3 we created an experiment in which participants would con-
duct a secure code review of several code snippets, with their main goal during these
reviews being to find cybersecurity vulnerabilities. The data collected through this ex-
periment is presented in Table 7

To evaluate the accuracy of our participants’ answers (B1), we defined what constitutes
a correct answer. To simplify this variable, we considered answers to be either correct or
incorrect following some criteria we defined. This criteria is presented in section 3.3.

We would also like to give an additional note on the pupil diameter data (B8). While
this characteristic is supported by our eye-tracking device and was recorded during the
experiment sessions, OGAMA does not natively present this data to users. As such, we
extracted this information from the raw data files before our analysis.

We were not able to determine the unit of measurement the pupil diameter values
correspond to, according to the Gazepoint Analysis manual and Gazepoint API manual,
the data should have been recorded in millimetres [57, 58]. Through testing, we found
that these values could not possibly be in millimetres, nevertheless, they remained very
relevant and useful in our research. We will, from this point onwards, refer to the unit of
measurement for this characteristic as pupil diameter unit (PDU).

For this experiment, we defined what resources we required, the code snippets which
our participants would analyse, and the procedure we would follow when administering
the experiment. These will be presented in the following subsections.
20

Improving Industrial Cybersecurity Training S. R. Correia

Table 7. Experiment Data

B1 Accuracy: Accuracy of the description of vulnerabilities, i.e. right or wrong answer for
each code snippet

B2 Time to Detect Vulnerability: The time spent before the participant identified the
vulnerability

B3 Experiment Duration: Time to complete the experiment

B4 Code Snippet Analysis Duration: Time for the analysis of each code snippet

B5 Fixations: Number of fixations, their duration, and location

B6 Gaze Time: Time looking at a part of the code (for our analysis using AOI)

B7 Total Gaze Time: Time spent fixating on the code, i.e. the sum of fixation times

B8 Pupil Diameter: The diameter of the participants’ pupils.

We also conducted a trial experiment, with the researcher who would administer the
experiment acting as a participant. This trial served to find issues in the experiment setup
we had created and any possible flaws in the experiment guide.

3.2.1. Hardware, Software, and Other Resources

The Gazepoint GP3 Eye-tracking device was used. Several factors influenced the
selection of this device such as the fact that it was created mainly for research purposes
and that it has been used successfully in other similar research projects. This device was
obtained directly from the manufacturer.

As for the software used to record and analyse most of the data, the Open Gaze
and Mouse Analyzer (OGAMA) [53] was used. OGAMA supports most features of other
closed-source alternatives and even surpasses them in some aspects such as customisability
and data output variety.

Other physical resources were also procured for the experiments, these included a
computer, a monitor, and a room where the experiment could take place. The computer
used was a personal work computer which exceeded all of the used software’s recommended
requirements. The monitor, which the participants would use to look at the code snippets,
was a standard office monitor, namely a 24-inch Fujitsu brand display (b24w-5 eco). A
meeting room was also reserved in which the experiments could be conducted, this room
was equipped with a height-adjustable desk, seating for the participant and the researcher,
and fully adjustable shutters to control the ambient light of the room.

3.2.2. Code Snippets

There are three types of code snippets we decided to include in our experiment: code
snippets with vulnerabilities, proposed solution code snippets, and placebo code snippets.
The first were code snippets which included a common vulnerability which our participants
would have to find. The second was code snippets which presented solutions to some
of the common vulnerabilities, not all of which were correct implementations of said

21

Improving Industrial Cybersecurity Training S. R. Correia

solutions. For this second type of code snippet, we asked our participants if the code
we presented them solved the vulnerability. Lastly, placebo code snippets were code
snippets representing programs with no cybersecurity vulnerabilities. As with the code
snippets with vulnerabilities, participants were simply tasked with identifying any existing
vulnerabilities.

The selection of relevant code snippets was essential as these would dictate what kind
of results and, consequently, conclusions we would obtain from the experiment. In line
with some of the articles we reviewed, we utilised the definitions of vulnerabilities from
the CWE repository [3] to assign specific names and definitions to each vulnerability that
participants were tasked with identifying.

For our vulnerable code snippets, we elected code snippets representing the most
common weaknesses according to the number of registered occurrences on CVEdetails.com
[39]. A Python script was created to obtain the number of registered occurrences of each
issue on this website. This script can be found in Appendix C.

Table 8 shows the top ten most common vulnerabilities by number of registered occur-
rences on CVEdetails.com, their number of occurrences, and frequency i.e. the percentage
they represent out of all registered occurrences.

We chose the top five most common vulnerabilities, i.e. CWE-79, CWE-119, CWE-89,
CWE-20, and CWE-787. These also occupy top positions in CWE Top 25 Most Dangerous
Software Weaknesses [59], which takes into consideration not only the frequency but also
the severity of threat vectors.

Next, we searched for example code snippets for each of these weaknesses. Each of
the snippets we chose, and not just the vulnerable code snippets, needed to be displayed
as a single static image, without the need for scrolling. This meant that we had to limit
our code snippets to around 50 lines of code to accommodate this requirement. This
limitation resulted from our decision to use the eye-tracking study software OGAMA
which doesn’t support scrolling through images or text. Furthermore, the code snippets
must be written in C++ as, according to our experience, this programming language is
widely used in the industry and, particularly, in the company where the study took place.
Most code snippets we discovered during our research were originally written in languages
other than C++, these were translated to uniformise our code snippets.

For CWE-787, "Out-of-bounds Write", the code snippet was obtained from the CWE
definition page’s example snippets, specifically, example 5 [60]. CWE-119 and CWE-
20, "Improper Restriction of Operations within the Bounds of a Memory Buffer" and
"Improper Input Validation", had their code snippets based on the code snippets in
Chetan Conikee’s "seeve" repository [61]. For CWE-89, "SQL Injection", the code snippet
was created based on relevant documentation including its CWE definition [62]. Finally,
the code snippet for CWE-79, "Cross-site Scripting", was based on the corresponding
code example in Yes We Hack’s "Vulnerable Code Snippets" repository [63].

22

Improving Industrial Cybersecurity Training S. R. Correia

Table 8. Top Vulnerabilities and Number of Registered Occurrences

Ranking Vulnerability Occurrences Frequency
1 CWE-79 26726 14.22%

2 CWE-119 11959 6.36%

3 CWE-89 11265 5.99%

4 CWE-20 10503 5.59%

5 CWE-787 10091 5.37%

6 CWE-200 7899 4.20%

7 CWE-22 5837 3.11%

8 CWE-125 5758 3.06%

9 CWE-352 5658 3.01%

10 CWE-264 5495 2.92%

We consider it important to give a brief overview of the contents of these code snip-
pets, as this contextualisation will be important when considering our results. CWE-89’s
code snippet was a program that established a connection with a MySQL database and
executed a query considering a username input by the user without any sanitation, which
is where the SQL injection vulnerability originated. As for the code snippet used for
CWE-79, it consisted of a small website that received requests and returned a simple
HTML page with some information obtained from the request and therein lay the XSS
weakness. In contrast, the other code snippets in our experiment included vulnerabilities
closely related to memory management: Out-of-Bounds Write, Improper Restriction of
Operations within the Bounds of a Memory Buffer, and Improper Input Validation.

For the analysis of the results, we defined what regions of these programs contained
the vulnerable code. This region of the code is referred to as "target" and consists of a
rectangle surrounding the vulnerable code. An example of this can be seen in Figure 5.
The size and location of these rectangles were different for each vulnerable code snippet.

As for the code snippets representing solutions to vulnerable code, these are referred
to CWE-89 and CWE-79. After each of these vulnerable code snippets, we first presented
our participants with the lines of the code which contained the weaknesses and explained
these to them in case they had not been able to identify them. Only after this did we
present participants with the proposed solutions to these weaknesses, specifically, two for
SQL injection and one for the cross-site scripting (XSS) vulnerability.

The most common approach to fixing a SQL injection weakness is to use prepared
statements. Both of the solutions we presented to our participants used prepared state-
ments, however, the first solution incorrectly implemented these, so the code still contained
the same vulnerability. The second solution to the SQL injection vulnerability consisted
of a correct implementation of prepared statements using the same C++ library which
was used to establish the connection to the database.

For the XSS vulnerability, CWE-79, we only presented one solution to our participants.
This solution consisted of a short program which sanitised any user input by replacing

23

Improving Industrial Cybersecurity Training S. R. Correia

Figure 5. Code snippet containing vulnerability CWE-79 with "target"
area highlighted with a yellow rectangle

symbols which could be used to inject code, namely: &, \, ’, <, and >, by applying
HTML entity coding1 to characters in the query received by the server.

These solutions were created by us, considering some common tactics used to solve
these problems and mistakes which, according to our experience, are very common, such
as the incorrect usage of prepared statements when addressing SQL injection issues.

We included two placebo code snippets, i.e. two code snippets with no flaws, referred
to as Placebo 1 and Placebo 2. Placebo 1, corresponds to a program which counts the
number of times a certain character appeared in a string, with both the character and
the string being supplied by the user. Placebo 2, was a program which found the highest

1HTML entity encoding is a technique used in web security to convert certain reserved characters into their
corresponding HTML entities (e.g., "&" becomes "&", "<" becomes "<"), preventing browsers
from interpreting user-supplied input as executable code. This is commonly used to prevent injection
attacks such as XSS.

24

Improving Industrial Cybersecurity Training S. R. Correia

common factor between two user-supplied values using recursion. These placebo code
snippets were obtained from programiz.com [64].

Participants were allowed to look at the code snippets for as long as they deemed
necessary, only moving to the next code snippets once they felt they were confident to do
so. To remain within schedule, the researcher administering the experiment did, however,
ask the participant if they were ready to advance if, for example, the weakness in one of
the vulnerable code snippets had been found. Finally, following an important and well-
established rule in user experience testing, we ordered our tasks by their difficulty [65], in
our case, this corresponded to ordering the code snippets by their interpretation difficulty
which we determined according to our experience. We arrived at the following order of
code snippets:

(1) CWE-787: "Out-of-bounds Write"
(2) CWE-119: "Improper Restriction of Operations within the Bounds of a Memory

Buffer"
(3) Placebo 1
(4) CWE-20: "Improper Input Validation"
(5) CWE-89: "SQL Injection"
(6) CWE-89: Incorrect solution
(7) CWE-89: Correct solution
(8) Placebo 2
(9) CWE-79: "Cross-site Scripting"

(10) CWE-79: Solution

These code snippets can be found in Appendix D.

3.2.3. Trial Experiment Conclusions & Experiment Guide

A document detailing the procedure was created to add consistency and structure to
our experiments. This document covers all aspects of the experiment namely: introduc-
tion, experiment procedures, and debriefing.

A trial run of the experiment was conducted to check if any issues existed in the exper-
iment procedure. During this trial, the experiment guide was altered and some previously
unknown issues in the code, such as syntax errors or additional vulnerabilities, were also
identified and corrected. Additionally, it was found that ambient brightness and light
sources in the eye-tracker’s field of view (FOV) strongly influence its performance. After
some experimentation and the consultation of relevant documentation [66], we determined
that, for optimal results, the environment in which the experiment takes place should,
as much as possible, be devoid of natural light and have minimal artificial lighting. The
room we had access to for the study had adjustable blinds which remained fully closed
during the experiments to ensure consistent and reliable readings from our eye-tracking
device.

25

Improving Industrial Cybersecurity Training S. R. Correia

Besides recording the screen and the eye movement data, audio recordings of the
sessions were made as they would facilitate the posterior analysis of the results from
our experiments. These audio recordings were timestamped during the experiments to
mark the presentation of each different code snippet. All participants consented to these
recordings beforehand.

The experiment was administered in English and German, depending on the preferred
language of the participant. For either language, the experiment guide was closely fol-
lowed. The document corresponding to the complete experiment guide can be found in
Appendix B.

3.3. Evaluation

To evaluate data relative to RQ1 we followed a standard analytical approach. Par-
ticipants rated each task on a five-point Likert scale, which conveys the comparable im-
portance given to each of the tasks they evaluated. We relied on simple metrics and
visualisations such as diverging stacked bar charts to give us a good overview of the sur-
vey results (A1-A4). For the open-ended question (A5), each answer was processed to
count the number of times each additional task was mentioned, this allowed us to present
which other tasks our participants considered important.

As for RQ2 and RQ3 , our analysis was considerably more complex. We used different
visualisation techniques for the eye-tracking data, analysed correlations between many
distinct variables, and looked at the gaze paths of our participants.

To evaluate the accuracy of our participants’ answers (B1), we defined what constitutes
a correct answer. To simplify this variable, we considered answers to be either correct
or incorrect, while guaranteeing that any relevant details obtained from the answers were
registered notes taken by the researcher or the audio recording created during the session.
For the sake of consistency, we defined criteria used to determine what would constitute
a correct or incorrect answer.

For snippets 1, 2, 4, 5, and 9, if a participant correctly identified the vulnerability,
we considered the answer to be correct while registering any additional comments and
remarks which we believed to be relevant.

For our placebo code, in snippets 3 and 8, participants who identified vulnerabilities
and gave an example of how the issue could occur, had their answers considered to be
incorrect. We chose these parameters as we assumed that in case the participant took
the time to trace the program carefully they would find the program to be clear of any
vulnerabilities.

As for our code on solutions to CWE-89 (snippets 6 and 7) and CWE-79 (snippet
10), answers which stated that these solved the issue were considered incorrect only when
referring to snippet 6. Answers for the other two code snippets were only considered
incorrect if the participants stated that the issue would not be corrected.
26

Improving Industrial Cybersecurity Training S. R. Correia

For any of the code snippets, we generally looked positively upon answers in which
participants mentioned that they would have to consult the documentation to give a defin-
itive answer. We did so believing that, given the necessary resources, these participants
would provide an accurate answer.

Some of the data obtained from the eye-tracking device was, by nature, qualitative.
This includes data like the locations of fixations of participants which must be carefully
analysed.

AOI are crucial in our analysis as they allow us to obtain quantitative data on specific
code segments and simplify the evaluation of results obtained from our eye-tracking device.
We used these in our analysis to determine the time our participants spent looking at
the AOI corresponding to the vulnerable code (B6) in our vulnerable code snippets.
Additionally, the relative size of each AOI and the time before looking at them were
also considered.

On the individuals’ performances during the experiment, we consider that a better
result is one in which the user had a higher proportion of correct responses i.e. detected
more vulnerabilities in vulnerable code, identified if the solutions to vulnerabilities we
presented were correct, and identified that no flaws existed in placebo code (B1). Our
participants’ response accuracy was also used to create different groups of participants
to compare their performances and determine what characteristics led to their differing
performances.

The time to detect a vulnerability (B2) was manually measured by identifying how
long it took our participants to mention or describe the vulnerabilities they found in the
code. In conjunction with the accuracy measure, this allowed us to further evaluate the
performance of our participants. This characteristic was also analysed in conjunction
with the time it took participants before looking at the locations which we considered
to contain the vulnerable code and how long they looked at these parts of the code (B6,
B7). Furthermore, B3, the experiment duration, is obtained as the sum of the time our
participants spent analysing each code snippet (B4).

Data on the fixations of our participants (B5) is more complex to evaluate than the
previous characteristics. This data involves the location and duration of each fixation.
We believe fixations to be the most important variables obtained from our eye-tracker and
crucial in analysing the thought processes of our participants. Fixation rate and pupil
diameter (B8) are two data points which are very important to our study as they have
been proven to have a strong correlation with cognitive load and the understanding of
code.

Heatmaps are a good method to evaluate which parts of the code received the most
attention. These help us quickly see which parts of the code our participants focused on
the most. This is done by colouring different regions of the observed code snippets based
on the amount of time users spent focusing on each part of the code using the fixation
data. In the heatmaps we created, hotter colours indicate longer fixation times, while

27

Improving Industrial Cybersecurity Training S. R. Correia

cooler colours and no colouring at all are present in regions which received less attention.
By enabling us to quickly identify which segments of the code snippets received the most
attention, we can determine which participants focused on what parts of the code and
compare their gaze patterns with their performances. Other visualisation techniques and
the manual analysis of experiment replays were also useful.

For the analyses of our research questions, we also considered the background inform-
ation variables (BG1-BG5). With this background information, we attempted to identify
correlations between the answers or the performance of our participants and their profiles.

28

CHAPTER 4

Results

In this chapter, we present the results obtained during our study, divided into two
parts: the survey findings and those from the eye-tracking experiment. Where the survey
findings allow us to address RQ1 , and the eye-tracking experiment allows us to address
RQ2 and RQ3 .

A total of twelve individuals of various ages, levels of education, and work experience
participated in our study. All participants were industrial cybersecurity professionals act-
ively working in this field. Many of our participants work in secure coding training and
cybersecurity training, with some specialising in penetration testing. Participants dedic-
ated an average of 40 minutes to the study, which consisted of a structured introduction,
the survey, and the experimental tasks.

The ages of our participants can be seen in Table 9. All participants were above 24
and only one was above 54.

Table 9. Number of participants per age group

Less than 25 25-34 35-44 45-54 Over 54
0 8 2 1 1

In terms of education, all participants had a bachelor’s degree or higher, with most
participants having a master’s degree (Table 10).

Table 10. Number of participants per educational degree

Bachelor’s Degree Master’s Degree Doctorate
1 7 4

As for their work experience in cybersecurity, our participants had an average of seven
years of experience with the participant with the least experience having three and the
most experienced one 25. Lastly, ten participants were male while the remaining two were
female.

Participants indicated C++ proficiencies between the values one and three out of
a possible five points. This was surprising to us, especially as the participants were
cybersecurity specialists and some were even trainers for C and C++ coding practices.
The average response was 2, corresponding to beginner-level knowledge. To determine
why our participants indicated these low values we inquired further, having obtained two
main explanations for these results:

29

Improving Industrial Cybersecurity Training S. R. Correia

• The participants do not actively program in their daily tasks or do not use C++
regularly

• While individuals may be knowledgeable about the syntax of the language, they
are not very familiar with or don’t use some of its paradigm’s concepts such as
inheritance or lambda expressions

The experiment we devised consisted of code snippets that did not require advanced
knowledge of C++ to be fully comprehended. We believe that basic comprehension of
C++ or any similar language was sufficient to not limit the participant’s performance
when attempting to find cybersecurity vulnerabilities in the code snippets.

Additionally, we instructed participants to describe the behaviour they expected code
to have whenever they found a particular instruction or method which they did not
comprehend. This way, if a participant struggled with their unfamiliarity with a spe-
cific element in the code snippet, they would state what they believed the code would
do and proceed with their code analysis based on what they had affirmed. During our
experiments, no participants were seemingly limited by their unfamiliarity with the pro-
gramming language.

4.1. Survey Results

The answers to this question are presented in Figure 6. The professionals we inter-
viewed considered T1 - code reviewing, to be among the most critical tasks when it comes
to reducing cybersecurity vulnerabilities. In the survey, all participants gave code reviews
an importance of four or five, out of five. Specifically, 50% of participants considered it
very important, with the remaining rating it as important. Additionally, 25% of parti-
cipants indicated that code reviews are more important than any of the other tasks we
presented them with.

Tasks T2 and T3 had similar results, being rated four points out of five, on average.
While not quite as critical as T1 , participants considered these tasks important.

The greatest outlier we observed in our survey were the responses on task T4 - search-
ing online resources (e.g. Stack Overflow or other community-based resources), which
respondents considered relatively unimportant. Cybersecurity professionals do not con-
sider these important when attempting to mitigate cybersecurity vulnerabilities, with the
average rating being approximately 2.5.

After asking participants why they consider this task to be less important than the
others, some mentioned that these websites contain incorrect information or non-standard
cybersecurity procedures. Essentially, participants said that these resources have their
uses when it comes to finding solutions to programming problems; however, when it comes
to questions on cybersecurity, it is better to consult the appropriate documentation or
standards to ensure the best practices are followed.

Ten out of our twelve participants responded to the open-ended question, providing
answers which mentioned various additional tasks they considered important in mitigat-
ing cybersecurity vulnerabilities. Participants indicated tasks such as: defining coding
30

Improving Industrial Cybersecurity Training S. R. Correia

8% 33%

25%

33%

50%

50%

25%

33%

8%

50%

50%

33%

T1

T2

T3

T4

Importance of Tasks in Mitigating

Cybersecurity Vulnerabilities (n=12)

1 (not important) 2 3 4 5 (crucially important)

Figure 6. Importance given by participants to tasks in mitigating cyber-
security vulnerabilities

guidelines, discussions between colleagues, and unit testing. Two tasks, however, were re-
peatedly mentioned by multiple participants, underscoring their importance: penetration
testing and secure coding training/workshops. One-fourth of the participants mentioned
these two tasks.

4.2. Experiment Results

We will present our experiment results in four parts. These correspond to the three,
previously mentioned, types of code snippets, namely, code snippets containing one of the
top five most common vulnerabilities, code snippets containing proposed solutions to two
of these vulnerabilities, and placebo code snippets not containing any vulnerabilities, and
a part presenting results which consider the data across all code snippets.

We would like to note that, due to technical issues which we will discuss in chapter 5,
the eye-tracking data of one of our participants had to be excluded. Consequently, our
analysis of the eye-tracking dataset is based on eleven participants.

For our analysis, we tested the null hypothesis to assess whether the observed cor-
relations were merely coincidental. We considered p-values above 5% to indicate a lack
of statistical significance, which aligns with the standard threshold for distinguishing sig-
nificant from non-significant results [67]. However, we also decided to present some of
the results relative to non-statistically relevant correlations we found as, considering our
experience and research, we believed these could become more robust when calculated in
a larger dataset.

4.2.1. Code Snippets with Vulnerabilities

Our participants’ performance when analysing the code snippets containing the weak-
nesses in the code revealed the data seen in Table 11.

31

Improving Industrial Cybersecurity Training S. R. Correia

Table 11. Results on the analysis of code snippets with cybersecurity
vulnerabilities

Vulnerability CWE-787 CWE-119 CWE-20 CWE-89 CWE-79
Discovery Rate 17% 50% 42% 100% 83%

Avg. Time Analysed (s) 234 289 259 214 242
Avg. Time to Find Vuln. (s) 205 168 137 91 189

Avg. Time on Target (s) 53 100 51 23 36
Avg. Time to Target (s) 11 5 41 37 9

Size of Target (% of screen) 2.27 7.00 3.75 2.29 1.83
Avg. Fixations per Second 4.16 4.08 4.01 3.69 3.86

Avg. Pupil Diameter (PDU1) 17.19 17.38 17.72 17.66 16.99

The accuracy of responses varied considerably between the code snippets. For instance,
in our first snippet of CWE-787, only two users identified the vulnerability in the code,
while all users identified the one seen in the CWE-89 code snippet.

CWE-89 and CWE-79 stood out from the rest by being correctly discovered the most,
by a considerable margin. These two correspond to SQL injection and XSS respectively
and, according to our experience, are some of the most commonly discussed and docu-
mented program code weaknesses. Through information gathered during the experiments
and additional interviews with our participants, we were led to believe that the fact that
these vulnerabilities are so well-known by professionals made them stand out and be easily
identifiable.

We compared the number of weaknesses found to the background information we had
received from our participants, however, this did not reveal any strong relations. The
participants’ self-reported C++ proficiency also only presented a weak Pearson correla-
tion to performance with 0.14. Lastly, the educational degree was the only background
information which presented even a moderate correlation to performance, even so, its
correlation value was only 0.30.

Figure 7 shows the number of participants by the number of vulnerabilities found.
To analyse which characteristics or patterns define those participants who performed
better, we started by creating two groups of participants: high-performers and all other
participants. We chose to consider participants who found more than three weaknesses to
be high-performers, with the remaining participants belonging to the "other participants"
group. While this analysis yielded some important results, we believed that comparing
the performance of just three participants to the rest was less than ideal, and would
produce unreliable data. As such we chose to follow a different approach, creating two
different groups for each vulnerable code snippet, where one had the participants who
discovered the weakness and the other those who did not. Most of the phenomena we had

1As mentioned in 3.2, from what we can understand, the pupil diameter’s unit of measurement should
be in millimetres, however, after some testing we do not believe this to be the case. This is why we chose
to use the unique unit of measurement: PDU to describe this characteristic.

32

Improving Industrial Cybersecurity Training S. R. Correia

observed when using the high-performers/others division were also found with using this
new approach.

Figure 8, shows us that participants who didn’t find the vulnerabilities, on average,
spent more time looking at the code. Note that all participants correctly identified the
weakness in the code snippet containing CWE-89.

We created an AOI to assist in interpreting our results. This AOI was called "target"
and delimited the sections of the code snippets that we considered to contain the flaw our
participants were expected to find. For each of our code snippets the size of the region
corresponding to the vulnerable code varied, with some AOI being double the size of
others. We consider this important to consider when looking at some of the data relative
to the target AOI, as a very strong correlation of 0.92 exists between the size of the AOI
and the time participants looked at the target. The null hypotheses for this correlation
was also tested, and having obtained a p-value of 2.56%, this is an example of a correlation
which is strong enough to be statistically significant.

Furthermore, it is important to mention that the normal inaccuracies of eye-tracking
devices, combined with exploratory eye movements, led to the device sometimes register-
ing a fixation on the target even when our participant was not actively reading that part
of the code. Exploratory eye movements refer to quick, often unconscious shifts in gaze as
participants scan the code without focusing on specific details. These movements are not
directly related to code comprehension but are part of the natural visual search process.
As a result, this impacted the average time to target metric, as these premature fixations
caused the system to record the participants’ attention on the target sooner than when
they actually started reviewing that section of the code.

While CWE-89 was the fastest to be found by our participants, CWE-79 was one of the
code snippets in which participants took the longest to find vulnerabilities. By rewatching
the recordings made with the eye-tracking software, we see that our participants usually
followed the code’s execution path, which, for CWE-79’s code snippet, took fairly long
before reaching the part of the program containing the flaw. Additionally, this program
used some libraries with which the participants were unfamiliar, causing them to take
longer to analyse this code and, thus, take longer before analysing the target code.

The average time our participants spent looking at the part of the code containing the
vulnerability, i.e. our target, seen in Figure 9, presents a pattern different to the one seen
for the total time spent looking at code. Individuals who found the weaknesses spent, on
average, more time looking at the target than those who did not.

We compared the heatmaps of our participants to determine if any differences exist
in the gaze locations of those who discovered vulnerabilities and those who did not;
an example of this can be seen in Figure 10. Using these heatmaps we can confirm
what the data had previously hinted to us: participants who discovered the weaknesses
spent considerably more time looking at the part of the code corresponding to the target,
i.e. the part of the program containing the flaw, highlighted with the yellow rectangle.

33

Improving Industrial Cybersecurity Training S. R. Correia

1

3

5

2

1

1 2 3 4 5

N
u

m
b

e
r

o
f

P
a
rt

ic
ip

a
n

ts

Number of Vulnerabilities Found

Number of Participants by

Vulnerabilities Found (n=12)

Figure 7. Number of participants per number of vulnerabilities found

0

150

300

CWE-787 CWE-119 CWE-20 CWE-89 CWE-79

T
im

e
 S

p
e
n

t
L
o

o
k

in
g

 a
t

C
o

d
e
 (

s)

Code Snippet

Average Time Spent Looking at Code (n=12)

Didn't find Vulnerability Found Vulnerability

Figure 8. Average time participants spent looking at each code snippet
containing vulnerabilities

The heatmaps of CWE-89, containing the "SQL Injection" vulnerability, are the clearest
example of this difference, this phenomenon was however seen across all code snippets.

We also decided to analyse our participants’ gaze paths by rewatching the recordings
to determine if any specific strategies were followed which contributed to their success.
After carefully rewatching the recordings and taking notes of scan path characteristics,
we were not able to discern any notable patterns which distinguished the strategies of
successful participants from others.

The average fixation rate of individuals was fairly consistent across the various code
snippets, evidenced by averaging the standard deviation of the fixation rates measured by
each participant, obtaining a value of 0.44. There is, however, a large difference between
the average fixation rates of our participants, with some having fixation rates over three
times larger than others, see Table 12.
34

Improving Industrial Cybersecurity Training S. R. Correia

0

60

120

CWE-787 CWE-119 CWE-20 CWE-89 CWE-79

T
im

e
 S

p
e
n

t
L
o

o
k

in
g

 a
t

T
a
rg

e
t

(s
)

Code Snippet

Average Time Spent Looking at Target (n=11)

Didn't find Vulnerability Found Vulnerability

Figure 9. Average time participants spent looking at the target in each
code snippet

(a) CWE-89 Heatmap - Participants who dis-
covered the vulnerability

(b) CWE-89 Heatmap - Participants who did
not discover the vulnerability

Figure 10. Heatmaps for Code Snippet of CWE-89

Table 12. Average fixation rates of participants (fixations per second)

Average Standard Deviation Minimum Maximum
3.83 1.36 1.73 5.96

We then sought to determine if any notable correlations existed between the fixation
rates and participants’ performance or background information. In terms of the accuracy
of responses, participants who found more vulnerabilities had a lower average fixation
rate with a moderate to weak correlation value of −0.36. Figure 11 showcases the relation
between the number of vulnerabilities found and the average fixation rate.

35

Improving Industrial Cybersecurity Training S. R. Correia

0

2.5

5

2 3 4 5

A
v
e
ra

g
e
 F

ix
a
ti

o
n

 R
a
te

Number of Vulnerabilities Found

Average Fixation Rate by

Vulnerabilities Found (n=11)

Figure 11. Participants’ average fixation rate per number of vulnerabil-
ities found

Some statistics on the results we obtained related to pupil diameters can be seen in
Table 13. As with the fixation rate, the average dilation of our participants’ pupils varied
relatively little from code snippet to code snippet, while considerable variability exists
between participants. We also see a large difference between the largest and smallest
pupil dilation of participants, with some presenting over double the average size of others.
As mentioned previously, the values of pupil sizes we present should not be considered as
being representative of the true size of our participants’ pupils in millimetres, but instead,
as a relative measure meant to be used to compare the differences in size across the various
code snippets.

Similarly to our analysis of fixation rates, we analysed some of the relations between
the various metrics we had registered and our participants’ average pupil size. We found a
relation between the average pupil size of each participant and the number of weaknesses
they found. This correlation has a value of −0.44. This shows us that participants who
found more vulnerabilities, on average, had a noticeably smaller average pupil diameter.
This correlation is slightly stronger than the one we observed with fixation rate, a char-
acteristic which shares some similarities with pupil dilation. However, this correlation
has a p-value of ≈ 17%, meaning that any conclusions from this data point should be
considered very carefully.

When grouping our participants by the number of vulnerabilities found and obtaining
the average pupil diameters of these groups we found a strong correlation of −0.82 with the
number of found vulnerabilities. However, when testing the null hypothesis for this value,
we obtained a p-value of ≈ 18%, indicating that this value may also just be coincidental.

4.2.2. Proposed Solution Code Snippets

Table 14 shows the results of these code snippets with proposed solutions to CWE-89:
"SQL Injection" and CWE-79: "Cross-site Scripting".
36

Improving Industrial Cybersecurity Training S. R. Correia

Table 13. Pupil diameters of participants (in PDU)

Average Standard Deviation Minimum Maximum
17.39 3.70 10.74 24.70

Table 14. Results on the analysis of proposed solution code snippets

Code Snippet CWE-89 Inc. Sol. CWE-89 Cor. Sol. CWE-79 Solution
Correct Answer Rate 83% 100% 100%

Avg. Time Analysed (s) 70 85 98
Avg. Fixations per Second 3.50 3.69 3.45

Avg. Pupil Diameter (PDU) 17.66 17.74 16.65

CWE-89 - Incorrect Solution was the only proposed solution code snippet which re-
ceived incorrect answers, with two participants affirming that this solution eliminated the
vulnerability. In CWE-89 - Correct Solution, even though we considered all our parti-
cipants to have correctly indicated that this fixed the issue, many participants noted that
they would have to consult the library’s documentation to make sure that the problem
was indeed fixed.

For CWE-79 - Solution, participants said that they would follow a different type
of implementation in a real-world setting. Instead of creating rules to replace certain
characters, participants said that one should opt to use libraries designed to sanitize this
type of request, as many edge cases may be overlooked with a manual approach. They
also stated that the usage of libraries for this type of situation is the industry standard
practice.

We observed that these shorter code snippets, which had less than ten lines of code
each, also took the least amount of time to be analysed by our participants. The two
individuals who incorrectly stated that the CWE-89 - Incorrect Solution resolved the
vulnerability, looked at the code for slightly less time than the rest but this difference
should not be considered noteworthy, deviating by less than 10% from the average.

These code snippets presenting solutions to the vulnerabilities, presented the lowest
average fixation rates out of all code snippets. Other than that, no clear conclusions
were obtained from neither the pupil dilation nor the heatmaps obtained from these code
snippets.

4.2.3. Placebo Code Snippets

As mentioned before, our experiment included two placebo code snippets, simple pro-
grams containing no cybersecurity vulnerabilities. Table 15 shows the results for the
placebo code snippets.

Out of all full code snippets i.e. not including the ones presenting solutions to weak-
nesses, Placebo 1 was analysed for the least amount of time and yet was correctly identified
as not containing any flaws by all of our participants. Most participants were successful
in determining that Placebo 2 contained no vulnerabilities but took considerably longer

37

Improving Industrial Cybersecurity Training S. R. Correia

Table 15. Results on the analysis of placebo code snippets

Code Snippet Placebo 1 Placebo 2
Correct Answer Rate 100% 75%

Avg. Time Analysed (s) 190 272
Avg. Fixations per Second 4.16 4.04

Avg. Pupil Diameter (PDU) 17.62 17.81

to analyse the code. While both programs were very similar in size, the use of recursion
in the second was, according to our analysis, the main factor which led to participants
taking longer to analyse it. Participants would try to follow the program execution path
for different inputs to determine if any weaknesses existed and this process would take a
considerable amount of time with this recursive code.

In Placebo 1, participants would, at most, indicate that the method to obtain the
user input may be unsafe, however, they also stated that they would have to consult
documentation which, as with the other code snippets, was seen positively in terms of the
evaluation of their performance.

Our results on Placebo 2 were very different as one-fourth of our participants identified
a vulnerability or issue, even though no issues existed in our program. Participants found
issues related to the user inputs and the usage of the module operation with these inputs,
suspecting that issues may exist when these values are 0 or in situations such as when the
two inputs are both 1 which, according to some participants, could lead to a stack overflow.
However, these issues would not occur when using the program. We also observed that
the module operation made some participants hesitant in determining the code execution
path.

Our participants who found weaknesses in our placebo code all had some of the highest
accuracies when analysing the five code snippets containing vulnerabilities. Specifically,
two of these participants found four out of the five vulnerabilities with the last finding all
five. When it comes to their fixation rates, these vary a lot, with one participant having
a fixation rate much lower than the average, another a very high rate, and the third one
being very close to the average value.

Participants who incorrectly identified weaknesses in Placebo 2, which also correspond
to our most successful participants, had some of the smallest average pupil diameters. On
average these had a pupil diameter of 14.76 while the average pupil diameter for this code
snippet was 17.81.

We also compared the heatmaps of the participants who incorrectly identified weak-
nesses in Placebo 2 with those who did not. While the heatmaps were very similar and
both showcased that the main focus point was the recursive function, we noted that those
who incorrectly identified flaws focused more of their attention on the lines of code con-
taining input validation. The issues these individuals found were mostly related to and,
were they to exist, could be fixed by altering the input validation, which explains the
attention they dedicated to this part of the program.
38

Improving Industrial Cybersecurity Training S. R. Correia

4.2.4. All Code Snippets

Finally, we looked at some characteristics of our participants considering all code
snippets. This analysis revealed, among other things, how some of these characteristics
changed during the experiment. Table 16 showcases how the total time that participants
took to analyse the code snippets varied quite significantly.

These big differences in the total experiment time were investigated to see if they were
related to any other characteristics we recorded. The correlation of experiment duration
with fixation rate had a value of −0.59, meaning that, on average, lower fixation rates were
observed for longer experiment durations. The p-value associated with this correlation
was 5.60%, meaning that it is just above the threshold for statistical relevance. Pupil
diameter, on the other hand, showed a weaker, but positive correlation to duration with
a value of 0.34, but its high p-value makes it hard to consider these results statistically
relevant.

The average pupil dilation and fixation rate changed and evolved along the, at times
lengthy, extension of the experiment we created. The graphs corresponding to their
evolution throughout the experiment can be seen in Figure 12.

Considering the broad scope of all code snippets we found some additional relationships
between the variables we recorded. Fixation rate and pupil diameter are two character-
istics which share some unique properties such as providing insight into the cognitive load
participants undergo during tasks such as secure code reviews. Despite these similarities
they share, the correlation between these two characteristics, while still considerable, is
lower than one might anticipate, at only 0.44, which again, considering a high p-value is
not statistically significant by itself.

When it came to background information, while still only moderate, the most sig-
nificant relations regarding the fixation rate were with the age group and the years of
experience both of which had correlation values of −0.47 with fixation rate. These correl-
ations had p-values over 12%, meaning that just like with other weaker ones, they could
be coincidental.

Age, education, and years of experience have strong relations with pupil diameter with
correlation values −0.65, −0.59, and −0.54, respectively. We also analysed the p-values
for these correlations, finding the values 3.04%, 5.60%, and 8.64%.

39

Improving Industrial Cybersecurity Training S. R. Correia

Table 16. Total Experiment Duration (Minutes:Seconds)

Average Standard Deviation Minimum Maximum
33:27 10:13 17:17 51:56

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 F

ix
a
ti

o
n

 R
a
te

Code Snippet Number

Average Fixation Rate Across Code

Snippets

(a) Timeline of average fixation rate (fixations
per second) along the experiment

16

16.5

17

17.5

18

1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 P

u
p

il
 D

ia
m

e
te

r

Code Snippet Number

Average Pupil Dilation Across Code

Snippets

(b) Timeline of average pupil dilation (PDU)
along the experiment

Figure 12. Timelines for changes in fixation rate and pupil dilation along
the experiment

40

CHAPTER 5

Discussion

Our work covered different subjects related to analysing user and programmer beha-
viour using eye-tracking devices in various subjects. The central, and most important,
topics we covered were the analysis of industrial cybersecurity professionals’ opinions on
code reviews and the strategies or techniques they apply when conducting this task with
the objective of detecting cybersecurity vulnerabilities.

To structure our research, we defined several research questions, which were answered
with our work. These research questions, seen below, served as a guide for the various
elements of this project.

RQ1 What tasks in the software development lifecycle do industrial cybersecurity pro-
fessionals consider to be most crucial in mitigating cybersecurity vulnerabilities?

RQ2 How successful are industrial cybersecurity professionals at conducting secure
code reviews?

RQ3 Is there a relation between the patterns revealed using eye-tracking technology
and the code reviewers’ success in spotting the vulnerabilities?

5.1. Previous Work & Design of Study

We started by conducting a review of previous publications related to our planned
work. For this review, we presented the state of the art in cybersecurity for code de-
velopment, code reviews, and eye-tracking. We also conducted a systematic literature
review to analyse recent publications which related studies on human behaviour in the
fields of programming, cybersecurity, and user experience using eye-tracking technologies.
Furthermore, other relevant publications that were not initially included in the system-
atic literature review or state of the art were also considered, these were found through
unstructured searches or by consulting relevant references in discovered works.

Through the review of previous work, we were able to conclude that the popularity of
eye-tracking technology in research is great and has steadily grown, with more and more
articles referencing and presenting work using this technology. We found that in 2013
a total of 10000 publications were released, whereas in 2023 alone, close to 40000 were
created across the four databases we analysed. The same type of growth pattern is also
seen when it comes to publications in the aforementioned fields of study which we chose
to focus on, showcasing the interest that exists on this subject.

The analysis of previously conducted work was fundamental in the design of our study.
The studies we found, especially those related to programming, often had similar object-
ives as ours, making these publications quite useful during the design process. All elements

41

Improving Industrial Cybersecurity Training S. R. Correia

of the design of our survey and experiment were heavily influenced by the literature we
analysed.

An essential part of our experiment creation was the software and hardware used to
record and analyse the eye-tracking data. Through the review of related work, we found
that studies used all sorts of different resources with different advantages and disadvant-
ages. Beyond this, some software tools also had their own publications in which they
were presented. We based our choice of eye-tracker, eye-tracking study software, and
other resources, on this research.

5.2. RQ1 - What tasks in the software development lifecycle do industrial
cybersecurity professionals consider to be the most crucial in mitigating
cybersecurity vulnerabilities?

The results of our survey show us that, from the four tasks we presented to our parti-
cipants, namely: code reviewing, analysis of SAST tool outputs, reading documentation,
and researching online resources (e.g. Stack Overflow), participants consistently found
code reviewing to be the most important task in mitigating cybersecurity vulnerabilities.
The analysis of SAST tool outputs and reading documentation were also seen as very
important, even if not quite as much as code reviewing. Regarding the former, it is im-
portant to note that participants were asked about the importance they associate with
the analysis of SAST tool outputs and not to rate the importance of using such tools.
Our objective here was to evaluate the importance these professionals give to different
types of tasks which require some attentive human input, and not how important they
find the tools involved in these tasks.

Researching online resources, such as Stack Overflow, or other community-based re-
sources was rated to be the least relevant task in mitigating cybersecurity vulnerabilities
by a considerable margin. We also asked our participants to justify their responses, this
was especially relevant to help us understand the results of this last task. The main ex-
planation for the relatively low importance given to consulting online resources was that
these community-based resources may be unreliable and, as such, should not be relied on
to resolve cybersecurity weaknesses. Participants noted that the usage of these types of
resources is very common and important in the software development process, as they
can be used to easily find efficient solutions to common problems. However, when it
comes to cybersecurity or other critical tasks and infrastructure, relying on community-
based resources is not recommended as they can be unreliable. Instead, the usage of
industry-followed resources such as standards and official documentation is encouraged.

Participants were also asked if there were any other tasks which they considered im-
portant in mitigating cybersecurity vulnerabilities. From the responses to this open-ended
question, two tasks stood out as they were mentioned by a fourth of our participants: se-
cure coding training and penetration testing. Some participants justified their responses
and provided explanations as to why they deemed these tasks to be important. Penetra-
tion testing was considered essential for identifying weaknesses that might be overlooked
42

Improving Industrial Cybersecurity Training S. R. Correia

during secure code reviews, providing a real-world assessment of the system’s security.
As for secure coding training or workshops, these were highlighted because they equip
developers with the knowledge and skills to review code thoroughly.

The answers we received, show that participants were considering the question of how
to mitigate vulnerabilities from a software development lifecycle or coding perspective. We
feel confident in stating this because no participants mentioned risk reduction strategies
such as updating software, privilege management, or other top cybersecurity mitigation
strategies not directly related to code [68]. This corresponded to the ideal scenario as the
development of safe software is the main area which we planned to investigate.

All in all, the survey we conducted shows us that code reviews are highly valued among
industrial cybersecurity professionals and essential for effective vulnerability mitigation.
The importance of education was also highlighted by the fact that several participants
mentioned it in their responses. The analysis of SAST tool outputs and reading document-
ation was also seen as highly relevant, while the usage of community-based resources is
not recommended when it comes to reducing or eliminating cybersecurity vulnerabilities.

5.3. RQ2 - How successful are industrial cybersecurity professionals at
conducting secure code reviews?

For RQ2 , we analysed the performance of participants during the experiment. This
mostly took into consideration the answers participants gave and whether we considered
them to be correct or not. In our experiment, participants were presented with three
types of code snippets: code snippets containing vulnerabilities, proposed solutions to
some of these vulnerable code snippets, and placebo code snippets which contained no
vulnerabilities.

Five out of the ten code snippets our participants reviewed were code snippets con-
taining some of the most common code-related cybersecurity weaknesses. During the
experiment, we found that the most frequently detected vulnerabilities were SQL injec-
tions and XSS. We believe that the main factor which explains why these two were found
at a significantly higher rate than the other types of weaknesses, was their renown. Ac-
cording to our experience, these are some of the most commonly discussed cybersecurity
vulnerabilities. The widespread knowledge of these types of weaknesses may have facilit-
ated their detection by our participants. Both SQL injections and XSS are well known,
can be directly linked to several types of attacks, and continue to be commonplace in
many software projects or websites. As mentioned in the previous sections, we chose our
vulnerabilities based on their number of reported occurrences and, when it comes to this
number, XSS is, by a considerable margin, the most frequent. SQL injections also have a
high report frequency, according to our data.

Our other vulnerabilities were issues related to memory management, namely, memory
allocation and buffer over/underflows. These can be a lot harder to detect as they can
require some advanced knowledge of the inner workings of the system’s memory manage-
ment processes to be detected.

43

Improving Industrial Cybersecurity Training S. R. Correia

An important measure in determining how easily participants find certain weaknesses,
besides how often participants correctly identified them, is the time it took participants
to find them. The code snippets we used were not ideal for this type of comparative
analysis as the differing contexts in which these vulnerabilities exist have influence over
the program size, execution path, and complexity. As such, a direct comparison between
the average times to find them would not make much sense. There are however some
notable results related to the time participants took to analyse the code snippets and find
weaknesses. Our two longest programs, by lines of code, were, by a considerable margin,
the SQL injection and XSS code snippets. However these were not analysed the longest, in
fact, SQL injection was analysed for the least amount of time and participants found the
weakness, on average, almost one minute sooner than for any of the other vulnerabilities.
These insights can be valuable in estimating how long code review sessions should take,
depending on the complexity and familiarity of the vulnerabilities involved.

Through our analysis of the gaze data, we concluded that two factors made it so, even
for these very large programs, participants found the vulnerabilities very quickly: first,
participants were well acquainted with these two types of weaknesses, since, as we just
mentioned, these are very commonly discussed issues. Second, and this was seen when
analysing our gaze data, the code execution path has a large impact on the time it takes
participants to find the vulnerabilities as this usually coincided with their code scan path.
The execution path of the SQL injection code snippet would quickly lead our participants
to the vulnerable part of the code while, for the XSS code, this would take much longer.

We believed it to be warranted to compare our results to the performance of SAST
tools when it comes to identifying these weaknesses. Research has been conducted to
compare and analyse the performance of SAST tools. While this research didn’t focus on
the same types of vulnerabilities we considered, it did show us that SAST tools may be
able to find flaws that manual code reviews might miss, complementing them nicely.

In this research, it was found that, while experts excelled at detecting both XSS
and SQL injection vulnerabilities, automated tools seemed to struggle with the detection
of injection vulnerabilities. SAST tools also struggled with flaws related to improper
adherence to coding standards which we believe experienced professionals would easily
detect [69–71]. On the other hand, these code analysis tools performed well in the detec-
tion of memory-related issues which our participants had struggled with. Research has
also included analysis and comparisons to new analysis techniques using large language
model (LLM)s. While these techniques seem to exceed the performance of traditional
SAST tools, they present the same limitations when, for instance, detecting injection
vulnerabilities [72].

For a conclusive comparative analysis between SAST tools and manual secure code re-
views, research involving several SAST tools and new techniques such as LLMs, additional
participants, and more code snippets representing different types of vulnerabilities should
be conducted. We believe that this topic, the comparison between manual code reviews

44

Improving Industrial Cybersecurity Training S. R. Correia

and automated review tools, warrants further research and has the potential to provide
important, scientifically based, insights on the performance of experts and automated
tools in code reviews.

Participants were very successful in determining if the proposed solutions we presented
to them did, or did not, eliminate the issues they were supposed to correct. The only
incorrect answers were given by two participants who said that the incorrect solution to
the SQL injection vulnerability fixed this issue when, in fact, it did not. The proposed
solutions for this vulnerability relied on the use of prepared statements, also known as
parameterized queries. When prepared statements aren’t used, as seen in our vulnerable
code snippet, user inputs are simply inserted into string values that form the query, making
it possible for individuals to gain unintended access to the database. If implemented
correctly, prepared statements treat user inputs as parameters in the queries, ensuring
that they are not interpreted as SQL instructions.

In the incorrect solution we present, the prepared statement is created with a string
that already contains the user inputs, this means that the inputs are not parameterised.
According to our experience, this is a common mistake developers often make, and for
this reason, we decided to include it in our experiment. While many developers may
instinctively know that prepared statements are the solution to this kind of issue, they
often fail to implement them correctly, in fact, all participants acknowledged that prepared
statements are a solution to SQL injection weaknesses. Even experienced professionals,
on occasion, commit this mistake.

The solution we presented to our participants for the XSS vulnerability was a small
sanitisation program which altered escape characters present in the string to encoded
versions of these characters. While our solution did remove this weakness, most of our
participants noted that this approach is not ideal or standard practice in combating this
specific type of issue. Participants stated that sanitisation libraries should be used in this
scenario, as there are many edge cases which a hand-made solution such as this one may
overlook. These answers and comments on the implementation showcase our experts’
knowledge and experience on the subject.

The two placebo code snippets we included in the code consisted of small, relatively
simple programs which did not contain any cybersecurity weaknesses. While all parti-
cipants stated that the first placebo code did not contain any issues, one-fourth of our
participants incorrectly identified a vulnerability in the second. The participants who
incorrectly identified a weakness in this second program were also the ones who had the
highest success rate with the code snippets containing vulnerabilities. We believe that
this may indicate that individuals who were more prone to finding weaknesses were also
more inclined to detect them when they weren’t present, as was evidenced by these res-
ults. Furthermore, the additional complexity due to the recursiveness of the program
made it all the more difficult to analyse, especially as many of the participants were not
accustomed to recursive programs.

45

Improving Industrial Cybersecurity Training S. R. Correia

5.4. RQ3 - Is there a relation between the patterns revealed using
eye-tracking technology and the code reviewers’ success in spotting the
vulnerabilities?

For RQ3 , our in-depth analysis explains what factors differentiated the performances
of our participants and if we can derive any patterns associated with our participants’
behaviour when analysing code in search of security vulnerabilities. For this analysis, we
considered the participants’ eye gaze data as well as the background information we had
collected.

In our analysis, we focused on comparing participants with correct responses to those
with incorrect ones, in the case of the vulnerable code snippets, this meant comparing
those who found the weaknesses to those who did not. We compared several different
characteristics, including the time participants spent looking at the code and, specifically,
at the part containing the vulnerability. We found that, compared to other participants,
those who found the weakness spent less total time looking at the code while also spending
more time looking at the parts of the code containing the vulnerability i.e. the target.

These results were visually demonstrated by the heatmaps we generated. Through
these, we determined that, for the vulnerable code snippets, participants who correctly
identified weaknesses had a seemingly more focused approach to looking at the code. We
found that these participants had heatmaps with smaller, and more intense gaze hotspots
around the target. These results made us believe that individuals with more knowledge
of the weaknesses are quicker to find them as they look at the program more efficiently.
We found that the most successful participants focused most of their attention on areas
involving input validation or query construction which, according to our experience, are
common hotspots for vulnerabilities, and also often coincided with the target we had
defined.

It should be noted that, in our experiment, participants were allowed and encour-
aged to look at the code snippets for as long as necessary to analyse them thoroughly.
Considering this, it is possible to assume that participants who found the vulnerabilities
may have been more eager to move on to the following code snippets. Furthermore, after
identifying these flaws, participants would describe what they had found and why they
considered it to represent a weakness. This may explain why they also spent more time
looking at the target.

The analysis of the gaze paths of our participants when reading the code was also of
great importance. Previous work has found differences between the gaze paths of experts
and those of novices. Specifically, research has found that experts follow the main methods
execution path more often than novices [33]. We were unfortunately not able to follow
up on this research as not all code snippets had the structure necessary for this type of
analysis and, for the few code snippets that did, we found that participants, in most cases,
followed the main method whether they found the vulnerability or not.

46

Improving Industrial Cybersecurity Training S. R. Correia

We analysed various characteristics of our participants to identify any correlations
with their performance and presented many of the important results we found. In some
cases, these correlations were not statistically significant, as determined after analysing
their p-values. This was mostly due to the small sample size, as moderate and even
stronger correlations tended to have high p-values. However, we included some of these
correlations as, per our experience, we believe they could remain relevant with a larger
dataset in which they would be considered statistically significant.

Eye-tracking characteristics such as fixation rate and pupil dilation of our participants
were analysed. These two have often been shown to have a strong correlation to cognitive
load, specifically, higher values are related to higher cognitive load [12, 13] and, naturally,
these characteristics have a notable correlation between themselves. Some of these studies
even incorporated cerebral imaging techniques alongside eye-tracking, to accurately map
how cognitive loads influence pupil dilation and other characteristics [73]. While one may
assume that a higher cognitive load is good as it can be indicative of a higher degree of
involvement with the code, excessive cognitive workload may lead to less efficient code
interpretation, or be a sign that a participant is struggling with the interpretation of the
code snippets.

We observed that the average pupil size and fixation rate decreased throughout the
experiment. This may be a sign that towards the end of the experiment, our participants
were less involved in the code reviewing process. While the results, in terms of response
accuracy, do not indicate that our participants’ performance was impacted, this result can
be indicative of the effect that longer secure code review tasks have on the engagement
of reviewers when analysing code.

While our participants’ fixation rates remained relatively consistent throughout the
experiment, they varied significantly between the participants themselves. We found
a small correlation indicating that participants with lower average fixation rates had a
higher success rate in the experiment but, as with any of these weaker correlations, this
should be considered very carefully as with the current dataset they cannot be considered
statistically relevant.

Pupil dilation, which shares many characteristics with fixation rate, had a slightly
stronger relationship with the success rate of participants. We also found that parti-
cipants with lower average pupil diameters were, on average, more successful in finding
vulnerabilities. Something to note, however, is that this measure of the pupil diameter
may be influenced by several factors which makes a direct comparison between the values
more difficult. Factors such as the size of the individual’s eyes and proximity to the device
may have had a great influence on this value. Another factor may be the average amount
of light in the room which, while we attempted to limit the amount of natural light, we
were not able to control completely, which could have further affected pupil diameters.

When it comes to the proposed solution code snippets, an analysis of the eye-tracking
data on these was not very insightful for our analysis. These code snippets were all

47

Improving Industrial Cybersecurity Training S. R. Correia

quite succinct which made an in-depth analysis of the various eye-tracking characteristics
not reveal any clear patterns. We did, however, observe that these presented the lowest
average fixation rates out of all code snippets. Drawing a parallel to the notion that
fixation rate is related to cognitive load, we consider that this may be related to the lower
amount of information that participants have to process when analysing these short code
fragments.

The analysis of eye-tracking data was, however, quite relevant in the analysis of results
on the placebo code snippets. As previously mentioned, our participants were very suc-
cessful in determining that these code snippets did not contain any weaknesses. Our first
placebo code snippet was analysed for less time than any other comparable code snippet,
yet it was correctly identified as not containing any flaws by all of our participants. This
hints that this code snippet was simple to interpret and, as such, participants were very
confident in moving on to the next code snippet without finding any vulnerabilities. Our
second code snippet, consisting of a program which obtained the highest common factor
between two values using recursion, was, on average, analysed for some of the longest
time out of all code snippets.

The eye-tracking data we recorded showed that its recursiveness was one of the main
factors which led our participants to spend a lot reviewing this code. The analysis of
recursive programs is a lot more complex than a program using standard iterative struc-
tures as it adds a layer of complexity which many individuals were not very familiar with.
The effect of this program’s complexity is evidenced in our results. When reviewing the
eye-tracking data, we found that participants spent a disproportional amount of time
analysing the part of the code with the recursive method, attempting to follow the code
execution with several different input values to determine if a weakness exists. We believe
that, if this program were non-recursive, our participants would have been able to analyse
it more easily and might not have mistakenly identified some vulnerabilities.

We also explored the data to find if the background characteristics of our participants
were related to their performance. We found these characteristics to not present any
significant additional information in terms of which participants performed better during
the experiment. The strongest relation we observed was with the educational degree of
our participants, and even so, this relation was relatively weak and considered statistically
insignificant given our dataset.

5.5. Threats to Validity

An important threat to the validity of our study is the limited number of participants
in our study. Since we exclusively invited industrial cybersecurity experts to participate,
this limited the number of participants we had access to and could invite to our study,
restricting our analysis and limiting our conclusions of both the survey and experiment
data.

Additionally, although we tried to create a suitable environment for the eye-tracking
experiment to the best of our abilities, we encountered some issues due to our equipment’s
48

Improving Industrial Cybersecurity Training S. R. Correia

sensitivity to several factors. Some elements we tried to control included: limiting the
amount of light present in the room, creating a natural environment for our participants,
and following special instructions for users who, for example, use glasses. When adopting
these measures we closely followed the instructions in the device manufacturers’ manual
[66]. The issues we encountered led to some of the recorded data not being reliable enough
to be used. Furthermore, the static nature of the code snippets used in the experiment
may not have fully captured the dynamic, real-world environments in which secure code
reviews typically occur, which may also influenced the results

Despite these facts, the results are actively being used internally in the company
to guide the improvement of training. We believe the presented results reflect our own
experience in the industry and present valuable insights both to academia and to industrial
practitioners.

49

CHAPTER 6

Conclusions

Cybersecurity has become an ever-growing concern as industrial systems grow in-
creasingly interconnected and exposed to sophisticated cyber threats. The importance of
securing these systems from malicious attacks is paramount, particularly as vulnerabil-
ities in software can lead to severe operational, financial, and reputational damages. In
response to these growing challenges, this study focused on improving cybersecurity prac-
tices by exploring how industrial cybersecurity professionals conduct secure code reviews,
a critical component in detecting and eliminating vulnerabilities in program code.

To achieve these goals, we designed a study, aimed at understanding the cognitive
processes of experts during code reviews as well as their thoughts and opinions on this
task. The study was divided into two parts: a survey to gauge expert opinions on critical
tasks in vulnerability mitigation and an experiment in which participants reviewed code
snippets while their eye movements were tracked. The study involved twelve cybersecurity
professionals with varying levels of expertise. With the collected data we were able to
analyse their opinions on code reviews as well as the strategies and techniques they apply
when conducting code reviews to detect cybersecurity issues, and through this, provide
actionable insights for improving future training and tool development.

Our findings shed light on several critical aspects of how secure code reviews are
conducted in the context of industrial cybersecurity. First and foremost, the survey
results highlighted that code reviews are widely regarded as an indispensable tool in
the software development lifecycle for finding and reducing vulnerabilities. Participants
consistently ranked code reviews among the most crucial tasks for mitigating cybersecurity
vulnerabilities, reinforcing their value in secure coding practices.

The experiment itself revealed valuable insights into how experts approach the iden-
tification of different types of vulnerabilities. Familiarity played a significant role, as par-
ticipants were far more adept at identifying widely-discussed vulnerabilities such as SQL
injection and XSS. These well-documented and frequently encountered vulnerabilities,
were often detected quickly and accurately. In contrast, memory-related vulnerabilities
such as buffer overflows (CWE-787) posed a greater challenge. These findings suggest
that less discussed vulnerabilities require more time and focus, making them more prone
to oversight.

Eye-tracking technology proved instrumental in understanding how experts scan and
analyse code during reviews. The eye-tracking device provided us with data related to the
participants’ cognitive focus, revealing to us what characteristics correlate to successful
secure code reviews. For instance, those who consistently focused on critical areas of the

51

Improving Industrial Cybersecurity Training S. R. Correia

code, such as input validation or query construction, were more likely to identify security
issues. This suggests that targeted training that emphasizes vulnerability "hotspots"
in the code could lead to more efficient code reviews and improve overall vulnerability
detection rates.

Some of the characteristics we analysed included the time participants spent reviewing
each code snippet. This allowed us to gain insights into the time required to identify
certain vulnerabilities. These insights can be valuable in estimating how long secure
code review sessions should take depending on the complexity and familiarity of the
vulnerabilities involved. This data can help organizations in planning more effective and
time-efficient code review processes.

The findings of this research have practical implications for both industry practices
and cybersecurity training programs. First, the study underscores the importance of con-
tinuous exposure to a diverse range of vulnerabilities during training. The difficulties
participants were faced with when identifying buffer overflows and other memory-related
issues highlight the need for more focused training on less familiar, yet dangerous, vul-
nerabilities. This approach could enhance the readiness of cybersecurity professionals to
deal with a wider array of security threats.

While the study provides valuable insights, it is not without its limitations. One of
which is the relatively small sample size. With only twelve participants, the results may
not be fully representative of the broader industry. Expanding the participant pool in
future research could provide a more comprehensive understanding of secure code review
behaviours.

Technical limitations also played a role in the study. Eye-tracking devices, such as
the one we used, can be quite sensitive to diverse factors, this influenced the accuracy
of some of the data. While these technical issues were minimised as much as possible,
they nonetheless highlight the challenges inherent in conducting eye-tracking experiments.
Furthermore, the static nature of the code snippets used in the experiment may not have
fully captured the dynamic, real-world environments in which secure code reviews typically
occur.

Building on the foundation of this study, several avenues for future research emerge.
For instance, expanding the participant pool to obtain more reliable conclusions. Also,
further research could be conducted into less common vulnerabilities, such as memory
corruption, concurrency issues, or code snippets could be included which answer previously
highlighted research questions such as which types of vulnerabilities take the longest to
be discovered.

The results also emphasise the potential for improving tools used during code reviews.
By incorporating insights from eye-tracking data, systems could be developed that guide
reviewers’ attention to the most critical areas of the code. For example, tools could be
designed to highlight regions of the code where vulnerabilities are most likely to occur,
thereby reducing cognitive load and improving the accuracy of reviews. Although previous

52

Improving Industrial Cybersecurity Training S. R. Correia

work in this specific area has begun to emerge [74], we believe that there is still great
potential for further research in this field.

Another promising area of exploration would be the comparison of the performance
of human code reviewers to that of automated tools. While automated code analysis
tools are commonly used in the industry, there is still a gap in understanding how they
perform in comparison to manual reviews conducted by experienced professionals. This
research could provide critical insights into whether a combination of automated and
human reviews offers the most effective approach to vulnerability detection.

Finally, future studies could examine a wider range of code-related tasks beyond secure
code reviews, such as debugging or refactoring, to identify if insights gained from this
research can be applied to other aspects of software development. By continuing to
explore these areas, we can further enhance the role cybersecurity professionals have in
safeguarding industrial systems against cyber threats.

53

References

[1] Federal Cyber Security Authority. ‘The state of IT security in Germany in 2023.’
Accessed: Mar. 25, 2024. (2023), [Online]. Available: https://www.bsi.bund.
de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-
Security-Situation-in-Germany-2023.pdf.

[2] M. S. John, B. Swanston and A. Chatterjee, Cybersecurity stats: Facts and fig-
ures you should know, Accessed: Sep 22, 2024, Aug. 2024. [Online]. Available:
https://www.forbes.com/advisor/education/it-and-tech/cybersecurity-
statistics.

[3] Common Weakness Enumeration, CVE → CWE mapping "root cause mapping"
guidance, Accessed: Jan 22, 2024, Mar. 2024. [Online]. Available: https://cwe.
mitre.org/documents/cwe_usage/guidance.html.

[4] A. Bacchelli and C. Bird, ‘Expectations, outcomes, and challenges of modern code
review,’ in 2013 35th International Conference on Software Engineering (ICSE),
2013, isbn: 9781467330763. doi: 10.1109/ICSE.2013.6606617.

[5] Z. Sharafi, Z. Soh and Y. G. Guéhéneuc, ‘A systematic literature review on the
usage of eye-tracking in software engineering,’ Information and Software Technology,
vol. 67, pp. 79–107, Nov. 2015, issn: 0950-5849. doi: 10.1016/J.INFSOF.2015.06.
008.

[6] U. Obaidellah, M. A. Haek and P. C. Cheng, ‘A survey on the usage of eye-tracking
in computer programming,’ ACM Computing Surveys, vol. 51, 1 Jan. 2018, issn:
15577341. doi: 10.1145/3145904.

[7] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd and T. Fritz, ‘Tra-
cing software developers’ eyes and interactions for change tasks,’ in 2015 10th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE 2015, Associ-
ation for Computing Machinery, Inc, Aug. 2015, pp. 202–213, isbn: 9781450336758.
doi: 10.1145/2786805.2786864.

[8] Gazepoint, Applications & history of eye tracking technology, Accessed: Mar. 25,
2024. [Online]. Available: https://www.gazept.com/eye-tracking.

[9] M. Q. Khan and S. Lee, ‘Gaze and eye tracking: Techniques and applications in
adas,’ Sensors (Switzerland), vol. 19, 24 Dec. 2019, issn: 14248220. doi: 10.3390/
s19245540.

[10] S. Riegel Correia, M. Pinto-Albuquerque, T. Espinha Gasiba and A.-C. Iosif,
‘Improving Industrial Cybersecurity Training: Insights into Code Reviews Using

55

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2023.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2023.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/IT-Security-Situation-in-Germany-2023.pdf
https://www.forbes.com/advisor/education/it-and-tech/cybersecurity-statistics
https://www.forbes.com/advisor/education/it-and-tech/cybersecurity-statistics
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://cwe.mitre.org/documents/cwe_usage/guidance.html
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1016/J.INFSOF.2015.06.008
https://doi.org/10.1016/J.INFSOF.2015.06.008
https://doi.org/10.1145/3145904
https://doi.org/10.1145/2786805.2786864
https://www.gazept.com/eye-tracking
https://doi.org/10.3390/s19245540
https://doi.org/10.3390/s19245540

Improving Industrial Cybersecurity Training S. R. Correia

Eye-Tracking,’ in 5th International Computer Programming Education Conference
- ICPEC 2024, A. L. Santos and M. Pinto-Albuquerque, Eds., ser. Open Access
Series in Informatics (OASIcs), vol. 122, Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2024, 17:1–17:9, isbn: 978-3-95977-347-8. doi:
10.4230/OASIcs.ICPEC.2024.17. [Online]. Available: https://drops.dagstuhl.
de/entities/document/10.4230/OASIcs.ICPEC.2024.17.

[11] C. S. Peterson, J. Saddler, T. Blascheck and B. Sharif, ‘Visually analyzing students’
gaze on C++ code snippets,’ in IEEE/ACM 6th International Workshop on Eye
Movements in Programming, EMIP 2019, Institute of Electrical and Electronics
Engineers Inc., May 2019, pp. 18–25, isbn: 9781728122434. doi: 10.1109/EMIP.
2019.00011.

[12] Z. Sharafi, Y. Huang, K. Leach and W. Weimer, ‘Toward an objective measure of
developers’ cognitive activities,’ ACM Transactions on Software Engineering and
Methodology, vol. 30, 3 May 2021, issn: 15577392. doi: 10.1145/3434643.

[13] S. D. Aljehane, B. Sharif and J. I. Maletic, ‘Studying developer eye movements to
measure cognitive workload and visual effort for expertise assessment,’ in Proceedings
of the ACM on Human-Computer Interaction, vol. 7, Association for Computing
Machinery, May 2023. doi: 10.1145/3591135.

[14] NIST, ‘NIST special publication 800-53 revision 5 security and privacy controls for
information systems and organization,’ National Institute of Standards and Techno-
logy, standard, Sep. 2020, Accessed: Sep 22, 2024. doi: 10.6028/NIST.SP.800-53r5.
[Online]. Available: https://doi.org/10.6028/NIST.SP.800-53r5.

[15] PCI SSC, ‘Payment card industry data security standard, version 4.0.1,’ Payment
Card Industry Security Standards Council, standard, Jun. 2024.

[16] PCI Policy Portal, Payment brands data security & pci dss standards - amex,
visa, mastercard, discover, Accessed: Sep 28, 2024. [Online]. Available: https :
//pcipolicyportal.com/what-is-pci/payment-brands.

[17] OWASP, ‘Application security verification standard 4.0.,’ The Open Worldwide Ap-
plication Security Project, standard, Oct. 2021.

[18] IEC, ‘Security for industrial automation and control systems - part 4-1: Secure
product development lifecycle requirements,’ International Electrical Commission,
Standard, 2018.

[19] IEC, ‘Security for industrial automation and control systems - part 4-2: Technical
security requirements for iacs components,’ International Electrical Commission,
Standard, 2019.

[20] Tobii, Global leader in eye tracking for over 20 years, Accessed: Jan. 23, 2024. [On-
line]. Available: https://www.tobii.com/.

[21] Y. Abdrabou et al. ‘Revealing the hidden effects of phishing emails: An analysis of
eye and mouse movements in email sorting tasks.’ Accessed: Jan. 11, 2024. (May
2023), [Online]. Available: http://arxiv.org/abs/2305.17044.

56

https://doi.org/10.4230/OASIcs.ICPEC.2024.17
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2024.17
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICPEC.2024.17
https://doi.org/10.1109/EMIP.2019.00011
https://doi.org/10.1109/EMIP.2019.00011
https://doi.org/10.1145/3434643
https://doi.org/10.1145/3591135
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-53r5
https://pcipolicyportal.com/what-is-pci/payment-brands
https://pcipolicyportal.com/what-is-pci/payment-brands
https://www.tobii.com/
http://arxiv.org/abs/2305.17044

Improving Industrial Cybersecurity Training S. R. Correia

[22] T. H. C. T. da Silva, M. D. Cavalcanti, J. Pessoa and B. V. Becker, ‘Developing a sys-
tem for graphical analysis of brainwaves during media consumption,’ in II Concurso
de Trabalhos de Iniciação Científica (CTIC 2022), 2022.

[23] M. I. Ibrahim, R. A. Latif and A. M. Kamal, ‘The effects of background music on the
screen-based reading material among university students: An eye tracking study,’
Journal of Cognitive Sciences and Human Development, vol. 9, pp. 117–132, 2 Sep.
2023, issn: 2550-1623. doi: 10.33736/jcshd.5933.2023.

[24] H. Jin, Y. Liu, X. Mu, M. Ma and J. Zhang, ‘Usability evaluation and improvement
of mission planner UAV ground control system’s interface,’ International Journal of
Performability Engineering, vol. 15, pp. 2726–2734, 10 2019, issn: 09731318. doi:
10.23940/ijpe.19.10.p19.27262734.

[25] Z. Zhang, D. Chang, J. Zhang and R. Ding, ‘Eye tracking-based usability eval-
uation of e-government app icon design,’ in 2021 IEEE International Conference
on Industrial Engineering and Engineering Management, Institute of Electrical and
Electronics Engineers Inc., 2021, pp. 1651–1655, isbn: 9781665437714. doi: 10.
1109/IEEM50564.2021.9672784.

[26] A. H. Kusumo and M. Hartono, ‘The evaluation of academic website using eye
tracker and UEQ: A case study in a website of xyz,’ in IOP Conference Series:
Materials Science and Engineering, vol. 703, IOP Publishing Ltd, Dec. 2019. doi:
10.1088/1757-899X/703/1/012049.

[27] A. L. Santos, ‘Javardeye: Gaze input for cursor control in a structured editor,’ in
Companion Proceedings of the 5th International Conference on the Art, Science, and
Engineering of Programming, ser. Programming ’21, Cambridge, United Kingdom:
Association for Computing Machinery, 2021, pp. 31–35, isbn: 9781450389860. doi:
10.1145/3464432.3464435.

[28] T. H. Yang, J. Y. Huang, P. H. Han and Y. P. Hung, ‘Saw it or triggered it: Explor-
ing the threshold of implicit and explicit interaction for eye-tracking technique in
virtual reality,’ in 2021 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops, VRW 2021, Institute of Electrical and Electronics Engin-
eers Inc., Mar. 2021, pp. 482–483, isbn: 9780738113678. doi: 10.1109/VRW52623.
2021.00123.

[29] N. Peitek et al., ‘Correlates of programmer efficacy and their link to experience: A
combined EEG and eye-tracking study,’ in ESEC/FSE 2022 - Proceedings of the 30th
ACM Joint Meeting European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Association for Computing Machinery, Inc,
Nov. 2022, pp. 120–131, isbn: 9781450394130. doi: 10.1145/3540250.3549084.

[30] Z. Gao, T. Wang, M. Wang and Y. Zhang, ‘UX testing of developer documentation
- a pilot study of oceanbase database documentation,’ in 2023 IEEE International
Professional Communication Conference (ProComm), 2023, pp. 64–72. doi: 10.
1109/ProComm57838.2023.00035.

57

https://doi.org/10.33736/jcshd.5933.2023
https://doi.org/10.23940/ijpe.19.10.p19.27262734
https://doi.org/10.1109/IEEM50564.2021.9672784
https://doi.org/10.1109/IEEM50564.2021.9672784
https://doi.org/10.1088/1757-899X/703/1/012049
https://doi.org/10.1145/3464432.3464435
https://doi.org/10.1109/VRW52623.2021.00123
https://doi.org/10.1109/VRW52623.2021.00123
https://doi.org/10.1145/3540250.3549084
https://doi.org/10.1109/ProComm57838.2023.00035
https://doi.org/10.1109/ProComm57838.2023.00035

Improving Industrial Cybersecurity Training S. R. Correia

[31] N. Al Madi, ‘How readable is model-generated code? examining readability and
visual inspection of github copilot,’ in Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ser. ASE ’22, Rochester,
MI, USA: Association for Computing Machinery, 2023, isbn: 9781450394758. doi:
10.1145/3551349.3560438.

[32] M. Villamor and M. M. Rodrigo, ‘Predicting successful collaboration in a pair pro-
gramming eye tracking experiment,’ in Adjunct Publication of the 26th Confer-
ence on User Modeling, Adaptation and Personalization, ser. UMAP ’18, Singa-
pore, Singapore: Association for Computing Machinery, 2018, pp. 263–268, isbn:
9781450357845. doi: 10.1145/3213586.3225234.

[33] T. Busjahn, Simon and J. H. Paterson, ‘Looking at the main method – an educator’s
perspective,’ in Proceedings of the 21st Koli Calling International Conference on
Computing Education Research, ser. Koli Calling ’21, Joensuu, Finland: Association
for Computing Machinery, 2021, isbn: 9781450384889. doi: 10.1145/3488042.
3488068.

[34] Z. Sharafi, I. Bertram, M. Flanagan and W. Weimer, ‘Eyes on code: A study on
developers’ code navigation strategies,’ IEEE Transactions on Software Engineering,
vol. 48, pp. 1692–1704, 5 May 2022, issn: 19393520. doi: 10.1109/TSE.2020.
3032064.

[35] S. Becker, A. Obersteiner and A. Dreher, ‘Eye tracking – promising method for ana-
lyzing mathematics teachers’ assessment competencies?’ In 2022 Symposium on Eye
Tracking Research and Applications, ser. ETRA ’22, Seattle, WA, USA: Association
for Computing Machinery, 2022, isbn: 9781450392525. doi: 10.1145/3517031.
3529244.

[36] I. McChesney and R. Bond, ‘Eye tracking analysis of code layout, crowding and
dyslexia - an open data set,’ in ACM Symposium on Eye Tracking Research and
Applications, ser. ETRA ’21 Short Papers, Virtual Event, Germany: Association
for Computing Machinery, 2021, isbn: 9781450383455. doi: 10.1145/3448018.
3457420.

[37] P. L. Gorski, S. Möller, S. Wiefling and L. L. Iacono, ‘’I just looked for the solu-
tion!’on integrating security-relevant information in non-security API documenta-
tion to support secure coding practices,’ IEEE Transactions on Software Engineer-
ing, vol. 48, pp. 3467–3484, 9 Sep. 2022, issn: 19393520. doi: 10.1109/TSE.2021.
3094171.

[38] D. Davis and F. Zhu, ‘Understanding and improving secure coding behavior with
eye tracking methodologies,’ in Proceedings of the 2020 ACM Southeast Conference,
ser. ACM SE ’20, Tampa, FL, USA: Association for Computing Machinery, 2020,
pp. 107–114, isbn: 9781450371056. doi: 10.1145/3374135.3385293.

58

https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3213586.3225234
https://doi.org/10.1145/3488042.3488068
https://doi.org/10.1145/3488042.3488068
https://doi.org/10.1109/TSE.2020.3032064
https://doi.org/10.1109/TSE.2020.3032064
https://doi.org/10.1145/3517031.3529244
https://doi.org/10.1145/3517031.3529244
https://doi.org/10.1145/3448018.3457420
https://doi.org/10.1145/3448018.3457420
https://doi.org/10.1109/TSE.2021.3094171
https://doi.org/10.1109/TSE.2021.3094171
https://doi.org/10.1145/3374135.3385293

Improving Industrial Cybersecurity Training S. R. Correia

[39] Common Vulnerabilities and Exposures, CVE security vulnerability database. secur-
ity vulnerabilities, exploits, references and more, Accessed: Mar 24, 2024. [Online].
Available: https://www.cvedetails.com/.

[40] L. Bernard, S. Raina, B. Taylor and S. Kaza, ‘Minimizing cognitive load in cyber
learning materials – an eye tracking study,’ in ACM Symposium on Eye Tracking
Research and Applications, ser. ETRA ’21 Short Papers, Virtual Event, Germany:
Association for Computing Machinery, 2021, isbn: 9781450383455. doi: 10.1145/
3448018.3458617.

[41] M. Madleňák and K. Kampová, ‘Eye-tracking system as a part of the phishing
training,’ in 2023 21st International Conference on Emerging eLearning Technologies
and Applications (ICETA), 2023, pp. 359–364. doi: 10.1109/ICETA61311.2023.
10343937.

[42] D. K. Davis and F. Zhu, ‘Analysis of software developers’ coding behavior: A survey
of visualization analysis techniques using eye trackers,’ Computers in Human Beha-
vior Reports, vol. 7, Aug. 2022, issn: 24519588. doi: 10.1016/j.chbr.2022.100213.

[43] Z. Sharafi, B. Sharif, Y. G. Guéhéneuc, A. Begel, R. Bednarik and M. Crosby, ‘A
practical guide on conducting eye tracking studies in software engineering,’ Empirical
Software Engineering, vol. 25, pp. 3128–3174, 5 Sep. 2020, issn: 15737616. doi:
10.1007/s10664-020-09829-4.

[44] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic and B. Sharif, ‘Itrace: Eye
tracking infrastructure for development environments,’ in Eye Tracking Research
and Applications Symposium (ETRA), Association for Computing Machinery, Jun.
2018, isbn: 9781450357067. doi: 10.1145/3204493.3208343.

[45] Microsoft, Visual studio: IDE and code editor for software developers and teams, Ac-
cessed: October 22, 2023. [Online]. Available: https://visualstudio.microsoft.
com/.

[46] Eclipse Foundation, Eclipse IDE | the eclipse foundation, Accessed: October 22,
2023. [Online]. Available: https://eclipseide.org/.

[47] J. Behler, G. Chiudioni, A. Ely, J. Pangonis, B. Sharif and J. I. Maletic, ‘Itrace-
visualize: Visualizing eye-tracking data for software engineering studies,’ in 2023
IEEE Working Conference on Software Visualization (VISSOFT), 2023, pp. 100–
104. doi: 10.1109/VISSOFT60811.2023.00021.

[48] J. Behler, P. Weston, D. T. Guarnera, B. Sharif and J. I. Maletic, ‘Itrace-toolkit:
A pipeline for analyzing eye-tracking data of software engineering studies,’ in
2023 IEEE/ACM 45th International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), 2023, pp. 46–50. doi: 10 . 1109 / ICSE -
Companion58688.2023.00022.

[49] U. Obaidellah, T. Blascheck, D. T. Guarnera and J. Maletic, ‘A fine-grained as-
sessment on novice programmers’ gaze patterns on pseudocode problems,’ in Eye

59

https://www.cvedetails.com/
https://doi.org/10.1145/3448018.3458617
https://doi.org/10.1145/3448018.3458617
https://doi.org/10.1109/ICETA61311.2023.10343937
https://doi.org/10.1109/ICETA61311.2023.10343937
https://doi.org/10.1016/j.chbr.2022.100213
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1145/3204493.3208343
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://eclipseide.org/
https://doi.org/10.1109/VISSOFT60811.2023.00021
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
https://doi.org/10.1109/ICSE-Companion58688.2023.00022

Improving Industrial Cybersecurity Training S. R. Correia

Tracking Research and Applications Symposium (ETRA), Association for Comput-
ing Machinery, Feb. 2020, isbn: 9781450371346. doi: 10.1145/3379156.3391982.

[50] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander and W. Weimer, ‘Biases
and differences in code review using medical imaging and eye-tracking: Genders,
humans, and machines,’ in ESEC/FSE 2020 - Proceedings of the 28th ACM Joint
Meeting European Software Engineering Conference and Symposium on the Found-
ations of Software Engineering, Association for Computing Machinery, Inc, Nov.
2020, pp. 456–468, isbn: 9781450370431. doi: 10.1145/3368089.3409681.

[51] Tobii, Eye tracking software for behavior research, Accessed: Feb 21, 2024. [Online].
Available: https://www.tobii.com/products/software/behavior-research-
software/tobii-pro-lab.

[52] Gazepoint, Analysis professional eye-tracking software, Accessed: Feb 21, 2024. [On-
line]. Available: https : / / www . gazept . com / product / gazepoint - analysis -
professional-edition-software/?v=3a52f3c22ed6.

[53] OGAMA, OGAMA - open gaze and mouse analyzer, Accessed: Feb 21, 2024. [On-
line]. Available: http://www.ogama.net/.

[54] A. Vosskühler, V. Nordmeier, L. Kuchinke and A. Jacobs, ‘OGAMA (open gaze and
mouse analyzer): Open-source software designed to analyze eye and mouse move-
ments in slideshow study designs,’ Behavior research methods, vol. 40, pp. 1150–
1162, Mar. 2008. doi: 10.3758/BRM.40.4.1150.

[55] R. Likert, ‘A technique for the measurement of attitudes,’ Archives of Psychology,
vol. 140, pp. 1–55, 1932.

[56] Microsoft, Microsoft forms | surveys, polls, and quizzes, Accessed: Feb 27, 2024.
[Online]. Available: https://forms.office.com.

[57] Gazepoint, Gazepoint analysis user manual, 2023.
[58] Gazepoint, Gazepoint api manual, Accessed: Feb. 24, 2024, 2022. [Online]. Available:

https://www.gazept.com/dl/Gazepoint_API_v2.0.pdf.
[59] Common Weakness Enumeration, 2023 CWE top 25 most dangerous software weak-

nesses, Accessed: Jul 22, 2024. [Online]. Available: https://cwe.mitre.org/top25/
archive/2023/2023_top25_list.html.

[60] Common Weakness Enumeration, CWE-787: Out-of-bounds write, Accessed: Mar 26,
2024. [Online]. Available: https://cwe.mitre.org/data/definitions/787.html.

[61] C. Conikee, Seeve: A set of vulnerable C code snippets (with mapped CVEs), Ac-
cessed: Mar 26, 2024. [Online]. Available: https://github.com/conikeec/seeve.

[62] Common Weakness Enumeration, CWE-89: Improper neutralization of special ele-
ments used in an SQL command (SQL injection), Accessed: Mar 26, 2024. [Online].
Available: https://cwe.mitre.org/data/definitions/89.html.

[63] Yes We Hack, Vulnerable-code-snippets: Twitter vulnerable snippets, Accessed: Mar
26, 2024. [Online]. Available: https://github.com/yeswehack/vulnerable-code-
snippets.

60

https://doi.org/10.1145/3379156.3391982
https://doi.org/10.1145/3368089.3409681
https://www.tobii.com/products/software/behavior-research-software/tobii-pro-lab
https://www.tobii.com/products/software/behavior-research-software/tobii-pro-lab
https://www.gazept.com/product/gazepoint-analysis-professional-edition-software/?v=3a52f3c22ed6
https://www.gazept.com/product/gazepoint-analysis-professional-edition-software/?v=3a52f3c22ed6
http://www.ogama.net/
https://doi.org/10.3758/BRM.40.4.1150
https://forms.office.com
https://www.gazept.com/dl/Gazepoint_API_v2.0.pdf
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/data/definitions/787.html
https://github.com/conikeec/seeve
https://cwe.mitre.org/data/definitions/89.html
https://github.com/yeswehack/vulnerable-code-snippets
https://github.com/yeswehack/vulnerable-code-snippets

Improving Industrial Cybersecurity Training S. R. Correia

[64] Programiz, C++ Examples | Programiz, Accessed: Mar 26, 2024. [Online]. Available:
https://www.programiz.com/cpp-programming/examples.

[65] E. A. Locke and G. P. Latham, ‘Building a practically useful theory of goal setting
and task motivation: A 35-year odyssey,’ American Psychologist, vol. 57, no. 9,
pp. 705–717, 2002.

[66] Gazepoint, Gazepoint control user manual, 2023.
[67] G. D. Leo and F. Sardanelli, ‘Statistical significance: P value, 0.05 threshold, and

applications to radiomics—reasons for a conservative approach,’ European Radiology
Experimental, vol. 4, 1 Dec. 2020, issn: 25099280. doi: 10.1186/s41747-020-0145-
y.

[68] National Security Agency, NSA’s top ten cybersecurity mitigation strategies, Ac-
cessed: Aug. 7, 2024, Mar. 2018. [Online]. Available: https : / / www . nsa . gov /
portals/75/documents/what-we-do/cybersecurity/professional-resources/
csi-nsas-top10-cybersecurity-mitigation-strategies.pdf.

[69] K. Li et al., ‘Comparison and evaluation on static application security testing
(SAST) tools for java,’ in ESEC/FSE 2023 - Proceedings of the 31st ACM Joint
Meeting European Software Engineering Conference and Symposium on the Found-
ations of Software Engineering, Association for Computing Machinery, Inc, Nov.
2023, pp. 921–933. doi: 10.1145/3611643.3616262.

[70] S. Elder et al., Do I really need all this work to find vulnerabilities? an empirical case
study comparing vulnerability detection techniques on a java application, Accessed:
Sep. 10, 2024, Aug. 2022. arXiv: 2208.01595 [cs.SE]. [Online]. Available: https:
//arxiv.org/abs/2208.01595.

[71] S. Matěj, ‘Evaluation and application of SAST tools,’ Bachelor’s Thesis, Masaryk
University, Faculty of Informatics, 2024.

[72] X. Zhou et al., Comparison of static application security testing tools and large
language models for repo-level vulnerability detection, Accessed: Sep 18, 2024, Jul.
2024. arXiv: 2407.16235 [cs.SE]. [Online]. Available: https://arxiv.org/abs/
2407.16235.

[73] B. P. Bailey and S. T. Iqbal, ‘Understanding changes in mental workload during
execution of goal-directed tasks and its application for interruption management,’
ACM Transactions on Computer-Human Interaction, vol. 14, 4 Jan. 2008, issn:
10730516. doi: 10.1145/1314683.1314689.

[74] W. Saranpää et al., ‘Gander: A platform for exploration of gaze-driven assistance
in code review,’ in Proceedings of the 2023 Symposium on Eye Tracking Research
and Applications, ser. ETRA ’23, Tubingen, Germany: Association for Computing
Machinery, 2023. doi: 10.1145/3588015.3589191.

61

https://www.programiz.com/cpp-programming/examples
https://doi.org/10.1186/s41747-020-0145-y
https://doi.org/10.1186/s41747-020-0145-y
https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/csi-nsas-top10-cybersecurity-mitigation-strategies.pdf
https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/csi-nsas-top10-cybersecurity-mitigation-strategies.pdf
https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/csi-nsas-top10-cybersecurity-mitigation-strategies.pdf
https://doi.org/10.1145/3611643.3616262
https://arxiv.org/abs/2208.01595
https://arxiv.org/abs/2208.01595
https://arxiv.org/abs/2208.01595
https://arxiv.org/abs/2407.16235
https://arxiv.org/abs/2407.16235
https://arxiv.org/abs/2407.16235
https://doi.org/10.1145/1314683.1314689
https://doi.org/10.1145/3588015.3589191

APPENDIX A

Survey

Below you will find a PDF version of the survey presented to participants. This survey
was originally created in Microsoft Forms and was presented to participants through the
online response portal.

63

APPENDIX B

Experiment Guide

Below you will find the guide used for the execution of the study’s experiments, in its
integrity.

67

Eye-tracking Study
Procedure Guide

Introduction
• Greet.
• Introduce yourself.
• Introduce the subject which we wish to investigate, in a way that does not influence the

study's results in some undesired way. Also, guarantee their consent for the recording of
the experiment:

o “We are conducting this study to investigate how people review code when
searching for cybersecurity vulnerabilities. You will be asked to look at some
code, analyse it and determine if it contains any vulnerabilities. It is important to
note that you will not be personally evaluated or tested during this study.”

o To conduct this study, we will use an eye-tracking device which will register your
eye movements, we will also record the screen and audio. The recordings and all
information obtained from this experiment will be anonymised, and only be used
in the context of my work, so it will not be passed on to others. Are you okay with
us recording the session for the previously mentioned purposes?”

• Present the subject with the questionnaire and let them answer it on their own.
o https://forms.office.com/r/8T1SDp6jr7

Experiment
• At this moment the subject should have been introduced to the proceedings, have

answered the questionnaire, and should be seated in the position from which they will
conduct the test.

• Adjust the desk, chair, eye-tracker, and monitor positions to best suit the subject and
begin the calibration process.

• Remind the user of the task and give some additional information.
o “You will now analyse a series of code snippets written in c++, with the objective

of discovering any potential cybersecurity flaws. Whenever you believe to have
discovered a cybersecurity vulnerability let me know. Also, let me know when
you find that a code snippet does not contain any vulnerabilities”.

o “Again, you are not being evaluated or tested and you should not rush yourself,
simply look at the code as you would normally when scanning for potential
vulnerabilities.”

o “Do you have any questions?”
o “Are you ready to begin?”

• Initiate the recording in OGAMA, assuring that the correct screen is selected for the
recording.

• When the subject discovers a vulnerability:
1. If it’s the correct vulnerability say that they found the vulnerability, we were

looking for and ask if they want to keep analysing the code or if they are ready to
move on to the next task.

2. If it’s the incorrect vulnerability, acknowledge their answer without indicating if it
is correct or incorrect, make a note of the subject’s answer, and ask if they want
to continue to analyse the code or if they would like to move on.

3. If the subject says that the code does not contain any vulnerabilities, move on to
the following snippet.

Independently of it being the vulnerability being correctly identified, ask for some
rationale on why they believe the code contains a vulnerability.

2. SNIPPETS:
1) “A program which, given a string, trims all trailing white spaces.”

▪ CWE-787 Out-of-bounds write
▪ If a string is completely made of spaces this causes a buffer underwrite.

Can access and remove memory outside of scope.
▪ Main vulnerability:

• while (isspace(message[len]))
2) “Program which takes an input string and changes some characters to different

ones for sanitation purposes.”
▪ CWE-119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
▪ String with a lot of '&' or '<' will overflow. Also, when a very small string is

given, it will present other data stored in memory.
▪ Main problematic line:

• dst_buf[dst_index++] = '
o This without checking for total size of array.

3) “This program counts and displays the number of times a certain character is
present in a string.”

▪ Placebo 1
4) “Simple program which declares a two-dimensional board.”

▪ CWE-20 Improper Input Validation
▪ The user-inputted value is not checked to see if it is a negative value, as

such we can use large negative numbers to reserve more memory than
expected.

▪ Main problematic lines:
• if (m > MAX_DIM || n > MAX_DIM)
• struct board_square_t*)malloc(m * n * sizeof(struct

board_square_t)
5) “This program obtains all information on a user from a MySQL database given his

username.”
▪ CWE-89 SQL Injection
▪ User input should be sanitized.
▪ Main problematic line:

• std::string query = "SELECT * FROM users WHERE username = '"
+ username + "'";

6) “In the previous program, this instruction presents a risk of SQL Injection”
▪ CWE-89 SQL Injection – Detail

7) “This is how the vulnerability was tackled.”
▪ CWE-89 SQL Injection - First solution

▪ Problem:
• Incorrect implementation of prepared statements, same issue as

in the original program.
8) “This was the following attempt at mitigating the vulnerability”.

▪ CWE-89 SQL Injection - Second solution
▪ No issues.

9) “Program for finding the highest common factor (HCF), using recursion.”
▪ Placebo 2

10) “This program consists of a small website which receives requests and displays
a simple HTML page.”

▪ CWE-79 Cross-site scripting
▪ Gets 'q' from 'param' without sanitization or validation.
▪ Main problematic line:

• std::string response = "<h1>" + query.substr(pos + 1) + "</h1>";
11) “In the previous program, this instruction presents a risk of Cross-Site Scripting”

▪ CWE-79 Cross-site scripting – Detail
12) “This is an attempt made at mitigating the vulnerability.”

▪ CWE-79 Cross-site scripting – Solution
▪ No issues.

3. The OGAMA recording will automatically finish once all slides are presented.
4. Stop the audio recording.

Debriefing
• Ask the subject some final questions and obtain feedback.

o “How confident do you feel about the vulnerabilities you discovered?”
o “Do you have anything you’d like to add or something you’d like to ask?”

APPENDIX C

Script to find number of occurrences of vulnerabilities

The following Python script was created to find the number of registered occurrences
of vulnerabilities on CVEDetails.

import requests

from bs4 import BeautifulSoup

import re

def get_vulnerabilities_count(url):

try:

Define headers to mimic a Firefox browser

headers = {

’User -Agent’: ’Mozilla /5.0 (Windows NT 10.0; Win64; x64

; rv :97.0) Gecko /20100101 Firefox /97.0 ’

}

Fetch HTML content from the URL with headers

response = requests.get(url , headers=headers)

if response.status_code == 200:

Parse HTML using BeautifulSoup

soup = BeautifulSoup(response.content , ’html.parser ’)

Find all text containing "XXX vulnerabilities found"

vulnerabilities_text = soup.find_all(string=re.compile(

r’\d+vulnerabilities found’))

if vulnerabilities_text:

Extract the number of vulnerabilities

vulnerabilities_count = int(re.search(r’\d+’,

vulnerabilities_text [0]).group())

return vulnerabilities_count

else:

return None

else:

print("Failed to retrieve data from the URL.

Status code:", response.status_code)

71

Improving Industrial Cybersecurity Training S. R. Correia

return None

except Exception as e:

print("An error occurred:", e)

return None

Example usage:

for ii in range (1300):

url = f"https ://www.cvedetails.com/vulnerability -list/cwe{ii

+1}/ vulnerabilities.html"

Replace with the desired URL

vulnerabilities_count = get_vulnerabilities_count(url)

if vulnerabilities_count is not None:

print(f"CWE -{ii+1}:", vulnerabilities_count)

else:

print(f"CWE -{ii+1}: 0")

72

APPENDIX D

Code Snippets

In this part, you will find the code snippets our participants were tasked with ana-
lysing during the experiment. For our code snippets containing vulnerabilities, we have
highlighted the vulnerable part of the code, which we referred to as the "target", in red.

D.1. Snippet 1 - CWE-787: "Out-of-bounds Write"

#include <iostream >

#include <cstring >

char* trimTrailingWhitespace(char *strMessage , int length) {

char *retMessage;

char *message = new char[length + 1];

// copy input string to a temporary string

std:: memcpy(message , strMessage , length);

message[length] = ’\0’;

// trim trailing whitespace

int len = length - 1;

while (isspace(message[len])) {

message[len] = ’\0’;

len --;

}

// return string without trailing whitespace

retMessage = message;

return retMessage;

}

int main() {

char str[] = "Test ";

char *trimmed = trimTrailingWhitespace(str , strlen(str));

std::cout << "Trimmed string: " << trimmed << std::endl;

delete [] trimmed; // Free dynamically allocated memory

return 0;

}

73

Improving Industrial Cybersecurity Training S. R. Correia

D.2. Snippet 2 - CWE-119: "Improper Restriction of Operations within the
Bounds of a Memory Buffer"

#include <iostream >

#include <cstring >

#include <cstdlib >

#define MAX_SIZE 16

char* copy_input(const char* user_supplied_string) {

int dst_index = 0;

char* dst_buf = new char[4 * MAX_SIZE];

// Iterate over the user -supplied string

for (int i = 0; i < strlen(user_supplied_string); i++) {

if (user_supplied_string[i] == ’&’) {

dst_buf[dst_index ++] = ’&’;

dst_buf[dst_index ++] = ’a’;

dst_buf[dst_index ++] = ’m’;

dst_buf[dst_index ++] = ’p’;

dst_buf[dst_index ++] = ’;’;

} else if (user_supplied_string[i] == ’<’) {

dst_buf[dst_index ++] = ’&’;

dst_buf[dst_index ++] = ’l’;

dst_buf[dst_index ++] = ’t’;

} else {

dst_buf[dst_index ++] = user_supplied_string[i];

}

}

return dst_buf;

}

int main() {

char uss[MAX_SIZE]; // Buffer for user input

read(0, uss , MAX_SIZE); // Read user input

char* dst_buff = copy_input(uss); // Process user input

printf("%s", dst_buff); // Output processed input

delete [] dst_buff; // Free allocated memory

return 0;

}

74

Improving Industrial Cybersecurity Training S. R. Correia

D.3. Snippet 3 - Placebo 1

#include <iostream >

using namespace std;

int main()

{

string str;

cout << "Enter a string: ";

getline(cin , str); // Read user input into str

char checkCharacter;

cout << "Enter the character to count: ";

cin >> checkCharacter; // Read the character to count

int count = 0;

for (int i = 0; i < str.size(); i++)

{

if (str[i] == checkCharacter)

{

++count;

}

}

cout << "Number of " << checkCharacter << " = " << count;

return 0;

}

D.4. Snippet 4 - CWE-20: "Improper Input Validation"

#include <iostream >

#include <cstdlib >

#define MAX_DIM 100

struct board_square_t {

int height;

int width;

};

75

Improving Industrial Cybersecurity Training S. R. Correia

int main() {

/* board dimensions.*/

int m, n, error;

struct board_square_t* board;

std::cout << "Please specify the board height: " << std::endl;

error = std:: scanf("%d", &m);

if (EOF == error) {

std::cout << "No integer passed: Die evil hacker!" << std::

endl;

}

std::cout << "Please specify the board width: " << std::endl;

error = std:: scanf("%d", &n);

if (EOF == error) {

std::cout << "No integer passed: Die evil hacker!" << std::

endl;

}

if (m > MAX_DIM || n > MAX_DIM) {

std::cout << "Value too large: Die evil hacker!" << std::

endl;

}

board = (struct board_square_t *) malloc(m * n * sizeof(struct

board_square_t));

return 0;

}

D.5. Snippet 5 - CWE-89: "SQL Injection"

#include <iostream >

#include <string >

#include <mysql_driver.h>

#include <mysql_connection.h>

int main() {

try {

sql::mysql:: MySQL_Driver *driver;

sql:: Connection *con;

76

Improving Industrial Cybersecurity Training S. R. Correia

// Create a MySQL Driver object

driver = sql::mysql:: get_mysql_driver_instance ();

// Connect to the MySQL database

con = driver ->connect("tcp ://127.0.0.1:3306", "root", "

password");

// Select the database schema

con ->setSchema("example");

std:: string username;

std::cout << "Enter username: ";

std:: getline(std::cin , username);

// Execute the plain query with the provided username

sql:: Statement *stmt;

sql:: ResultSet *res;

stmt = con ->createStatement ();

res = stmt ->executeQuery("SELECT * FROM users WHERE

username = ’" + username + "’");

// Process the result set

while (res ->next()) {

std::cout << "User found: " << res ->getString("username

") << " - " << res ->getString("email") << std::endl;

}

delete res;

delete stmt;

delete con;

} catch (sql:: SQLException &e) {

std::cerr << "SQL Error: " << e.what() << std::endl;

}

return 0;

}

D.6. Snippet 6 - CWE-89: Incorrect Solution

prepareStatement("SELECT * FROM users WHERE username = ’" +

username + "’);

77

Improving Industrial Cybersecurity Training S. R. Correia

res = stmt ->executeQuery ();

D.7. Snippet 7 - CWE-89: Correct Solution

stmt = con ->prepareStatement("SELECT * FROM users WHERE username =

?");

stmt ->setString(1, username);

res = stmt ->executeQuery ();

D.8. Snippet 8 - Placebo 2

#include <iostream >

using namespace std;

int hcf(int n1, int n2);

int main()

{

int n1, n2;

const int MAX_VALUE = 1000; // Maximum allowed value

cout << "Enter two positive integers (maximum value " <<

MAX_VALUE << "): ";

cin >> n1 >> n2;

if (n1 > MAX_VALUE || n2 > MAX_VALUE || n1 < 0 || n2 < 0) {

cout << "Input values must be positive and not

exceed " << MAX_VALUE << ". Please try again."

<< endl;

return 1; // Exit with error code

}

cout << "H.C.F of " << n1 << " & " << n2 << " is: " << hcf

(n1, n2);

return 0;

}

int hcf(int n1, int n2){

if (n2 != 0)

return hcf(n2, n1 % n2);

78

Improving Industrial Cybersecurity Training S. R. Correia

else

return n1;

}

D.9. Snippet 9 - CWE-79: "Cross-site Scripting"

#include <iostream >

#include <string >

#include <boost/beast/http.hpp >

#include <boost/asio.hpp >

namespace http = boost::beast::http;

namespace asio = boost::asio;

using tcp = asio::ip::tcp;

void handleRequest(const http::request <http:: string_body >& req ,

http::response <http:: string_body >& res) {

std:: string query = req.target ().to_string ();

size_t pos = query.find(’?’);

std:: string response = "<h1>" + query.substr(pos + 1) + "</h1>"

;

res.set(http::field:: content_type , "text/html");

res.body() = response;

res.prepare_payload ();

}

int main() {

try {

asio:: io_context io_context;

tcp:: acceptor acceptor(io_context , tcp:: endpoint(tcp::v4(),

1337));

while (true) {

tcp:: socket socket(io_context);

acceptor.accept(socket);

http::request <http:: string_body > req;

http::read(socket , req);

79

Improving Industrial Cybersecurity Training S. R. Correia

http::response <http:: string_body > res(http:: status ::ok,

req.version ());

handleRequest(req , res);

http::write(socket , res);

}

} catch (std:: exception& e) {

std::cerr << "Exception: " << e.what() << std::endl;

}

return 0;

}

D.10. Snippet 10 - CWE-79: Solution

#include <boost/algorithm/string.hpp >

...

std:: string userInput = query.substr(pos + 1);

boost:: algorithm :: replace_all(userInput , "&", "&");

boost:: algorithm :: replace_all(userInput , "\"", """);

boost:: algorithm :: replace_all(userInput , "’", "'");

boost:: algorithm :: replace_all(userInput , "<", "<");

boost:: algorithm :: replace_all(userInput , ">", ">");

std:: string response = "<h1>" + userInput + "</h1>";

80

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1. Introduction
	1.1. Context
	1.2. Motivation
	1.3. Research Questions
	1.4. Outline

	Chapter 2. Previous Work
	2.1. State of the Art
	2.2. Systematic Literature Review

	Chapter 3. Methodology
	3.1. Survey Design
	3.2. Experiment Design
	3.3. Evaluation

	Chapter 4. Results
	4.1. Survey Results
	4.2. Experiment Results

	Chapter 5. Discussion
	5.1. Previous Work & Design of Study
	5.2. RQ1 - What tasks in the software development lifecycle do industrial cybersecurity professionals consider to be the most crucial in mitigating cybersecurity vulnerabilities?
	5.3. RQ2 - How successful are industrial cybersecurity professionals at conducting secure code reviews?
	5.4. RQ3 - Is there a relation between the patterns revealed using eye-tracking technology and the code reviewers’ success in spotting the vulnerabilities?
	5.5. Threats to Validity

	Chapter 6. Conclusions
	References
	Appendix A. Survey
	Appendix B. Experiment Guide
	Appendix C. Script to find number of occurrences of vulnerabilities
	Appendix D. Code Snippets
	D.1. Snippet 1 - CWE-787: "Out-of-bounds Write"
	D.2. Snippet 2 - CWE-119: "Improper Restriction of Operations within the Bounds of a Memory Buffer"
	D.3. Snippet 3 - Placebo 1
	D.4. Snippet 4 - CWE-20: "Improper Input Validation"
	D.5. Snippet 5 - CWE-89: "SQL Injection"
	D.6. Snippet 6 - CWE-89: Incorrect Solution
	D.7. Snippet 7 - CWE-89: Correct Solution
	D.8. Snippet 8 - Placebo 2
	D.9. Snippet 9 - CWE-79: "Cross-site Scripting"
	D.10. Snippet 10 - CWE-79: Solution

