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Resumo 

 

Risco de crédito é definido pelo Comité de Basileia como a probabilidade de um devedor entrar em 

incumprimento para com as suas obrigações creditícias, sendo que é necessária uma gestão efetiva do 

mesmo para otimizar rendibilidades ajustadas ao risco. Esta dissertação pretende ser um estudo sobre 

um conjunto de dados de empréstimos concedidos, publicamente disponível no repositório de Machine 

Learning da Universidade da California, Irvine (UCI), onde uma comparação é efetuada entre modelos 

estatísticos e modelos baseados em machine learning. Esta análise comparativa evidencia os vários 

pontos fortes e limitações respetivos a cada tipo de modelo, pelo aprofundamento das suas características 

e resultados na estimação da probabilidade de incumprimento. As conclusões apontam para a 

importância de um tratamento de dados robusto, da seleção do melhor modelo e na utilização de técnicas 

de interpretabilidade, destacando a complexidade dos vários fatores que influenciam o risco de crédito. 

  



iv 

 



 

v 

 

Abstract 

 

Credit risk, defined by the Basel Committee as the potential for a borrower to default on obligations, 

necessitates effective management to optimize risk-adjusted returns. This work intends to be a study on 

a publicly available loan default dataset from the University of California, Irvine (UCI) Machine 

Learning Repository, where a comparison is conducted between statistical and machine learning models. 

The comparative analysis of these models highlights their strengths and limitations, offering insights 

into their application in credit risk assessment. The findings underscore the importance of robust data 

preprocessing, model selection, and interpretability techniques in predicting credit defaults, highlighting 

the complex interplay of various factors influencing credit risk. 
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CHAPTER 1 

Introduction 

 

The financial crises that occurred in the first two decades of the twenty-first century led financial 

institutions worldwide to pay increased attention to risk management, particularly credit risk. High non-

performing loan (NPL) ratios that currently exist in a significant number of Member States of the 

European Union (EU) (European Council, 2017) may change market perceptions of the European 

banking industry as a whole and increase the risk of cross-border spillovers into the EU's economy and 

financial system. 

According to the Basel Committee, credit risk can be defined as “the potential that a bank 

borrower or counterparty will fail to meet its obligations in accordance with agreed terms” (Basel 

Committee on Banking Supervision, 2000, p. 1). For financial institutions to optimize their risk-adjusted 

rate of return and keep their risk exposure within reasonable bounds, they must effectively manage the 

credit risk in their banking book. Therefore, the credit default likelihood of borrowers needs to be 

determined or estimated through the evaluation and analysis of loan applications. Determining what 

constitutes a "good" loan and what characteristics set it apart from a bad loan is key (Basel Committee 

on Banking Supervision, 2000). 

An approach to estimating a debtor’s likelihood of credit default events lies in credit scoring. The 

use of this technique was intensified and stimulated by the widespread use of credit cards, as client 

databases grew significantly due to economic pressures brought on by a rise in loan demand, increased 

commercial competition, and the progress of new computer technologies (Hand et al., 1997). In this 

context, financial institutions began to integrate or replace subjective judgment-based credit-granting 

decisions with statistical models (Goh et al. 2019). 

The Basel II accord was published in 2004. Under this accord, a bank may use the Internal ratings-

based (IRB) approach after successful validation by the supervisor (Article 143 of Regulation (EU) No 

575/2013. This is one approach to calculating the minimum capital requirement for credit risk, rather 

than using a more rigid set of rules as laid out in the Standardized approach. This marked a profound 

change in the credit scoring industry, with efforts to create complex models being deeply studied. 

Benefitting from the swift advancement of computer technology, creating more complex and 

sophisticated models becomes viable (Goh et al. 2019). 

During the first half of the twentieth century, before the development of credit scoring models, credit 

decisions relied solely on the personal judgment of credit analysts. With the pioneering work of Altman 

(1968), resorting to multiple discriminant analysis (MDA), an effective determination of credit scoring 

to forecast business bankruptcy was achieved. With MDA, a set of financial ratios is modelled as input 

variables, with the resulting output (z-score) seeming like a reliable predictor and helpful for analysts 
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when making credit investment advice. Ohlson (1980) later presented a probabilistic method for 

estimating a company's creditworthiness, using an alternative approach: logistic regression. 

The credit risk literature has studied two types of automatic credit scoring approaches: statistical 

techniques and artificial intelligence (AI) (Khatir et al., 2022). The industry standard statistical 

techniques used to produce scorecards are mostly composed of logistic regression, discriminant analysis, 

and linear regression (Hand et al., 1997). 

More recently, several studies have shown that machine learning techniques—including support 

vector machines, decision trees, ensemble models, random forests, and artificial neural networks—are 

useful tools for assessing credit risk (see, e.g., Bensic, 2005; Brown, 2012; Huang, 2007; Gedela et al., 

2022; and Ponsam et al., 2021). Machine Learning techniques, in contrast to statistical approaches, 

automatically extract information from training samples. According to earlier research, AI frequently 

performs better than statistical techniques when handling credit scoring problems, particularly in the 

face of nonlinear classification patterns (Khatir et al., 2022). 

The application of machine learning algorithms in credit scoring may contribute to increased access 

to credit while enabling a potentially more accurate, segmented assessment of creditworthiness. In 

certain markets, traditional credit scoring methods require that those seeking loans are related to a 

substantial quantity of past credit data to be labelled "scorable." A credit score cannot be produced 

without this data, therefore a borrower who may be creditworthy may find it difficult to get credit 

without a credit history. Lenders may be able to make credit choices that were previously unattainable 

by using different data sources and applying machine learning algorithms to help create an evaluation 

of ability and willingness to repay (FSB, 2017). 

From the second Basel Accord in 2004 onwards, financial institutions were allowed to employ 

internal ratings-based (IRB) credit scoring models to determine the regulatory capital requirements for 

credit risk. Nowadays the models used do not materially differ from those applied at that time. Taking, 

as an example, Logistic Regression usage for credit scoring, since Ohlson (1980), many authors 

employed different variants of this approach, but the underlying method remains the same. Nevertheless, 

scientific development in credit risk modelling has been evolving until recently (EBA, 2021a). Machine 

Learning models are frequently less "transparent" and more sophisticated than traditional approaches 

like regression analysis or simple decision trees. 

According to the European Banking Association (EBA), “the main pivotal challenge comes from 

their complexity which leads, at least for the more complex ones, to challenges in interpreting their 

results, ensuring their adequate understanding by the management functions and justifying their results 

to supervisors” (EBA 2021, p. 5). It is known that machine learning models can yield additional benefits; 

however, to meet the requirements of the Capital Requirements Regulation (CRR), these models must 

also be interpreted, and the relevant stakeholders must have a level of understanding of how the model 

works that is at least in line with their involvement and legal compliance. If not, there's a chance that 

"black box" models will exist. To permit the use of machine learning (ML) models for regulatory 
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purposes, it must be essential that institutions and all their levels of management activities and bodies 

have a sufficient understanding of their IRB models (EBA, 2021b). 

Some examples of ML techniques used in IRB modelling context that are compliant with CRR 

guidelines are outlined below (EBA, 2021b):  

• Model validation: Alternative algorithms underlying different modelling approaches, 

considered model challengers are developed using ML models and are meant to act as a 

benchmark against which the standard model used to calculate capital requirements is measured. 

Both challengers and standard models are contrasted, so that the quality of results is maximized. 

For example, the probability of default (PD) modelling can be risk-differentiated when ML 

models are used as a module. This module may allow upgrades and downgrades to the PD grade 

previously estimated by the "traditional" PD model. 

• Variable selection: Within a big dataset, ML may be utilized to find explanatory variables and 

their combinations with significant predictive power. 

The main contribution of this dissertation lies in comparing the performance of statistical and 

machine learning models for probability of default estimation. An overview on these different models’ 

specifications tries to clarify more complex techniques to the reader. Performance metrics like receiver 

operating characteristic curve and area under each curve (AUC) were used to decide on the best 

performing model. Being the winner a machine learning model, interpretability techniques are employed 

to overcome the existing interpretability barrier. With this, the objective is to present a model 

development framework that includes these, in vogue, artificial intelligence-based models, in order to 

produce more accurate probability of default estimations. 

 

The remainder of this dissertation is organized as follows. The second chapter provides an 

overview of traditional and machine learning models, credit risk, and regulatory guidelines for IRB 

modelling. A summary table of recent research on this topic concludes Chapter 3, which summarizes 

the numerous contributions to the credit risk literature. Chapter 4 discusses the selected models, followed 

by a detailed examination of the most often used interpretability techniques and the performance metrics 

applied for evaluation. Chapter 5 presents a thorough analysis of the data, a summary of the 

preprocessing techniques, and an overview of each model’s training. The results of each classifier are 

shown in Chapter 6, along with a comparison of the top-performing machine learning model versus 

Logistic Regression, and the conclusions are drawn from the application of interpretability approaches. 

Chapter 7 concludes. 
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CHAPTER 2 

Literature review 

 

The initial phases of credit scoring research during the second half of the 20th century utilized the 

statistical techniques known at the time applied to data sources of just a few tens or hundreds of cases. 

The seminal work of Beaver (1966) showed that a bank’s lending decision could be viewed as a 

dichotomous choice of accepting or rejecting a loan application having as an object the analysis of 

financial ratios as cash flows to total assets, net income to total assets, total debt to total assets and 

working capital to total assets. The possibility of default could be evaluated using these financial ratios. 

However, this approach applied only a univariate analysis focusing on one ratio at a time. 

Since then, several methods accounting for both conventional statistical methods and more advanced 

modelling techniques have been developed to aid decision-makers and financial analysts in predicting 

default (Ashofteh & Bravo, 2021). The statistical or traditional techniques have some noteworthy 

studies, including logistic regression models (e.g., Martin, 1977; Ohlson, 1980; Zavgren, 1985). These 

remain popular because they meet a few specific requirements in the context of credit risk modelling 

(Bücker, 2022): 

the models are subject to regulation and auditors are typically familiar with interpreting logistic 

regression models due to their linear nature; 

regulation further requires recurrent monitoring, which can be easily interpreted on a variable level for 

logistic regression models; 

as customers have the right to an explanation of individual decisions, answers as to why a credit 

application has been rejected can be easily broken down since the score computed from a logistic 

regression model is the sum of the variables’ effects. 

Altman (2018) reviewed credit scoring evolution for the probability of default capture since his famous 

Z-score model. Despite his model being focused on corporate indicators and ratios, fifty years after it 

was developed it still shows impressive resilience, notwithstanding massive growth in the size and 

complexity of financial data. He states his skepticism towards machine learning models, as practitioners 

may not accept black-box methods even with a substantial improvement in prediction accuracy (Barboza 

et al., 2017). 

Meanwhile, as computer technology improved, better and more modern machine learning models to 

evaluate credit risk were created thanks to developments in credit risk modelling. Credit risk analysis 

and pattern recognition problems are similar enough that algorithms can be utilized for assessing 

counterparties' creditworthiness (Barboza et al., 2017). Observing the number of related studies 

available on Google Scholar we observe a clear increase in recent years. This reflects the existing recent 

hype with Machine Learning and its application on Credit Scoring.   
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Figure 1: Number of studies on Machine Learning for Credit Scoring. 

Source: Author’s preparation 

 

The World Bank (2019) wrote a guideline for credit scoring approaches, including traditional and 

machine learning techniques. The usefulness behind the usage of alternative sources of data, such as 

social media, mobile applications, online transactions, and behavioural data was not yet proven. The 

existing Big Data combined with continuous innovation of computing power can lead to great 

opportunities.  

Bensic (2005) used logistic regression, neural networks, and decision trees to model a Croatian 

dataset from a savings and loan association specialized in financing small and medium-sized enterprises. 

Brown (2012) concluded that gradient boosting and random forest classifiers perform well in dealing 

with sample where a large class imbalance was present. Huang (2007) applied a Support Vector Machine 

(SVM) to a German dataset. According to his study, SVM can achieve a good classification performance 

when dealing with datasets with low dimensionality; however, one should avoid overfitting the training 

data. Gedela et al. (2022) compared four different models: logistic regression, neural network, decision 

tree, and AdaBoost. The Area under the receiver operating characteristics (ROC) curve (AUROC) was 

computed to compare the different models. To generate the curves, the authors calculated the True 

Positive Rate and the False Positive Rate of each model. Other metrics were used such as accuracy, 

specificity, sensitivity, precision and F-Score. Li et al. (2020) investigated the application of the Extreme 

Gradient Boosting (XGBoost) method to the credit scoring problem. This model has become 

increasingly prevalent in the credit scoring domain over recent years due to its superior predictive 

performance (Chen et al. 2024). Ponsam et al. (2021) employed the Light Gradient Boosting Machine 

(LightGBM), an open-source framework developed by Microsoft. According to his study, ensemble 

model’s result predictions tend to be less noisy and more stable, since they are aggregations from 

multiple models. 
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Given that all the above models showed great results in predicting credit defaults, a comparison 

will be conducted between them and traditional models, to confirm the extent to which there is a relevant 

performance difference between them. As such, the first hypothesis is defined as: 

 

H1: Machine Learning models perform better than statistical models at predicting credit default 

 

Regarding changes to the data that could improve a model's performance, Darst et al. (2018) 

employed a Recursive Feature Elimination (RFE) algorithm to mitigate the effects of high-dimensional 

correlated data. Ding et al. (2014) applied an Analysis of Variance (ANOVA) that showed an efficient 

predictive performance improvement. To better understand if the effects of these techniques have a 

positive impact on a model’s performance, the second hypothesis is defined below: 

 

H2: Feature selection techniques improve the performance of each model. 

 

A selection of the more recent research on the use of machine learning models in credit scoring 

applications is shown in Table 1. The year of publication, authors’ names, the data used in each 

publication, and the applied models are listed in the table. 

 

 

Table 1: Summary of recent applications regarding credit risk modelling. 

Source: Author’s preparation 

 

Regulators and supra-national entities have published various papers about credit risk and its 

modelling using traditional and machine learning techniques. The EU Council (2017) emphasized that 

banks must not only restructure their business models and promptly resolve their non-performing loan 

(NPL) issues, but also take steps to prevent NPLs from arising in the first place in the future. EBA 

(2021) recognizes that machine learning presents both potential and challenges when used for internal 

ratings-based (IRB) models to determine regulatory capital for credit risk. The difficulties are in: (i) 

interpreting their findings; (ii) making sure management functions fully comprehend them; and (iii) 

Year Authors Data Models
2023 Zhu, Chu, Song, Hu, Peng Tianchi Competition Logistic Regression; XGBoost; LightGBM; Decision Tree
2023 Barbaglia, Manzan, Tosetti European Datawarehouse Logistic Regression; Gradient Tree Boosting; XGBoost

2022 Khatir, Almustfa, Bee German Credit Dataset
Random Forest; K-Nearest Neighbor; Decision Tree; 

Gaussian Naive Bayes; Neural Network; Logistic 
Regression

2021 Bucker, Szepannek, Gosiewska, Biecek Home equity line of credit Support Vector Machines, Gradient Boosting

2021 Oskarsdottir, Bravo Agricultural lending XGBoost

2021 Khanh, Duong, Quang-Linh, Ãn, Nguyen, Nguyen Kalapa Credit Score LightGBM, CatBoost Random Forest
2020 Ariza-Garzon, Arroyo, Caparrini, Segovia-Vargas P2P lending XGBoost; Random Forest

2019 Bracke, Datta, Jung, Sem UK regulated mortgages Logistic Regression; Gradient Tree Boosting

2019 Kim & Cho Lending Club Convolutional Neural Network, Deep Learning
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defending their findings to supervisors. On the other hand, the opportunities are improved risk 

differentiation, risk quantification, and data collection and preparation.  

A paper on post-hoc explainers for black-box models was released by Deloitte in 2023. These 

explainers may be utilized to understand how these machine learning algorithms make decisions. These 

explainers are techniques to examine dynamics derived from the model output and are independent of 

the model. These can be global, aiming to provide transparency into the model's decisions, or local, 

focusing on the reasons behind the model's result for a particular observation.  

Lundberg et al. (2017) developed a global interpretation technique called Shapley Additive 

Explanations (SHAP) that assigns each feature an importance value for a particular prediction. By 

presenting several different estimation methods for SHAP values, along with proofs and experiments, 

they show that these values are useful for model interpretation. 

Ribeiro (2016) developed Local Interpretable Model-agnostic Explanations (LIME), an algorithm 

to explain the predictions of any classifier or regressor in a faithful way, by approximating it locally 

with an interpretable model. His experiments demonstrate that explanations are useful for many models 

in trust-related tasks in the text and image domains, with both expert and non-expert users: deciding 

between models, assessing trust, improving untrustworthy models, and getting insights from predictions.  

Some studies even compiled all these techniques into a methodology to better aid future research 

on how to proceed regarding data preparation, modelling, and explaining the predictions. Moscato 

(2021) proposed an approach to help structure this work’s methodology. He divides it into three main 

modules: ingestion, classification, and explanation. The ingestion module aims for data cleaning, like 

removing features with a relevant number of missing or null values or converting categorical features to 

numeric ones. An exploratory data analysis is also performed, by computing a correlation analysis to 

better understand the data and its attributes. Classification is where the author chooses the different 

models or classifiers to be tested against each other. Lastly, the explanation module compares different 

explainable artificial intelligence (XAI) techniques for explaining the obtained results. 

Bücker (2022) suggests a structured framework called Transparency, Auditability, and 

eXplaninability for Credit Scoring model (TAX4CS) for model-level and instance-level exploration, 

starting with general measures of model performance (or accuracy of single predictions, respectively). 

It also provides tools to assess the suitability of models but also to compare them. It covers techniques 

like SHAP, LIME, and ROC curve. 
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CHAPTER 3 

Methodology 

 

3.1 Statistical Models 

Logistic regression (LR), Multivariate discriminant analysis (MDA), and linear discriminant analysis 

(LDA) are examples of traditional statistical models. Statistical models identify the best combination of 

explanatory input variables that can be used to analyse, predict, and model the risk of credit default. 

Because of some rigid assumptions like linear separability, multivariate normality, the independence of 

the predictive variables, and the existence of a preexisting functional form, they frequently struggle to 

recognize the complexity, boundaries, and interrelationships of the financial variables (Chen et al. 2016). 

 

3.1.1 Logistic Regression 

One of the most significant models for categorical response data is the logistic regression or logit model. 

This is an example of a general model whose primary function is to calculate the likelihood of a binary 

response given a set of predictor variables (Al-Aradi, 2014). Due to its simplicity in development, 

confirmation, calibration, and interpretation, the logit model has gained popularity as an approach to 

assessing the probability of default (The World Bank Group, 2019). It is nowadays a commonly used 

and recognized technique for binary outcome variable analysis. This popularity is a result of the readily 

interpretable findings of the fitted model, which can be used to estimate odds ratios or probabilities, as 

well as the readily available software in both computer and microcomputer packages (Al-Aradi, 2014). 

The logistic function is an S-shaped or sigmoid curve which is approximately linear in the middle 

but curved at either end, as X approaches low or very high values (De Maris, 1995). The sigmoid curve 

is given by the following function: 

 𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 (1) 
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Figure 2: Sigmoid function. 

Source: Author’s preparation 

 

The logistic regression is then given by the equation below: 

 𝑃(𝑦 = 1 |𝑥1, … 𝑥𝑛) =  
1

1 + 𝑒−(𝛽0+∑ 𝛽i
𝑛
𝑖=1 𝑋𝑖+𝜀)

 (2) 

 

where 𝑝 is the probability of the outcome of interest or odds, 𝛽0 is the intercept term, 𝛽i is the respective 

coefficient of 𝑋𝑖, that represents the independent features and 𝜀 is the error term. The outcome variable 

in a binary logistic regression model is a dummy variable, which sets it apart from a linear regression 

model (Hosmer et al., 2013). 

 

3.2 Machine Learning Models 

EBA takes ISO/IEC 38505-1:20175 definition of Machine Learning, a “process using algorithms rather 

than procedural coding that enables learning from existing data to predict future outcomes” (2021, p. 9). 

In general, it is a branch of computer science that works with models’ creation whose parameters are 

determined, mostly without human input, automatically from data (EBA, 2021b). 

 

3.2.1 Decision Trees 

Decision trees are graphs that resemble trees and are used for classification. They consist of decision 

branches and various outcomes represented by leaves. The goal of this technique is to maximize the 

selected performance measure concerning the target variable. Despite having a "white box" aspect that 

makes it relatively simple to grasp, the decision tree approach is limited in how it can handle many 

variables and extrapolate outcomes (Stroie, 2013). 

The outcome of a decision tree is made at the leaves of the tree, which are nodes that represent 

decisions depending on features. Since the decisions require a condition defined by a set of attributes as 
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input, they approximate if-then rules. The decision tree performs more analysis if it is not satisfied, 

returning an outcome that is the estimated value (Khatir et al. 2022). 

 

Figure 3: An example of a decision tree based on credit data. 

Source: Author’s preparation 

 

At each node, choose the attribute that maximizes the information gain. This depends on entropy, 

a measure of disorder or impurity in a given dataset. For a dataset that has 𝐶 classes and the probability 

of randomly choosing data from class 𝑖 is 𝑝𝑖, then entropy can be mathematically represented as: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑𝑝𝑖  log2 𝑝𝑖

𝑐

𝑖=1

 (4) 

The information gain will quantify the quality of a split rule. It’s calculated for a split by 

subtracting the weighted entropies of each branch from the parent entropy. Given 𝑤𝑖 as the weight of 

class 𝑖 after a split, the quality of the split is determined by weighting the entropy of each branch by how 

many elements it has, where ∑ 𝑤𝑖 = 1
𝑛
𝑖=1 . 

 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑃𝑎𝑟𝑒𝑛𝑡 − ∑𝑤𝑖. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖

𝑛

𝑖=1

 (5) 

 

The best split is chosen by maximizing Information Gain. 

 

3.2.2 Random Forests 

A random forest is essentially an ensemble of decision trees. Since multiple decision trees were 

generated using bootstrapped samples taken from the initial sample, random forests are a generalization 

of decision trees (Khatar et al., 2022). In addition, a subset of randomly selected features is used in the 

development of each tree. Since every decision tree outputs a predicted class, a random forest uses the 

majority vote criterion to predict the class overall, accounting for the output of all decision trees. 

The bagging concept comes from “bootstrap aggregation”, the name given to this voting 

procedure. While predicting a result, the aggregate averages over the many versions; while predicting a 

class, it uses a plurality vote (Breiman, 1996). By generating bootstrap duplicates of the learning set and 
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utilizing them as new learning sets, many versions are created. Bagging can increase accuracy if changes 

in the learning set result in appreciable improvements to the predictor created (Liu et al., 2012). 

 

 

Figure 4: Bagging concept visual example. 

Source: Author’s preparation 

 

Another indicator used to estimate the quality of each decision tree’s split is the Impurity Index, 

where 𝑝𝑖 is the frequency of class 𝑖 at a node and 𝐶 is the number of unique classes. 

 

 
𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =  ∑𝑝𝑖 . (1 − 𝑝𝑖)

𝑐

𝑖=1

 

 

(6) 

As an ensemble model, a merger between predictions from multiple models occurs, that aims to 

increase accuracy while offering more robust forecasts. Averaging accounts with all the individual 

model’s predictions for a given sample point 𝑥, with 𝑦𝑛 being the estimated PD for each model and 𝑁 

the number of models. 

 
𝑦̂ =  

∑ 𝑦𝑛
𝑁
𝑛=1

𝑁
 

 

(7) 

 

3.2.3 Artificial Neural Networks  

Artificial Neural networks (ANN) aim to build networks that function in a similar way to the brain. 

Thus, the brain's structure serves as the inspiration for the concept of neural networks. In the human 

brain, a neuron receives electrical impulses from a vast array of dendrites. These dendrites then convert 

the signals into electrical pulses, which are subsequently sent by an axon to numerous synapses, which 

relay concepts or information to the dendrites of other neurons (Abdou et al., 2008). 
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Figure 5: Neuron signal representation. 

Source: Cilimkovic, M. (2015). Neural networks and back propagation algorithm. Institute of Technology Blanchardstown, 

Blanchardstown Road North Dublin, 15(1). 

 

ANNs are composed of several basic nodes connected through one or more layers. The basic 

neuron components used in neural nets vary depending on the type of net utilized. Every neuron in the 

network completes a part of the computations. First, it receives specific values as inputs, processes them 

through a simple calculation, and outputs the result. Except for neurons, that provide the network's 

ultimate output values, a neuron's output value is sent to another neuron as one of its inputs (Abdou et 

al., 2008). 

A simple neural network is composed of an input, some hidden layers, and an output. Each 

connection carries some weight in general. The raw data in the network is represented by the input layer. 

The data from the input layer is then received by the hidden layer, which applies a weight value to 

modify the input data. The new value is then sent to the output layer, where it is further adjusted by a 

weight from the hidden-to-output layer link. If the objective is to reach non-linearity, we must add an 

activation function between layers (Cilimkovic, 2015). 

  

 

Figure 6: One-layer artificial neural network representation. 

Source: Author’s preparation 
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𝑥.𝑤 are the dot product between input and weight vectors, and 𝑏 denotes the bias also known as the 

offset that moves the entire activation function. 

 

 𝑧 = 𝑥. 𝑤 + 𝑏 (8) 

 

To introduce non-linearity into the output of the neurons, 𝑧 must be passed into a non-linear 

activation function such as sigmoid (Eq. 1) or rectified linear unit (ReLu) (Eq. 9) functions. 

 

 𝑓(𝑧) = max (0, 𝑧) (9) 

 

For a neural network to learn, we need to codify the correct or incorrect outputs, and how far an 

incorrect output is from the correct one. For a classification problem, a cross-entropy cost function C 

can be used. It serves as a measure of how far away a particular solution is from an optimal solution. 

 

 𝐶 = −
1

𝑛
 ∑[𝑦. ln 𝑦̂ + (1 − 𝑦). ln(1 − 𝑦̂)]

𝑥

 (10) 

 

The different weights (𝑤) are then iteratively updated by applying a Taylor approximation to the 

Cost Function (Eq. 10): 

 
∆𝐶 ≈  

𝜕𝐶

𝜕𝑤
. ∆𝑤 + 

𝜕𝐶

𝜕𝑏
. ∆𝑏 

 

(11) 

from here we can extract the gradient and the change in both weights and bias, from a vectorized form: 

 
∆𝐶 = [

𝜕𝐶

𝜕𝑤
 
𝜕𝐶

𝜕𝑏
] × [

∆𝑤
∆𝑏
] =  ∇𝐶. ∆𝑣 

 

(11.1) 

The gradient applied to the cost function gives the two gradients which are telling in which 

direction the cost increases the most. The objective is to make changes to the variables leading to the 

opposite direction, and that is essentially what gradient descent does. 
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Figure 7: Gradient descent visual representation. 

Source: Author’s preparation 

 

So, if we let ∆𝑣 =  −∇𝐶 then we end up with ∆𝐶 = −𝜏 ||∇𝐶||2, if we add the learning rate 𝜏, a 

parameter that controls how fast the movements are towards the minimum gradient. Then, all weights 

and bias should be updated in each iteration as below: 

 
𝑤 → 𝑤′ =  𝑤 −  𝜏.

𝜕𝐶

𝜕𝑤
 

 

(12) 

 𝑏 → 𝑏′ = 𝑏 −  𝜏.
𝜕𝐶

𝜕𝑏
 (13) 

 

 

 

3.2.4 Support Vector Machines 

Vapnik et al. (1995) first introduced Support Vector Machines (SVM) under statistical learning theory. 

Pattern recognition has seen numerous successful SVM applications, showing that SVM is a competitive 

classifier. To distinguish between the two different classes, SVM looks for an ideal hyperplane with a 

maximum margin that serves as the decision boundary. 

Although LDA and SVMs compute optimal hyperplanes concerning their respective goals, there 

are several differences between them. Only when the covariance matrices for each class are the same is 

the hyperplane calculated by LDA optimal, a condition that is frequently broken in real-world scenarios. 

In contrast, SVMs do not assume anything while computing ideal hyperplanes for margin maximization 

(Gokcen et al. 2002). 
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Figure 8: Support Vector Machine visual representation. 

Source: Author’s preparation 

 

This hyperplane can be defined, given an n dimensional feature vector 𝑥 = (𝑋𝑖, …, 𝑋𝑛), as below 

(Vapnik, 2015): 

𝛽0 +∑𝛽𝑖𝑋𝑖 = 0

𝑛

𝑖=1

 (14) 

 

in a binary classification problem, represented by two labels 𝑦 ∈ {−1,1} we get the following 

mathematical separating property: 

 

𝑦 =

{
 
 

 
 1, 𝑖𝑓 𝛽0 + ∑𝛽𝑖𝑋𝑖 > 0

𝑛

𝑖=1

 

−1, 𝑖𝑓 𝛽0 + ∑𝛽𝑖𝑋𝑖 < 0

𝑛

𝑖=1

 (15) 

 

To overcome a linear boundary limitation, Kernel functions are introduced to transform a linear 

problem into a higher dimensional one, where you can classify linearly to get a non-linear solution. This 

Kernel trick allows SVMs to learn nonlinear functions. By replacing inner products with this kernel 

function, a higher dimension can be used to create a nonlinear decision boundary in the original 𝑅𝑁, 

which corresponds to a linear decision boundary in  𝑅𝑀 (where M > N). 
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𝑥𝑖, 𝑥𝑗 ∈ 𝑅
𝑁, 𝐾(𝑥𝑖 , 𝑥𝑗) =  〈Φ(𝑥𝑖),Φ(𝑥𝑗)〉𝑀 

𝑤ℎ𝑒𝑟𝑒  〈Φ(𝑥𝑖),Φ(𝑥𝑗)〉𝑀 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑅
𝑀 

𝑎𝑛𝑑 Φ(𝑥) 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠 𝑥 𝑡𝑜 𝑅𝑀 

(16) 

 

 

A popular kernel function is the polynomial that provides a significantly more flexible decision 

boundary and essentially amounts to fitting a SVM in a higher-dimensional feature space involving 𝑑 -

degree polynomial of the features. 

(1 + ∑𝑥𝑖𝑗𝑥𝑘𝑗

𝑝

𝑗=1

)𝑑 (17) 

 

Error variables 𝜀1…𝜀𝑛 can be added when there isn’t a perfect discrimination between both 

classes. Their sum must be kept below a pre-defined budget 𝐵 (Vapnik et al., 2015). 

 

3.2.5 XGBoost 

An effective technique for regression analysis and classification is gradient boosting. Using adaptively 

reweighted versions of the original training data, a weak classification algorithm is applied sequentially 

in this method (Barbaglia et al., 2023). The weighting system is adaptive since it gives a higher weight 

to the data that the classifier misclassified in the previous phase and a lower weight to the observations 

that were properly categorized. As a result, the boosting classification algorithm prioritizes harder-to-

classify observations over those that have previously been accurately identified as iterations go on 

(Barbaglia et al., 2023). 

XGBoost is an enhanced gradient tree boosting model developed by Chen & Guestrin (2016). An 

initial prediction is created before utilizing XGBoost to fit a training dataset. The predicted value and 

the observed values are used to compute residuals. A decision tree is generated using the residuals 

applying a similarity score for residuals. The process is repeated until the residuals stop decreasing, or 

after a predetermined number of repetitions. Unlike Random Forest, each succeeding tree gains 

knowledge from previous ones and is not given the same weight. 

This has similarities to the gradient boosting algorithm, which minimizes the loss function to 

assess how well the model matches the available data by using an additive form of weak base learners. 

During a given number of standard gradient boosting iterations, the base learner is found by minimizing 

the objective function (Chen et al., 2023). 
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𝑂𝑏𝑗 =  ∑𝐿(𝑦𝑖
𝑖

, 𝑦̂𝑖) + ∑Ω(𝑓𝑘)

𝑘

 (18) 

 

where 𝐿(𝑦𝑖, 𝑦̂𝑖) can be any loss function that measures the difference between the prediction and true 

label for a given training instance. Ω(𝑓𝑘) defines the complexity of a tree 𝑓𝑘, as follows (Mitchell et al., 

2017): 

 

Ω(𝑓𝑘) =  𝛾𝑇 +
1

2
𝜆𝑤2 (19) 

 

T is the number of leaves of the tree 𝑓𝑘 and w is the predicted weights stored at the leaf nodes. Adding 

this complexity factor, the optimization will force a less complex tree contributing to overfit reduction.  

𝛾𝑇 provides a penalty for each additional tree leaf and 𝜆𝑤2penalises extreme weights (Mitchell et al., 

2017). 

 

3.2.6 LightGBM 

With Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), LightGBM 

is another gradient boosting decision tree-based algorithm. Several tests on publicly available datasets 

demonstrate that LightGBM can achieve almost the same accuracy while up to 20 times faster training 

times (Ke et al., 2017). 

Based on the theory behind GOSS, data instances with various gradients have different purposes 

in the information gain computation. As per the concept of information gain, instances that are under-

trained would contribute more to the information gain. Therefore, to maintain accuracy, it is preferable 

to retain instances with large gradients and discard instances with small gradients exclusively. When the 

amount of information gain has a wide range, this type of treatment can produce a more accurate gain 

estimation than uniformly random sampling at the same target sample rate. LightGBM buckets data into 

bins using a histogram-based approach. To split the data, compute the gain, and iterate, bins are utilized 

rather than each data point. It is also possible to optimize this strategy for a sparse dataset (Ke et al., 

2017). 

By sorting the data instances according to their absolute gradient or residual values in descending 

order and selecting the top 𝑎% instances. Then, it randomly samples 𝑏% instances from the remaining 

data. Finally, in order not to alter the distribution of the data, a constant multiplier of 
1−𝑎

𝑏
 is applied to 

the instances with smaller residuals when calculating the information gain. 
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Figure 9: Gradient one-side sampling example. 

Source: Author’s preparation 

 

EFB which lowers dimensionality and increases speed and efficiency by combining unique 

features, is another aspect of this model (Ke et al., 2017). The goal is to ensure that even though the 

features are merged, the original values of each feature can still be retrieved from this new bundled 

variable. Adding offsets to the variable’s original values is a workaround, for example: “Number of 

delinquencies” has values ranging from [0, 10[ and “Number of loans” from [0, 20[. Offsetting the 

“Number of loans” variable by 10 would mean that both variables are no longer in conflict, since the 

“Number of loans” range is now [10, 30[. With this, a merger that allows each value original feature is 

possible. 
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Figure 10: EFB example. 

Source: Author’s preparation 

 

3.2.7 AdaBoost 

The AdaBoost algorithm employs the boosting method Adaptive Boosting as an ensemble approach in 

machine learning, with the designation being a combination of both words (Gedela et al., 2022). 

Every instance is assigned an initial set of weights, with incorrectly classified instances getting 

larger weights. A given number of decision trees are produced during the data training procedure. When 

building the first decision tree or model, preference is given to the record erroneously classified in the 

prior model (Gedela et al., 2022). We continue until a predetermined number of beginning trees remain 

for us to develop. When the random forest approach is used, n trees are produced. It creates just-right 

trees with many leaves and a root node. The depth of a random forest is completely dependent on chance, 

even though some trees may be larger than others. Conversely, AdaBoost only produces a stump or a 

node with two leaves. 

 

Figure 11: AdaBoost algorithm visual representation. 

Source: Misra, S., Li, H., & He, J. (2020). Noninvasive fracture characterization based on the classification of sonic wave 

travel times. Machine learning for subsurface characterization, 4, 243-287. 
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With 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛}  as a set where ℎ1, ℎ2, … , ℎ𝑛 represent individual weak learners, the 

algorithm initializes weights 𝑤𝑖 that satisfy ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Let 𝜀𝑗 = ∑ 𝑤𝑖(𝑡)

𝑛
𝑖=1 𝐼[𝑦𝑖 ≠ ℎ𝑗(𝑥𝑖)] be the sum 

of weighted classification errors for the weak classifier ℎ𝑗 where: 

𝐼[𝑦𝑖 ≠ ℎ𝑗(𝑥𝑖)] = {
1, 𝑖𝑓 𝑇𝑟𝑢𝑒 
0, 𝑖𝑓 𝐹𝑎𝑙𝑠𝑒

 (20) 

 

then, after choosing the weak classifier that minimizes the sum of weighted classification error, all 

weights are updated to the next iteration by: 

 

𝑤𝑖(𝑡 + 1) =
𝑤𝑖(𝑡)exp(−𝛼(𝑡)𝑦𝑖ℎ(𝑡)(𝑥𝑖))

𝑍(𝑡)
 (21) 

 

where 𝛼(𝑡) =  
1

2
log (

1−𝜀(𝑡)

𝜀(𝑡)
) and 𝑍(𝑡) =  ∑ 𝑤𝑘(𝑡) exp(−𝛼(𝑡)𝑦𝑖ℎ(𝑡)(𝑥𝑖))

𝑛
𝑘=1  as a normalization factor 

(Hu et al., 2008). 

 

3.3 Interpretability techniques 

Machine learning models have the potential to quickly develop into "black boxes," opaque systems 

whose internal decisions are hard to comprehend. As a result, it can be challenging to understand (and 

validate) how a model reached a certain conclusion or prediction (EBA, 2020). Depending on the 

learning mode and underlying model complexity, an ML solution's opaqueness can change. For instance, 

decision trees' internal workings are easier for humans to understand, whereas neural networks' 

characteristics are less transparent because of the inherent complexity of the underlying algorithm. The 

opposing idea of explainability is deeply related to this technological opaqueness (EBA, 2020). 

The degree of understanding of the model outputs determines how successful human participation 

is, hence explainability is a crucial component of both representativeness and accuracy in the models 

(EBA, 2020). 

 

3.3.1 Shapley Additive Explanations 

The Shapley value, an idea from game theory that determines a player's fair reward based on how much 

they contributed to the overall benefit after coalitions are accounted for, is the foundation of the Shapley 

Additive Explanations (SHAP) analysis. Coalitions are potential feature subsets, players are specific 

feature values, and the fair payout denotes the contribution of a particular feature value to the prediction 

in machine learning. Therefore, in our case, averaging the prediction differences produced between the 

model with and without all feasible feature subsets and considering all feature groups will yield the 

Shapley value of a feature value in the target (Chen et al., 2023). 
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Considered an additive feature attribution method this class explains a model’s output as a sum 

of real values attributed to each independent variable. This method is a linear function of binary variables 

(Lundberg et al., 2018): 

𝑔(𝑧′) = 𝜙0 +∑𝜙𝑖

𝑀

𝑖=1

𝑧′𝑖 (22) 

 

where 𝑧′ ∈ {0,1}𝑀, 𝑀is the number of independent variables, and 𝜙𝑖 ∈ ℝ.  

This method requires retraining the model on all feature subsets 𝑆 ⊆ F, where F is the set of all 

variables (Lundberg et al., 2017). To compute each feature attribution (𝜙𝑖), model 𝑓𝑆∪{𝑖} is developed 

with feature 𝑖 included, and another model 𝑓𝑆 is trained without that feature. Afterwards, the predictions 

from both models are compared 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆), where 𝑥𝑆 holds the values of the input features 

in the set 𝑆. This is done for all possible subsets inside 𝑆 ⊆ F \ {i} , with a weighted average of all 

possible differences as a result (Lundberg et al., 2017). 

 

𝜙𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆F \ {i} 

[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)] (23) 

 

 

3.3.2 LIME 

By using a local interpretable model (LIME), where a family of potential interpretable models, as 

presented by Ribeiro et al. (2016), seeks to interpret the machine learning model prediction of a 

particular target by appropriating the "black box" machine learning model. 

LIME creates a new dataset by randomly modifying features from the target and receiving the 

appropriate predictions from the "black box" model to fit a local surrogate centred on the target. The 

new dataset, weighted by the distances between the modified samples and the target, is then used to train 

the interpretable model. As a result, the trained interpretable model guarantees local fidelity, which 

implies that while it may not assure a good global approximation, it should be a good local 

approximation of the "black box" model predictions locally (Chen et al., 2024). 

Let 𝑓 be the “black-box” model, where 𝑓(𝑥) is the probability that 𝑥 belongs to a certain class 

(default or non-default), and 𝑔 a local interpretable model. Additionally, to measure the proximity 

between the real (𝑥) and perturbed (𝑧) samples, 𝐿(𝑓, 𝑔, 𝜋𝑥) is used as a loss function, where 𝜋𝑥 is a 

proximity measure between 𝑧 to 𝑥 (Ribeiro et al., 2016) 

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑔 ∈ 𝐺  𝐿(𝑓, 𝑔, 𝜋𝑥) +  Ω(𝑔) (24) 

 

with 𝐺 is a set of potentially interpretable models and Ω(𝑔) a measure of complexity. 
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A locally weighted square loss function (𝐿), with 𝜋𝑥(𝑧) = exp (−𝐷(𝑥, 𝑧)
2 /𝜎2 as an exponential kernel 

defined on some distance function 𝐷, like Euclidian (Ribeiro et al. 2016), is 

 

𝐿(𝑓, 𝑔, 𝜋𝑥) =  ∑ 𝜋𝑥(𝑧)

𝑧,𝑧′∈𝑍

(𝑓(𝑧) − 𝑔(𝑧′))
2
 (25) 

 

where 𝑧′ denotes the simplified inputs (Chen et al., 2024). 

 

3.4 Performance metrics 

Every machine learning exercise includes performance metrics. Performance metrics track and evaluate 

a model's performance throughout training and testing, regardless of whether it is dealing with a 

regression or classification problem.  

A confusion matrix is essentially used for evaluating classification problems. In a binary class 

problem, the matrix is squared, 2x2. The row is the real value of the class label, and the column is the 

classifier prediction. Typically, in an unbalanced credit scoring dataset, default class observations are 

labelled as one, whereas non-default class observations are labelled as zero (Bekkar et al., 2014). 

 

 

Table 2: Confusion matrix. 

Source: Author’s preparation 

 

The following is what the confusion matrix cells' abbreviations TP, FN, FP, and TN stand for: 

• TP = true positive, the number of default cases that are correctly identified as default; 

• FN = false negative, the number of default cases that are misclassified as non-default; 

• FP = false positive, the number of non-default cases that are incorrectly identified as default; 

• TN = true negative, the number of non-default cases that are correctly identified as non-default. 

 

 

 

 

 

 

 

 

 

Predicted Non-Default Predicted Default
Actual Non-Default TN FP

Actual Default FN TP
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Next, seven distinct metrics are calculated using those four values: 

Measure Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Error rate 
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity (or True Positive 

Rate) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-Score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

False Positive Rate 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Table 3: Performance measures 

Source: Author’s preparation 

 

The most used metric for evaluating classifiers is accuracy, which evaluates the algorithm's 

efficacy for a given cut-off point, by calculating the likelihood that the class label is correct. Precision 

assesses the model's ability to capture default, or how many of the default-labeled examples are indeed 

defaults. Recall is a metric for how accurate or comprehensive positive examples are; that is, how many 

default examples were properly classified (Bekkar et al., 2014). F1-Score is the harmonic mean of 

precision and recall. It provides a fair assessment of the model's effectiveness that considers both true 

positive and false positive rates (Lipton et al., 2014). 

A Receiver Operating Characteristic (ROC) curve is a graph that displays a classification model's 

performance overall classification thresholds. This graph plots the True Positive Rate versus the False 

Positive Rate. Reductions in the classification threshold result in a higher number of positive 

classifications, which raises the number of True Positives and False Positives. The diagonal line is where 

the false positive rate and the true positive rate are equal, corresponding to a model where discrimination 

is entirely random (Hoo et al., 2017). 

One of the most used ranking-type metrics is the AUC. In addition to comparing learning 

algorithms, it was utilized to build a winning learning model. In contrast to threshold and probability 

measurements, the AUC value indicates a classifier's overall ranking performance (Bekkar et al., 2014).  

This statistic provides an overall assessment of a test's capacity to distinguish between default and non-

default cases. A model with no discriminating ability has an AUC of 0.5, whereas a test with perfect 

discrimination has an AUC of 1.0 (Hoo et al., 2017). 
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CHAPTER 4 

Exploratory Data Analysis 

 

4.1 Dataset details and statistics 

The dataset used in this dissertation belongs to the UCI Machine Learning repository, a collection of 

databases for the empirical analysis of machine learning algorithms. It includes payment information 

from an influential Taiwanese bank from October 2005; the targets were the bank's credit card holders. 

A limitation while using this dataset is that the bank’s default policy is unknown, so this will only be 

useful to predict next month’s default state for each borrower. This collection comprised a binary 

variable – default payment (Yes = 1, No = 0) and twenty-three potential explanatory variables, 

concentrating on two distinct domains: credit details and personal information. For an explanation of 

every variable, a description can be found in Annex A. 

 

From 30,000 total observations, 6,636 (22.1%) belong to cardholders with default payments. We 

can observe an existing class imbalance that is not extreme. Regarding the numeric type variables, 

Annex B shows different statistics for each variable, such as the mean, standard deviation, minimum, 

maximum, and the different quartiles (25%, 50%, and 75%). The age varies between 21 and 79 years 

old, with 75% of the population being up to 41 years old.  

 

Figure 12: Age variable distribution by class. 

Source: Author’s preparation 

 

The credit amount is on average 167,484.32 Taiwanese Dollars with most credits having 240,000 

or less nominal amount.  
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Figure 13: Credit Amount variable distribution by class. 

Source: Author’s preparation 

 

The different bill states range from a negative value, meaning an overpaid credit, and a positive 

value meaning accumulated debt. Finally, “amount_payed”, as the designation indicates, shows the 

payment amount done at a specific time (from t-1 to t-6). 

The different correlations between the variables indicate a high relationship between the bill-state 

features, with a minimum correlation of 0.80 between “bill_state_t-1” and “bill_state_t-6” and a 

maximum correlation between “bill_state_t-1” and “bill_state_t-2”. This could lead to unstable 

predictions due to the interdependence between these variables causing high multicollinearity level. It 

can be difficult to determine a variable's marginal impact when there are linear correlations between 

two or more variables (Chan et al., 2022). The remaining variables seem to have a low and non-

significant correlation. 
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Figure 14: Correlations between different variables. 

Source: Author’s preparation 

 

For the categorical columns, different types of analysis were performed. The predominant gender 

is female (60.37%), but males default slightly more (24.17% versus 20.78%).  

 

Figure 15: Gender distribution by class. 

Source: Author’s preparation 

 

82.05% of borrowers went into university, but those with high school level defaulted more in 

percentage terms (25.16%).  
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Figure 16: Education distribution by class. 

Source: Author’s preparation 

 

The marital status is balanced, with 45.54% being married and 53.21 being single. The largest 

default rate sits at 23.47% for married borrowers.  

 

Figure 17: Marital Status distribution by class. 

Source: Author’s preparation 

 

The different repayment status indicates a very similar distribution, where most non-defaults are 

non-consumers, fully paid or only use revolving credit, meaning that they didn’t have any delayed 

payments pending. 

 

4.2 Data preprocessing 

This phase includes data transformations needed to start modelling. Data cleaning fixes or removes 

incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset. Removing 

duplicates, filtering unwanted outliers, and handling missing data are examples of data-cleaning 

processes. 
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The dataset contained 35 duplicates that were excluded. There were no missing values or 

unrealistic outliers. 

Since all models in use only accept numeric values as input, encoding must be done since some 

categorical variables were filled with text, such as gender, which could be either "female" or "male". 

Gender and marital status are nominal features, binary encoding was used for them. The process 

involves first converting the feature into an ordinal scale, then those integers into binary code, and 

finally dividing the digits from that binary string into distinct features (Potdar et al., 2017). Each 

category is given an integer, and the data is not expanded to include more columns. 

 

 

Table 4: Categorical variables mapping. 

Source: Author’s preparation 

 

Numerical features were standardized using a scalar. Data scaling transforms values until they 

are within a specific range. This ensures that no single feature dominates the distance calculations in an 

algorithm and helps to improve the algorithms’ performance and convergence. Standardization is a 

method where the mean of each feature 𝑥𝑖 becomes 0 and the standard deviation becomes 1 (Pedregrosa 

et al., 2011). 

 

𝑥𝑖
′ = 

𝑥𝑖 − 𝑥𝑖̅
𝜎𝑖

 (26) 

 

Four different datasets were prepared, using distinct techniques to understand their effectiveness 

in improving the performance of each model. Feature selection methods can be used to reduce the size 

of the dataset or adapt it to achieve a more efficient analysis (Jović et al., 2015). These can be wrapper 

methods such as Recursive Feature Elimination (RFE), or filter methods such as the Analysis of 

Variance (ANOVA) test. The main difference between both types is that for filter methods features are 

selected based on an individual performance measure, and wrapper methods consider the performance 

of a subset of variables (Jović et al., 2015). The Recursive Feature Elimination asks for a given external 

estimator that assigns weights to features, where the selected estimator is Logistic Regression. For the 

Variable Type Mapping

gender Nominal
"female": New binary column "gender_female"

"male": New binary column "gender_male"

marital_status Nominal
"married": New binary column "marital_status_married"

"other": New binary column "marital_status_other"
"single": New binary column "marital_status_single"

education Ordinal

"masters/phd": 4
"university": 3

"high school": 2
"other": 1
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ANOVA test results, a p-value equal to or higher than 0.05 was considered to exclude features. The 

selected features that resulted from each method are highlighted in bold, below: 

  

 

Table 5: Recursive Feature Elimination results. 

Source: Author’s preparation 

 

 

Table 6: ANOVA test results. 

Source: Author’s preparation 

 

 

Finally, the previous correlation analysis between the independent variables excluded highly 

correlated variables, to prevent multicollinearity. The removed features were bill_state_t-2, bill_state_t-

3, bill_state_t-4, bill_state_t-5 and bill_state_t-6. A table that compiles each dataset's information can 

be found below: 

 

Features Ranking
credit_amount 1

repay_status_t-3 1
repay_status_t-2 1
repay_status_t-1 1

marital_status_married 1
gender_female 1
education_num 1

amount_payed_t-2 1
amount_payed_t-5 1

bill_state_t-6 1
bill_state_t-1 1
bill_state_t-2 1

amount_payed_t-1 1
bill_state_t-4 1
bill_state_t-3 1

amount_payed_t-4 2
amount_payed_t-3 3

repay_status_t-5 4
marital_status_single 5
marital_status_other 6

age 7
gender_male 8
bill_state_t-5 9

amount_payed_t-6 10
repay_status_t-4 11
repay_status_t-6 12

Features p_value
credit_amount 0.00000

age 0.04990
bill_state_t-1 0.00110
bill_state_t-2 0.01342
bill_state_t-3 0.01422
bill_state_t-4 0.04912
bill_state_t-5 0.27298
bill_state_t-6 0.43766

amount_payed_t-1 0.00000
amount_payed_t-2 0.00000
amount_payed_t-3 0.00000
amount_payed_t-4 0.00000
amount_payed_t-5 0.00000
amount_payed_t-6 0.00000

education_num 0.00000
gender_female 0.00000

gender_male 0.00000
marital_status_married 0.00000

marital_status_single 0.00000
marital_status_other 0.91085

repay_status_t-1 0.00000
repay_status_t-2 0.00000
repay_status_t-3 0.00000
repay_status_t-4 0.00000
repay_status_t-5 0.00000
repay_status_t-6 0.00000
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Table 7: Different prepared datasets. 

Source: Author’s preparation 

 

After these transformations, a split was made to divide the dataset into two sets: a training set, 

that will be used for model training, and a test set, to evaluate the model’s performance and estimate all 

metrics. The used ratio was 80% for training and 20% for test. To compile this whole data processing 

phase, a pipeline must be defined to ensure that all the input data follows the same process, to avoid 

data leakage. 

 

Figure 18: Data pipeline. 

Source: Author’s preparation 

 

4.3 Modelling 

The modelling phase can be divided into two stages: hyperparameter tuning and model 

evaluation. Hyperparameters are external configuration variables used to control, and model structure, 

function, and performance. Tuning them allows users to tweak model performance for optimal results. 

The time spent to train and tweak each model for the five different datasets can be found below. Logistic 

Regression was the model that took less time to train, including hyperparameter tuning. SVM even with 

a limited maximum number of iterations (100000), was the model that needed more time to complete 

all the grid searches. 

Datasets Number of Features Number of samples in training set
Normal 26 23972
ANOVA 23 23972

RFE 15 23972
Multicollinearity 21 23972
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Table 8: Time spent on each model's training. 

Source: Author’s preparation 

 

There are different techniques for hyperparameter tuning as Bayesian optimization, Grid Search 

and Random Search. The used one was Grid Search which essentially works through all possible 

combinations to determine the best model. These combinations result from a list of hyperparameters 

specified by the user. Annex C has each hyperparameter description. 

 

 

Table 9: Normal dataset grid search results for each model. 

Source: Author’s preparation 

 

To improve the model selection robustness, k-fold cross-validation was used to assess a model's 

ability to generalize to new data instances that were not considered or "seen" during training (Soper, 

2021). Since it can identify issues with selection bias and overfitting, in addition to being a useful 

estimator of generalization performance, it has emerged as the main technique employed by ML 

practitioners to assess candidate models. (Soper, 2021). This technique is a crossing-over training and 

validation stage in successive rounds. The idea behind cross-validation is that each sample in our dataset 

Normal Multicolinearity ANOVA RFE
Logistic Regression 00:42 00:31 00:44 00:25

Decision Tree 10:57 05:53 18:33 07:26
Random Forest 29:10 15:37 21:42 20:59

Artificial Neural Network 51:56 51:16 53:04 51:17
XGBoost 39:35 26:05 33:48 28:07
AdaBoost 14:23 08:07 11:41 09:22
LightGBM 02:48 02:28 02:38 02:22

SVM 67:16 55:47 56:56 49:35

Time spent on training (in minutes)

Model Hyperparameters Values Grid search result
C [1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001] 1
tol [1, 0.1, 0.01, 0.001, 0.0001, 0.00001] 0.1

max_iter [50000] 50000
criterion ['gini', 'entropy'] entropy

max_depth [13, 14,  15, 20, 30] 13
min_samples_split [1, 2, 3] 2
min_samples_leaf [1, 2, 3] 2
min_samples_split [100, 200, 300, 400] 100

criterion ['gini', 'entropy', 'log_loss'] entropy
hidden_layer_sizes [(26,1), (52,1)] (52,1)

activation ['relu', 'sigmoid']
Input Layer: sigmoid
Hidden Layer: relu

Output Layer: sigmoid
max_depth [2, 3, 4,5, 6, 7, 8, 9] 3

n_estimators [60, 100, 140, 180, 220, 260] 180
learning_rate [0.1, 0.05, 0.01] 0.05

estimator [DecisionTreeClassifier] DecisionTreeClassifier
n_estimators [50, 75, 85, 100] 50
boosting_type ['gbdt',  'dart'] gbdt

objective ['binary'] binary
n_estimators [60, 100, 140, 180, 220, 260] 260
learning_rate [0.1, 0.05, 0.01] 0.01

kernel ['linear', 'poly', 'sigmoid'] poly
tol [0.001, 0.0001, 0.00001] 0.001

max_iter [100000] 100000

AdaBoost

LightGBM

SVM

Logistic Regression

Decision Tree

Random Forest

Artificial Neural Network

XGBoost
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is tested. The number of iterations or k-folds was 10 for most models, excluding only the Artificial 

Neural Network. 

 

 

 

Figure 19: Cross-validation method. 

Source: Author’s preparation 
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CHAPTER 5 

Results and explanations 

 

This chapter presents the results from the different techniques used for each model and the subsequent 

comparison between each one. After choosing the best-performing model, we apply explainable 

artificial intelligence (XAI) techniques to better understand the model outputs. 

 

Table 10: Performance metrics for ANOVA dataset. 

Source: Author’s preparation 

 

Above we can observe metrics for both the training and testing stages for each model applied to 

the ANOVA-adjusted dataset since it was where the best Area under the Curve (AUC) value was found. 

The remaining results can be found on the Annex D, E, F, for Normal, RFE and Multicollinearity 

datasets, respectively. Logistic Regression obtained one winner metric in the testing phase, with a 

precision of 70.79%. Linear Discriminant Analysis didn’t achieve any winner metric for both phases. 

Using AUC to compare all models, SVM, Decision Tree, LDA, and AdaBoost lose to the best 

performing traditional model, Logistic Regression. Although AdaBoost achieved the best metrics for 

the training phase, his performance wasn’t quite consistent with the testing phase, showing an overfit 

to the training data. Analysing the training stage, AdaBoost achieved the best accuracy (99.94%), 

precision (100%), recall (99.74%), F1-Score (99.87%), and AUC (100%).  

 

Model Training Testing Training Testing Training Testing Training Testing Training Testing
Logistic Regression 0.8094 0.8160 0.7148 0.7079 0.2407 0.2446 0.3602 0.3635 0.7218 0.7310

Linear Discriminant Analysis 0.8101 0.8173 0.7028 0.6982 0.2559 0.2640 0.3752 0.3831 0.7172 0.7239
Decision Tree 0.8649 0.8026 0.8043 0.5617 0.5202 0.3711 0.6318 0.4469 0.8824 0.6997

Random Forest 0.8315 0.8298 0.7270 0.6872 0.3903 0.3820 0.5079 0.4910 0.8868 0.7894
Artificial Neural Network 0.8482 0.8024 0.7501 0.5607 0.4777 0.3727 0.5837 0.4478 0.8554 0.7456

XGBoost 0.8258 0.8286 0.7107 0.6905 0.3684 0.3672 0.4853 0.4795 0.8024 0.7885
AdaBoost 0.9994 0.7422 1.0000 0.4006 0.9974 0.4022 0.9987 0.4014 1.0000 0.6779
LightGBM 0.8244 0.8283 0.7132 0.6977 0.3547 0.3548 0.4738 0.4704 0.8211 0.7917

SVM 0.8230 0.8253 0.7222 0.6972 0.3343 0.3307 0.4571 0.4487 0.7327 0.7127

ANOVA Dataset - Performance Metrics
Accuracy Precision Recall F1-Score AUC
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Figure 20: ROC curves for ANOVA dataset training phase. 

Source: Author’s preparation 

 

Nevertheless, the research will focus more on the performance metrics that resulted from 

applying these models to out-of-sample entries. The developed LightGBM despite losing to Random 

Forest on Accuracy and F1-Score, to Logistic Regression on Precision, to AdaBoost on Recall, wins on 

AUC with the highest score of 79.17%. 
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Figure 21: ROC curves for ANOVA dataset testing phase. 

Source: Author’s preparation 

 

In addition, a DeLong test was conducted to confirm if the differences between AUCs are 

statistically significant, under the null hypothesis that both areas are equal. 

 

 

Table 11: DeLong et al. (1988) test to compare AUCs. 

Source: Author’s preparation 

 

Being a two-tailed test, there are two types of differences. If the value is on the positive tail both 

areas are significantly different, but Logistic Regression is better. If the value is on the negative tail 

both areas are significantly different, but the ML model is better. LightGBM still shows a better 

performance compared with Logistic Regression, with XGBoost and Random Forest being the two 

next-best models. On the other hand, AdaBoost is the worse model, with Decision Tree and SVM being 

considerably better, but still all three are worse than Logistic Regression. Artificial Neural Network 

Comparison of AUCs (Logistic Regression vs) z-score p-value
AdaBoost 6.09656 0.00000

Decision Tree 2.40889 0.01600
LightGBM -9.23158 0.00000

Random Forest -8.97982 0.00000
SVM 2.14919 0.03162

XGBoost -8.94304 0.00000
Artificial Neural Network -0.67457 0.49995
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wasn’t significantly different from the Logistic Regression. Overall, the test corroborates the results 

given in Figure 21. 

Another DeLong test was used to compare two models, one with all variables and another with 

only a subset of variables (a nested model). The purpose is to evaluate if the different feature selection 

techniques improved the model’s performance compared to a full model. 

 

 

Table 12: DeLong et al. (1988) test to compare AUCs. 

Source: Author’s preparation 

 

As in the previous test, the results seem to confirm the results from the different cross-validation 

processes, when comparing the AUC values in Annex D with Table 10, Annex E, and Annex F. 

Nevertheless, most of the differences don’t seem statistically significant, except for LightGBM-RFE, 

with a decrease in performance when compared with the LightGBM-Normal model. With LightGBM-

ANOVA being the best-performing model, next an analysis of this model’s structure and outputs is 

done. For a 0.5 threshold, comparing the results with the actual default status of each borrower, we can 

generate the below confusion matrix. The model predicted 655 defaults and 5,338 non-defaults versus 

1,288 observed defaults and 4,705 observed non-defaults. It seems that many defaults were wrongly 

labelled as non-defaults (831), meaning that a considerable amount of bad-quality loans would have 

been granted (13.87%).  

 

Figure 22: LightGBM-ANOVA confusion matrix on test data. 

Source: Author’s preparation 

 

Analysing the accuracy for different thresholds, a maximum value is reached at a 0.47 cut-off. 

 

z-score p-value z-score p-value
ANOVA -1.34618 0.17825 -0.95259 0.34080

Multicollinearity 1.87347 0.06100 0.05230 0.95829
RFE 0.13169 0.89523 2.99613 0.00273

LightGBM
Comparison of AUCs (Normal dataset vs)

Logistic Regression
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Figure 23: LightGBM-ANOVA accuracy for different thresholds. 

Source: Author’s preparation 

 

5.1 Shapley values 

SHAP values show how each feature affects every final prediction, the significance of each feature 

compared to others, and the model’s reliance on the interaction between features. Features with positive 

SHAP values positively impact the prediction or, in other words, contribute more to default. On the 

other hand, features with negative SHAP values contribute more to a non-default. 

Below we can find a non-default predicted by the model. Since the data was scaled, the values 

diverged from the real ones. Three different “repay_status” with -1 means that the borrower fully paid 

all the contracted credit from the past three months. Reinforcing this idea are the “amount_payed” 

variables that with a positive value show the good quality of this borrower. 

 

Figure 24: SHAP explanation for a non-default prediction. 

Source: Author’s preparation 
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On the other hand, below is a default example predicted by the model. Six “repay_status” that 

show a structural delay on due payments. For 5 straight months (t-6 to t-2), this borrower maintained a 

2-month due payment, but on t-1 another payment was left overdue, and it defaulted on the next month. 

 

Figure 25: SHAP explanation for a default prediction. 

Source: Author’s preparation 

 

5.2 LIME 

The LIME technique further explains and interprets the prediction of an instance, for an individual 

borrower. 

 

 

Figure 26: LIME explanation for a default prediction. 

Source: Author’s preparation 

 

Feature z-score std mean value
credit_amount 0.56 129760.14 167442.01 240107.69
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The above figure shows the same default example chosen for the SHAP analysis but gives us 

additional insights into that prediction. From the LIME explanation generated, we can observe that 

“repay_status” that is higher than 0 and a credit_amount lower or equal to 240,107.70 are characteristics 

of a default example. Taking the same non-default example, the LIME technique gives us the results 

below: 

 

 

 

Figure 27: LIME explanation for a non-default prediction. 

Source: Author’s preparation 

 

We can observe that a “repay_status” variable value below or equal to -1 contributed to a non-

default. Observing the remaining continuous variables, both “amount_payed” variables' values are 

positive and near mid-distribution by analysing their z-score. A higher “credit_amount” than 

240,107.69 seems to be related to non-default reinforcing the previous SHAP analysis that lower 

“credit_amount” borrowers were more related to defaults. Finally, “bill_state_t-2” and “bill_state_t-4” 

with a value between 2,959.25 and 20,758.14, and 2,127.08 and 19,502.53, respectively, contributed to 

the non-default prediction. 

 

  

Feature z-score std mean value
amount_payed_t-2 -0.04 23053.46 5927.98 5005.84

credit_amount 0.56 129760.14 167442.01 240107.69
-0.64 2127.08
-0.37 19502.53

amount_payed_t-1 -0.04 16574.85 5670.10 5007.11
-0.65 2959.25
-0.40 20758.14

bill_state_t-4 64353.51 43313.33

bill_state_t-2 71195.57 49236.37
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CHAPTER 6 

Conclusions and recommendations for future work 

 

Credit scoring techniques are a risk management tool that allows a lender to assess an applicant's 

capacity to repay a loan on schedule. The many developments over the years aided financial institutions 

by handling loan applications far more quickly, with lower costs. More traditional techniques are still 

broadly used, including Logistic Regression, for their prevalence on this field. Nevertheless, the latest 

developments in data science, such as machine learning techniques on feature selection and modelling 

can deliver better results with a cost on interpretability. Regulators often release papers and 

recommendations on the usage of these artificial intelligence methods for IRB modelling to alert for 

different cautions to have when applying them, mainly on model knowledge and results interpretation. 

Luckily, different Machine Learning enthusiasts have developed techniques that help with this 

interpretability issue such as LIME and SHAP. 

The main objective of this work is to compare these two techniques for the probability of default 

estimation. Since the bank’s default policy is unknown, it was difficult to perform a more in-depth 

analysis on each class. The conducted data exploration was mainly useful to select features that would 

result on a model’s performance improvement, but not to conclude on any economic/financial aspect of 

each variable. The implementation of many transformations, including handling missing data, encoding 

categorical variables, and appropriate scaling, was made easier by the use of machine learning pipelines. 

Furthermore, cross-validation, hyperparameter tuning, and statistical tests to AUC were conducted to 

make sure the classifiers were robust. The results show that LightGBM model is comparatively superior 

in performance to all other models, including Logistic Regression. However, when using LightGBM 

some considerations need to be made, when comparing with Logistic Regression: reduction of model 

interpretability and increase in computation time. To overcome this model interpretability issue, two 

techniques were employed to explain the model’s results globally and locally. Pairing with the unknown 

default policy, the used hardware can be pointed out as another limitation of this work. While training 

models using cross-validation grid searches, a better computation power will lead to faster modelling 

and a better hyperparameter selection. This would result in more accurate models, that could extract 

more insights from data. 

For upcoming studies, applying this same methodology to a different credit scoring dataset could 

help to improve the robustness of this work’s findings. Due to the class imbalance commonly present 

in the credit scoring domain, Chen et al. (2024) analysed this effect on SHAP and LIME methodologies 

with different stability measures such as sequential rank agreement, coefficient of variance, variables 

stability index, and coefficient stability index. Employing their methodology may result in more robust 

explanations. 
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Annex 

 

Annex A 

 

 

 

 

 

Variable Description
credit_amount Amount of the given credit

gender Borrower's gender: Male or Female
education Borrower's habilitation: Masters/phd, University, High School, Others

age Borrower's age

repay_status_t-1 to t-6

History of past payments for each month
-2: No consumption;

-1: Paid in full;
0: The use of revolving credit;
1-9: payment delay (months)

bill_state_t-1 to t-6 Amount of bill statement
amount_payed_t-1 to t-6 Amount of previous payment
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Annex B 

 

  
 

Features 

Statistic age credit_amount bill_state_t-1 bill_state_t-2 bill_state_t-3 bill_state_t-4 bill_state_t-5 bill_state_t-6 amount_payed_t-1 amount_payed_t-2 amount_payed_t-3 amount_payed_t-4 amount_payed_t-5 amount_payed_t-6 

count 29965 29965 29965 29965 29965 29965 29965 29965 29965 29965 29965 29965 29965 29965 

mean 35.49 167442.01 51283.01 49236.37 47067.92 43313.33 40358.33 38917.01 5670.10 5927.98 5231.69 4831.62 4804.90 5221.5 

std 9.22 129760.14 73658.13 71195.57 69371.35 64353.51 60817.13 60817.13 16574,85 23053.46 17616.36 15674.46 15286.37 17786.98 

min 21 10000 -165580 -69777 -157264 -170000 -81334 -81334 0 0 0 0 0 0 

25% 28 50000 3595 3010 2711 2360 1787 1787 1000 850 390 300 261 131 

50% 34 140000 22438 21295 20135 19081 18130 18130 2102 2010 1804 1500 1500 1500 

75% 41 240000 67260 64109 60201 54601 50247 50247 5008 5000 4512 4016 4042 4000 

max 79 1000000 964511 983931 1664089 891586 927171 927171 873552 1684259 896040 621000 426529 528666 
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Annex C 

 

Hyperparameter Definition

C
Represents the inverse of regularization strength. Used to present overfitting by adding a 

penalty term to the model's loss function. Smaller value means a simpler model, and a large 
value suggests a more complex model.

max_iter Used to control the maximum number of iterations for the optimization algorithm

solver
Specifies the method used to compute the shrinkage regularization, which is used to estimate 

the covariance matrix of the data.

criterion Specifies the criterion used to select the dimensionality of the reduced space.

max_depth
Determines the maximum depth of the tree. The depth of a tree is the lenght of the longest path 

from the root node to a leaf node. Limiting the maximum depth of a decision tree helps to 
prevent overfitting.

min_samples_split
The minimum number of samples required to split an internal node. When the number of 

samples in a node is less than this value, the node will not be split, and it will become a leaf 
node.

min_samples_leaf Helps to prevent overfitting by controlling the minimum size of the leaf nodes.

hidden_layer_sizes Defines the neural network structure (excludes input layer).

activation Defines the output of a neuron based on its input by applying this function

n_estimators Controls the maximum number of weak learners to train.

learning_rate
Control the trade-off between bias and variance and prevent overfitting. Lower values typically 
require more trees to reach the same level of performance, but they generalize better. Higher 

values can lead to faster learning but make the model more prone to overfitting

estimator The model used as weak learner

boosting_type Specifies the type of boosting algorithm to be used to build the ensemble model.

objective Specifies the loss function that the model will optimize during training.

kernel
Specifies the kernel function used to transform the input features into a higher-dimenstional 

space, where data may be more easily separated by a hyperplane.
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Annex D 

 

Annex E 

 

Annex F 

 

 

Model Training Testing Training Testing Training Testing Training Testing Training Testing
Logistic Regression 0.8097 0.8155 0.7165 0.7059 0.2413 0.2422 0.3610 0.3607 0.7218 0.7304

Decision Tree 0.8649 0.8014 0.8028 0.5565 0.5219 0.3750 0.6326 0.4481 0.8824 0.7066
Random Forest 0.8336 0.8285 0.7354 0.6831 0.3954 0.3766 0.5142 0.4855 0.8982 0.7917

Artificial Neural Network 0.8551 0.7963 0.7834 0.5401 0.4835 0.3502 0.5980 0.4249 0.8710 0.7359
XGBoost 0.8239 0.8285 0.6997 0.6852 0.3673 0.3734 0.4817 0.4834 0.8008 0.7877
AdaBoost 0.9994 0.7329 1.0000 0.3865 0.9974 0.4138 0.9987 0.3997 1.0000 0.6731
LightGBM 0.8248 0.8283 0.7156 0.6989 0.3551 0.3533 0.4747 0.4693 0.8219 0.7913

SVM 0.8227 0.8251 0.7217 0.6993 0.3325 0.3269 0.4552 0.4455 0.7365 0.7166

Normal Dataset - Performance Metrics
Accuracy Precision Recall F1-Score AUC

Model Training Testing Training Testing Training Testing Training Testing Training Testing
Logistic Regression 0.8092 0.8143 0.7164 0.7002 0.2383 0.2376 0.3576 0.3548 0.7210 0.7290

Decision Tree 0.8586 0.8049 0.7952 0.5726 0.4921 0.3641 0.6080 0.4452 0.8756 0.7124
Random Forest 0.8253 0.8301 0.7074 0.6945 0.3680 0.3742 0.4842 0.4864 0.8464 0.7892

Artificial Neural Network 0.8433 0.8113 0.7367 0.5942 0.4620 0.3843 0.5679 0.4668 0.8436 0.7533
XGBoost 0.8253 0.8285 0.7082 0.6906 0.3671 0.3657 0.4835 0.4782 0.8000 0.7885
AdaBoost 0.9994 0.7342 1.0000 0.3873 0.9974 0.4068 0.9987 0.3968 1.0000 0.6673
LightGBM 0.8248 0.8283 0.7150 0.6977 0.3555 0.3548 0.4749 0.4704 0.8185 0.7913

SVM 0.8225 0.8250 0.7180 0.6900 0.3351 0.3370 0.4569 0.4528 0.7327 0.7122

Multicolinearity Dataset - Performance Metrics
Accuracy Precision Recall F1-Score AUC

Model Training Testing Training Testing Training Testing Training Testing Training Testing
Logistic Regression 0.8089 0.8136 0.7121 0.6939 0.2389 0.2376 0.3577 0.3540 0.7217 0.7302

Decision Tree 0.8524 0.8109 0.7460 0.5856 0.5118 0.4115 0.6071 0.4834 0.8671 0.7195
Random Forest 0.8251 0.8295 0.7163 0.6991 0.3564 0.3626 0.4760 0.4775 0.8497 0.7845

Artificial Neural Network 0.8292 0.8176 0.7172 0.6352 0.3854 0.3556 0.5014 0.4559 0.8107 0.7722
XGBoost 0.8230 0.8280 0.7053 0.6909 0.3531 0.3610 0.4706 0.4742 0.7911 0.7826
AdaBoost 0.9946 0.7369 0.9960 0.3901 0.9798 0.3983 0.9878 0.3942 0.9999 0.6708
LightGBM 0.8257 0.8276 0.7140 0.6872 0.3635 0.3634 0.4818 0.4754 0.8146 0.7840

SVM 0.8175 0.8213 0.7097 0.6900 0.3066 0.3059 0.4282 0.4239 0.7049 0.7061

RFE Dataset - Performance Metrics
Accuracy Precision Recall F1-Score AUC


