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Abstract
This paper evaluates amachine learning-based approach for identifying and analyzing African bush
elephants within complex terrains using high-resolution drone imagery.With human-wildlife conflict
posing a significant threat to elephants worldwide, accurate and efficientmonitoring techniques are
crucial, yet challenging in diverse landscapes. Our study utilizes approximately 3,180 drone-captured
images fromKasunguNational Park inMalawi, encompassing various terrains including dense forests
and open bushlands. These imageswere systematically preprocessed and analyzed using three distinct
ML algorithms: Faster R-CNN, RetinaNet, andMaskR-CNN, eachfine-tuned for identification of
elephants across different age groups. Comparative performancemetrics revealed nuanced strengths
and limitations: Faster R-CNN showed notable proficiency in detecting adult elephants, particularly
in dense foliage.Mask R-CNN,while less precise overall, demonstrated increased effectiveness in
identifying juveniles and infants. RetinaNet, optimized for larger images, showed particular adeptness
with adult elephants but less sowith younger ones. Despite these promising results, overall recognition
rates were lower than ideal, highlighting the complexities of wildlife identification in natural settings.
This study not only facilitates the identification and counting of individual elephants but also provides
insights into the challenges of applyingML in complex ecological contexts. The derived insights can
assist conservationists and park officials inmaking informed decisions related towildlife protection
and habitat preservation. Furthermore, the study offers a valuable blueprint for integrating AI and
machine learning technology intowildlife conservation strategies, presenting a scalablemodel with
potential applications for different species and geographic regions, while acknowledging the need for
further refinement to enhance accuracy and reliability in diverse ecological settings.

1. Introduction

Wildlife conservation has gained substantial attention due to escalating threats like habitat destruction, climate
change, and poaching, resulting in significant biodiversity losses worldwide [1–3]. In particular, African
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elephants (Loxodonta africana), essentialmegafauna for ecological balance and biodiversity, have seen a
significant population decline. A continent-wide aerial survey reported a 30%decrease from2007 to 2014 [4],
and recent studies continue to highlight the enduring issue of poaching [5].

These elephants are vital for environmental equilibrium and significantly contribute to the tourism industry,
a critical economic driver inmanyAfrican nations [6–8]. Thus, understanding andmonitoring their
populations address conservation goals and support broader sustainable development objectives in regions
dependent onwildlife tourism [9].

Our study focuses onKasunguNational Park (KNP), located 175 kmnorth ofMalawi’s capital, Lilongwe,
sharing its boundaries with Zambia (figure 1). Covering an area of over 2,300 km2, it is the second-largest
national park inMalawi. The park’s terrain is amosaic of diverse ecosystems, with predominant vegetation
consisting ofmiombowoodlands, interspersedwith grasslands and occasional wetlands, providing an ideal
habitat for its varied fauna.

A significant inhabitant of KNP is theAfrican bush elephant (Loxodonta africana). As of 2021, this species
has been listed as ‘Endangered’ on the IUCNRed List, with the primary threats being habitat destruction and
poaching for ivory and bushmeat. Given this status, the park plays a crucial role in the conservation of the
species. In July 2022, 250 elephants, alongwith 250 other animals, were translocated fromLiwondeNational
Park toKNP. This translocationwas one of the largest inMalawi’s history, emphasizing the importance of KNP
in the country’s wildlife conservation efforts [10].

To further protect the elephants andmitigate human-elephant conflict, 60 kmof fencingwere added to the
eastern border of KNP’s existing boundary. This extension plays a crucial role in safeguarding both the park’s
elephants and the surrounding communities. However, despite these efforts, problems persist. Gaps in the fence
still allow for the possibility of elephants exiting the park boundaries, posing ongoing challenges for
conservation and community safety.

KNP faces significant challenges. The proximity to the Zambian border hasmade it vulnerable to cross-
border poaching activities. This problem is compounded by a limited staff of rangers and a lack of adequate
resources to effectively patrol and safeguard the vast expanse of the park. The poaching issue, coupledwith
insufficientmanpower and resources, highlights an urgent need for innovativemonitoring solutions.

Traditionalmonitoring techniques, including ground-based surveys conducted on foot or by vehicle, and
aerial counts using helicopters, often fall short due to limitations in resources, accessibility, and their capability
to effectively survey large, difficult terrains [11, 12]. Thesemethods struggle to cover extensive areas and detect
illegal activities effectively, emphasizing an urgent need for innovativemonitoring solutions.

Given these challenges faced byKasunguNational Park and the limitations of traditionalmonitoring
techniques, innovative technological solutions are urgently needed to enhance conservation efforts.

Technological advancements, specificallymachine learning (ML) and drones, present a promising
conservation opportunity [13, 14]. The increased use of drones, capable of capturing high-resolution imagery
across large and often inaccessible areas, has proven invaluable inwildlife conservation [15]. This trend is driven

Figure 1.Map showing the location of KasunguNational Park inMalawi.
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by increased versatility, decreasing costs, and the growing sophistication of availablemodels and technologies
[16–18]. Drones, when used at appropriate altitudes, can provide a high vantage point for observingwildlife with
minimal disturbance, enabling the collection of valuable data [19].

Previous studies have applied variousmachine learningmethods forwildlife detection and identification
[13, 14, 20, 21]. Convolutional neural networks have been used to identify, count, and describe animals in
camera-trap images, achieving 96.6% accuracy across 48 species [13]. In complex terrains, UAVs and crowd-
sourced annotations have been utilized to detect animals in African savannas, highlighting the difficulties of
identifyingwildlife in varied landscapes [21]. However, key challenges remain in using drone images to quickly
and efficiently distinguishwildlife from their intricate environments, such as dense forests or sprawling
bushlands. Our study builds upon this previous work by specifically focusing on elephant identification and age
classification in the diverse and challenging terrain of KasunguNational Park.

Our research aims to evaluate the effectiveness of widely used object identificationmachine learningmodels,
specifically Faster R-CNN, RetinaNet, andMaskR-CNN, in precisely identifying elephants of different age
groups across the challenging landscapes of African terrains. The study seeks to offer insights and a framework
for technology-assistedwildlife conservation applicable in various geographic and ecological contexts. It aims to
answer the following questions:

1. How effective are these machine learning models in identifying and monitoring elephants, including
distinguishing between adult, juvenile, and infant elephants, fromhigh-resolution drone imagery within
intricate and complex environments like forests and bushlands?

2. What challenges and limitations exist in integrating drone technology and machine learning for wildlife
conservation, especially when focusing on complex terrains?

By addressing these questions, our study aims to contribute to the development ofmore effective and
efficientmethods for elephantmonitoring and conservation, potentially offering solutions to the challenges
faced inKasunguNational Park and similar environments across Africa.

While this study focuses on elephant conservation inKasunguNational Park, themethodologies and
insights gained have the potential to be adapted for other species and conservation areas worldwide,
contributing to broaderwildlifemonitoring and protection efforts in various ecosystems.

2.Methodology

2.1. Image collection
Our study utilized aDJIMavic 2 Pro drone equippedwith a high-resolution 20MP camera featuring a 1-inch
CMOS sensor, oriented in a nadir position for consistent imagery across KasunguNational Park (KNP).
BetweenOctober 2022 and September 2023, we collected 5,237 high-resolution images covering diverse
landscapes at aflight altitude of 100 m to balance area coverage andminimize wildlife disturbance. Imageswere
initially labeled ‘DJI_####’, averaging 15MB in size, and uploaded to anAWSS3 bucket, then renamed using
a Python script for efficient datasetmanagement. Figure 2 provides a representative image from the collection.

Theworkflowof the study, encompassing the planning, execution, and datamanagement stages, is
illustrated infigure 3.

2.2. Preprocessing
Preprocessing involved normalization and resizing of images using a Python script within anAWS Sagemaker
JupyterNotebook environment. After analyzing various resolutions (256× 256, 512× 512, 1024× 1024, and
2048× 2048 pixels), we determined that 2048× 2048 pixels provided optimal balance between computational
load and image detail, as shown infigures 4(a)–(d). This resolutionwas key formaintaining the high-quality
imagery needed to accurately identify different age groups of elephants (adults, juveniles, and infants), especially
in challenging environments like dense forests.Moreover, we preserved the aspect ratio of each image during
resizing.

We usedAWS SageMakerGroundTruth for labeling, collaboratingwith experienced park rangers to ensure
accurate identification of elephant age groups.We labeled 3,180 images, encompassing 3 classes including
elephants categorized as adult (12 years and above), juvenile (4 to 12 years), and infant (under 4 years). The
dataset was divided into training (70%), validation (15%), and test (15%) subsets, resulting in a class imbalance
reflecting natural population distributions, with adult elephants beingmore represented than juveniles and
infants.
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2.3. Analysis &model training
Weevaluated threemachine learning algorithms: Faster R-CNN, RetinaNet, andMaskR-CNN, chosen for their
effectiveness in object detection and potential for adaptation towildlife identification. The rationale for selecting
eachmodel is outlined in table 1.

To enhance the robustness of ourmodels and address the challenges of limited data inwildlife contexts, we
implemented several data augmentation techniques. During the training process, we applied augmentations
with a 50%probability for each image. These augmentations included randombrightness and contrast
adjustments (0.9 to 1.1 factor), horizontalflips, rotations between−10 and 10 degrees, and random cropping to
80%of the original size. These augmentation techniques expanded our dataset’s diversity without physically
creating new images, which improved themodels’ ability to generalize across various conditions.

To address the class imbalance inherent in our dataset, where adult elephants weremore represented than
juveniles and infants, we implemented a balanced sampling approach using the RepeatFactorTrainingSampler
provided byDetectron2. This sampler oversamples theminority classes (juvenile and infant elephants) during

Figure 2.Representative image from the dataset captured by a drone camera at an altitude of 100 m, showcasing the diverse terrain of
KasunguNational Park.

Figure 3. Flowchart illustrating the systematicmethodology employed in the study, fromdrone image acquisition at Kasungu
National Park to themodel evaluation phase.
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training, effectively balancing the classes without physically duplicating the data. The repeat factorwas
calculated based on the frequency of each category, with a threshold set at 0.005. This approach ensured that the
models received amore balanced representation of all classes during training, potentially improving their
performance on underrepresented classes.

We standardized key parameters across allmodels to ensure a fair comparison. The batch size
(IMS_PER_BATCH)was set to 4, accommodating the high-resolution images while workingwithinmemory
constraints.We used a base learning rate (BASE_LR) of 0.001, whichwas decreased by a factor of 0.1 (GAMMA)
at 13000 and 14500 iterations (STEPS). The total number of training iterations (MAX_ITER)was set to 15000 to
allow for comprehensive learning given the complexity of our dataset.

For allmodels, wemaintained the input image size at 2048× 2048 pixels, allowing for detailed analysis of the
complex scenes in our dataset. Uniformpreprocessing techniques were applied to all training data, ensuring
consistency acrossmodels. This included resizing all images to 2048× 2048 pixels whilemaintaining aspect
ratios, and normalizing pixel values.

Model assessment focused onAverage Precision (AP) andAverage Recall (AR)metrics, which provided
insight into eachmodel’s classification accuracy across the different elephant age categories and overall
performance.We used a customCOCOevaluator to compute per-category recall, which gave us amore detailed
understanding of eachmodel’s performance on the different elephant age groups.

Figure 4.Comparative analysis of image resolutions for elephant detection. (a) 256× 256 pixel resolution. (b) 512× 512 pixel
resolution. (c) 1024× 1024 pixel resolution. (d) 2048× 2048 pixel resolution.

Table 1.Comparative justifications for selectingmachine learningmodels in elephant detection.

Feature/Model

Convolutional neural network (fas-
ter R-CNN)

Single shotmultibox detector

(RetinaNet) MaskR-CNN

Purpose of Choice High accuracy in object detection,

particularly effective in complex

scenes

Modified for large image size

(2048× 2048 pixels)
Adapted for bounding box detection,

facilitating direct comparisonwith

othermodels

Strengths Excellent in detecting subtle distinc-

tions, crucial for differentiating

between elephant age groups

Superior at detecting small

objects, ideal for identifying

smaller elephants in dense

foliage

Exceptional at precise object delinea-

tion, beneficial for identifying indi-

vidual animals and small features

using bounding boxes

Image Processing

Capability

Effective in diverse environments,

including forests and bush

Enhanced capability for high-

resolution images, crucial for

complex terrains

Advanced capabilities in handling var-

ied textures and patterns inwildlife

imagery
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3. Results

Our study evaluated threemachine learning algorithms—Faster R-CNN, RetinaNet, andMaskR-CNN—for
identifying and classifying adult, juvenile, and infant elephants in the complex terrains of KasunguNational
Park. Tables 2 and 3 provide a quantitative comparison of themodels’ performance in terms of Average
Precision (AP) andAverage Recall (AR), respectively.

Faster R-CNN showedmoderate performance in elephantmonitoringwithin complex environments. As
shown in table 2, it achieved anAP of 34.2% for adult elephants, 29.1% for juveniles, and 27.7% for infants, with
an overall AP of 27.3%. Table 3 indicates an overall ARof 37.7% for Faster R-CNN,with 44.3% for adults, 40.8%
for juveniles, and 39.5% for infants. These results indicate some ability to distinguish between different elephant
age groups, butwith significant room for improvement.

RetinaNet demonstrated slightly better overall performance, with the highest overall AP of 29.8% andARof
40.1% among the threemodels, as evidenced in tables 2 and 3. Table 2 shows that it achieved anAP of 35.5% for
adult elephants, 31.4% for juveniles, and 28.8% for infants. TheAR scores in table 3 further support RetinaNet’s
performance, with 46.2% for adults, 43.6% for juveniles, and 41.8% for infants.While these scores are the
highest among the threemodels, they still indicate substantial challenges in accurately detecting and classifying
elephants.

MaskR-CNN,with its bounding box configuration, showed comparable but slightly lower performance
across all age categories. Table 2 indicates it had the lowest overall AP of 25.8%, with 33.8% for adults, 30.9% for
juveniles, and the highest AP for infant elephants at 29.6%. As shown in table 3,MaskR-CNN’s overall ARwas
36.5%,with 44.7% for adults, 42.9% for juveniles, and 42.2% for infants.

The overall AP andAR scores across allmodels, as presented in tables 2 and 3, reflect the significant
challenges posed by the complexity of the natural environments in our dataset and the task of distinguishing
between three age categories of elephants. The results underscore the difficulty of applying object detection
algorithms towildlifemonitoring in complex, real-world environments.

To illustrate themodels’ performance in different scenarios, we provide visual examples:
Figures 5(a) and (b)demonstrates Faster R-CNN’s capability in processing high-resolution drone images.

These images showcase themodel’s effectiveness in accurately identifying and classifying elephants, adeptly
differentiating between various elephant age groups and individual elephants within the natural bushland
setting.

Figures 6(a) and (b) showcases RetinaNet’s performance in natural settings. It demonstrates themodel’s
effectiveness in detecting and classifying elephants within a diverse forested environment. The zoomed-in view
infigure 6(b) highlights themodel’s precision in differentiating individual elephants from anthropogenic
factors, emphasizing its capacity to discern objects amidst dense vegetation andmultifaceted environments.

Figures 7(a) and (b)provides insight intoMaskR-CNN’s proficiency in detailed segmentation. These images
demonstrate themodel’s effectiveness in detecting and classifying elephants within environments of dense
foliage, particularly its precision in identifying elephants of different age groups in areaswhere overlapping tree
canopies add complexity to the visual scene.

While eachmodel demonstrates unique strengths, all showed room for improvement, especially in
enhancing accuracy and reducingmisclassifications within challenging terrains. These visual examples
underscore both the potential and the current limitations of usingmachine learningmodels for elephant
identification in complexAfrican terrains.

Table 2.Average precision (AP) for elephant detectionmodels.

Model Overall Adults Juveniles Infants

Faster R-CNN 27.3 34.2 29.1 27.7

RetinaNet 29.8 35.5 31.4 28.8

MaskR-CNN (bbox) 25.8 33.8 30.9 29.6

Table 3.Average recall (AR) for elephant detectionmodels.

Model Overall Adults Juveniles Infants

Faster R-CNN 37.7 44.3 40.8 39.5

RetinaNet 40.1 46.2 43.6 41.8

MaskR-CNN (bbox) 36.5 44.7 42.9 42.2
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The performancemetrics and visual examples highlight the unique challenges posed by our specific task and
dataset. Factors contributing to the observed performance include the complexity of the terrain, the inclusion of
multiple classes beyond just elephants, and the difficulty in distinguishing between elephant age groups,
especially in challenging visual conditions.

These findings emphasize the need for further refinement of themodels, potentially throughmore extensive
and diverse training data, advanced data augmentation techniques, and possibly the development of ensemble
methods that combine the strengths of differentmodels.

Figure 5.Elephant detection using Faster R-CNNmodel. (a)An example demonstrating themodel’s ability to accurately identify and
classify elephants in a complex environment, using a standard 2048× 2048 resolution image captured from adrone height of 100 m.
(b)Zoomed-in view of (a) highlighting themodel’s precision in distinguishing between different age groups and individual elephants
in an environment with typical African bushland.

Figure 6.Elephant detection usingRetinaNetmodel. (a)This image displays themodel’s ability to identify and classify elephants
within a complex habitat, using a 2048× 2048 resolution captured from a drone height of 100 m. (b)A zoomed-in view of (a),
highlighting the RetinaNetmodel’s precision in distinguishing between elephants in complex environments.

Figure 7.Elephant detection usingMask R-CNNmodel. (a)This image illustrates themodel’s capability to accurately identify and
classify elephants in diverse environments, using a standard 2048× 2048 resolution captured from adrone height of 100 m. (b)A
close-up from (a), this image exhibits theMaskR-CNNmodel’s proficiency in detailed segmentation, particularly in distinguishing
different elephant age groups amidst dense foliage.
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4.Discussion

Our study explored the application of threemachine learningmodels - Faster R-CNN,RetinaNet, andMask
R-CNN - for identifying and classifying elephants of various age groups in the complex terrains of Kasungu
National Park.We implemented several enhancements to ourmethodology, including data augmentation
techniques and a balanced sampling approach, to address the challenges of limited data and class imbalance
inherent inwildlife conservation contexts. The results reveal both the potential and significant challenges of
applying these technologies towildlife conservation in intricate natural environments.

Our results, while promising, show lower accuracy compared to some previouswildlife detection studies.
For instance, one study achieved 96.6% accuracy in identifying animals in camera-trap images across 48 species
[14]. However, this study used stationary camera traps inmore controlled environments, unlike our drone-
based approach in complex, varied terrains. Another study, usingUAVs for animal detection inAfrican
savannas, faced similar challenges to our study in terms of environmental complexity [21]. Their use of crowd-
sourced annotations to improve detection accuracy could be a valuable approach for future iterations of our
work. The performance of ourmodels, particularly in detecting adult elephants (AP: 33.8%–35.5%), is
encouraging given the added complexities of our study environment and the challenge of age group
classification.

Eachmodel demonstrated unique strengths in elephant detection but also faced considerable challenges.
Faster R-CNN showed balanced performance across age categories, with an overall AP of 27.3% and anARof
37.7%. It achieved anAP of 34.2% for adults, 29.1% for juveniles, and 27.7% for infants. RetinaNet achieved the
highest overall AP (29.8%) andAR (40.1%), performing slightly better with adult elephants (AP: 35.5%)
compared to juveniles (31.4%) and infants (28.8%).Mask R-CNN,while having the lowest overall AP (25.8%)
andAR (36.5%), showed balanced performance across age categories andwas particularly effective in identifying
infant elephants (AP: 29.6%).

The overall performancemetrics were lower than those typically seen in standard object detection tasks. This
discrepancy highlights the unique challenges posed by our specific application. The diverse landscapes of
KasunguNational Park, ranging fromdense forests to open grasslands, present amore challenging environment
for object detection than typical benchmark datasets. Our task of classifying elephants into three age categories
(adult, juvenile, infant), whilemore representative of real-world scenarios, increased the complexity of the
classification task. The subtle differences between elephant age groups, especially in challenging visual
conditions, added an extra layer of difficulty not present inmany object detection tasks.

These challenges are visually represented infigures 8(a) and (b), which illustrate instances where themodels
struggledwith accurate identification and false positives:

Furthermore, as shown infigure 9, themodels faced difficulties in detecting elephants from images captured
at various camera angles, a challenge particularly relevant to drone-based studies:

Despite these challenges, our study represents a significant step forward in applyingmachine learning to
wildlife conservation, particularly for elephantmonitoring. The ability of thesemodels to distinguish between
different age groups of elephants, evenwithmoderate accuracy, could provide valuable demographic data for
conservation efforts. Currently, traditional elephantmonitoringmethods often rely onmanual counts from
aerial surveys or ground observations, which can be time-consuming, expensive, and potentially disruptive to

Figure 8.Challenges in elephant detection usingRetinaNetmodel. (a)An instancewhere themodel produced a false positive,
showcasing the challenges faced in complex environmental conditions. (b)A closer look at the same scene, emphasizing the difficulties
themodel encounters in distinguishing elephants from their surroundings due to the dense foliage, highlighting areas formodel
refinement.
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the animals. Our approach, once refined, could offer a less invasive andmore efficientmethod for regular
populationmonitoring.

To address the challenges identified in this study and handle the intricacies of real-world scenarios, several
avenues for future research and improvements are apparent. Advanced data augmentation techniques could
artificially increase the representation of underrepresented classes, particularly juvenile and infant elephants.
Incorporatingmore diverse camera angles in the training data would improve themodels’ robustness to varied
perspectives, bettermimicking real-world drone operations. Expanding the training dataset to include images
fromdifferent seasons, times of day, andweather conditionswould help themodels better handle the variability
encountered in real-worldmonitoring scenarios.

Transfer learning techniques, wheremodels pre-trained on large datasets are fine-tuned for our specific task,
could potentially improve performance, especially given our relatively small dataset. Exploring ensemble
methods that combine the strengths ofmultiplemodels could also enhance overall performance. Developing
specialized age-group classifiers as a second-stage process after initial elephant detectionmight improve age
classification accuracy.

Incorporating temporal analysis by using sequences of images rather than individual frames could
potentially improve detection accuracy and provide insights into elephant behavior andmovement patterns.
Developing context-aware detection algorithms that take into account the surrounding environment and typical
elephant behavior patterns could improve detection accuracy and reduce false positives.

It’s important to acknowledge the limitations of our current approach.While our implementation of data
augmentation and balanced sampling techniques represents a step forward, our datasetmay still not fully
capture the full range of conditions and scenarios encountered in elephantmonitoring. The high-resolution
images necessary for accurate detection, combinedwith our augmentation techniques, require significant
computational resources, whichmay limit real-time application in resource-constrained environments. The
performance of ourmodels is heavily dependent on image quality, which can be affected by factors like
atmospheric conditions, drone stability, and camera specifications.

Currentmodels lack the ability to understand broader contextual clues that human observersmight use,
such as animal behavior or group dynamics.While ourmodels can detect and classify elephants by age group,
they cannot yet reliably identify specific individuals, which is important for some conservation applications. The
use of drones forwildlifemonitoring, while less invasive than some traditionalmethods, still raises ethical
questions aboutwildlife disturbance that need ongoing consideration.

In conclusion, while our study demonstrates the potential of integrating drone technology andmachine
learning for elephantmonitoring, it also underscores the complexities involved in applying these technologies in
challenging natural environments. The relatively low performancemetrics should not be seen as a failure, but

Figure 9.A scenariowhere the Faster R-CNNmodel failed to detect elephants in an image captured at a non-vertical angle.Moreover,
themodel also faced issues ofmisclassifying other classes, such as human settlements, and generating false positives by identifying
objects that were not elephants, highlighting the need for amore diverse and dynamic training dataset.
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rather as a baseline for future improvements and a realistic assessment of the current state of this technology in
complex, real-world scenarios.

This research contributes to the field by providing a detailed analysis of the challenges involved in elephant
detection and classification in their natural habitats. It sets the stage for further refinements that could eventually
lead to powerful new tools for wildlife conservation. As these technologies continue to evolve, they have the
potential to revolutionize our approach towildlifemonitoring, offering new solutions to longstanding
challenges in protecting elephants and other species in their natural habitats.

5. Conclusion

This research demonstrates both the potential and challenges of using advancedmachine learningmodels—
Faster R-CNN, RetinaNet, andMaskR-CNN—with drone technology for elephantmonitoring in complex
African habitats. Themodels showedmoderate success in identifying elephants in complex environments, with
overall AP scores ranging from25.8% to 29.8%. RetinaNet demonstrated the highest overall performance (AP:
29.8%, AR: 40.1%), while Faster R-CNNandMaskR-CNN showedmore balanced performance across age
groups. However, allmodels faced significant challenges with accuracy, particularly in dense foliage and in
classifying younger elephants, highlighting the complexity of real-world conservation applications.

Key challenges in integrating drone technology andmachine learning forwildlife conservation in complex
terrains include varied lighting conditions, diverse vegetation cover, and the need for high-resolution imagery to
distinguish between age groups. The subtle differences between elephant age categories, especially in challenging
visual conditions, add an extra layer of difficulty. Class imbalance in natural populations and computational
demands of processing large, high-resolution datasets pose additional difficulties.

These findings provide a baseline for future improvements inwildlifemonitoring technology.While the
performancemetrics are lower than those typically seen in standard object detection tasks, they represent a
promising start given the complexity of the task. Refinements in training datasets, includingmore diverse
environmental conditions and expanded representation of underrepresented classes, could potentially enhance
wildlifemonitoring significantly. This study contributes to elephant identification techniques and opens
avenues for broader conservation applications across various species and habitats.
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