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Resumo 

A globalização aumentou a necessidade de garantir que as instituições financeiras aplicam uma 

gestão de risco eficiente. Por isso, as regulamentações reforçaram a monitorização da gestão de 

risco, através de requisitos mínimos de capital e implementação do método Value-at-Risk (VaR) 

como uma métrica padrão de risco. O principal objetivo deste trabalho é utilizar o VaR para 

analisar o desempenho e gerir o risco de um portfólio composto por ações e obrigações de 4 

mercados diferentes. Primeiro, precisamos de testar os modelos de VaR, utilizando o processo 

de Backtesting para identificar o modelo que se adequa mais à composição e caraterísticas do 

portfólio. Em seguida, usamos o modelo mais preciso para medir e comparar as duas estratégias: 

o VaR diário do portfolio sem estratégia de gestão de risco e o VaR diário com uma estratégia 

de hedging, para o período de um ano. Por fim, comparamos o desempenho de ambas as 

estratégias utilizando uma medida de desempenho, o Return on Risk-Adjusted Capital 

(RORAC). Os resultados indicam que o portfolio com a estratégia de gestão de risco para limitar 

o VaR máximo diário apresenta um desempenho superior ao portfolio sem gestão de risco. 
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Abstract 

Globalization has enhanced the need to guarantee that financial institutions apply efficient risk 

management. Therefore, regulations strengthened the monitorization of risk management, by 

enforcing the minimum capital requirements and implementing Value-at-Risk (VaR) approach 

as a standard risk measurement metric. The main goal in this work is to use the VaR to analyze 

the performance and manage the risk of a portfolio composed of stocks and bonds from 4 

different markets. First, we need to test the VaR models, by using the Backtesting approach to 

identify the model that provides the best fit, considering the portfolio composition and 

characteristics. Then, we use the more accurate model to measure and compare two approaches: 

the daily VaR of the portfolio without a risk management strategy and the daily VaR managed 

through a hedging strategy, for a period of one-year. Finally, we compare the performance of 

both strategies using a performance measure, the Return on Risk-Adjusted Capital (RORAC). 

The results indicate that the portfolio with a risk management strategy to limit the daily 

maximum VaR outperforms the portfolio without risk management.  
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Chapter 1.  

Introduction 

Financial institutions need to be very cautious about several kinds of risk, this work will focus 

only on the market risk that arises from the fluctuations in the market price of financial assets. 

It is essential that the banks implement efficient risk management procedures, so to guarantee 

this the Basel Accords set a unified regulatory framework with a primarily focus on minimum 

capital requirement. In 1994, J.P. Morgan (1996) published the RiskMetrics model, enhancing 

the adoption of the Value-at-Risk (VaR) to measure market risk.  

The VaR is a statistical measure that estimates with a certain probability the potential 

maximum loss of a portfolio, during a given time period. This way financial institutions can 

measure their risk with the VaR, and then manage it by defining a pre-defined limit for the 

Economic Capital (EC), that represents the capital at risk originated from the investment 

activities (Jorion, 2007). 

In this work we will study a portfolio composed by bonds from the European and the United 

States (U.S.) markets and stocks associated with various indices such as, the DAX from 

German, the CAC 40 from France, the AEX from Netherlands, the S&P500 from the U.S. and 

FTSE 100 from the United Kingdom. 

The total risk of a portfolio can be decomposed into systematic risk, which is captured by 

mapping the portfolio risk, and the specific risk that can be diversified. We will compute the 

Total VaR and the Systematic VaR at the risk factor level, so it is possible to decompose it, 

which will help manage the risks. 

Several researchers such as Lee & Su (2011), Pritsker (2006), Hull & White (1998), Xiao 

et al. (2015) and Steen et al. (2015) have studied the performance of various VaR models, to 

test which model is the most accurate. However, the choice of a VaR model depends on the 

portfolio and its characteristics, so it is difficult to encounter a model that outperforms all the 

others for every portfolio. That is why we need to test the performance of different VaR models 

with our portfolio. 

The models that will be estimated can be categorized into parametric and non-parametric 

models. In the parametric models we will compute the Normal VaR, and the Skewed 
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Generalized Student-t (SGSt) VaR from Theodossiou (1998). In the non-parametric models, we 

will compute the Historical adjusted volatility VaR from Hull & White (1998) and the Quantile 

Regression from Koenker & Bassett (1978). Furthermore, we will use the EWMA to compute 

the volatility of returns that represent the current market conditions. 

Aftewards, we will Backtest the models to assess the performance of each one and choose 

the one that has better fit to our portfolio. To do this we will use two statistical tests: the 

Unconditional Coverage (UC) test from Kupiec (1995) and the Berkowitz, Christoffersen and 

Pelletier (BCP) test proposed by Berkowitz et al. (2011).  

Finally, we will use the best model to go forward one year in time using two approaches. 

In the first one we compute the daily VaR for that year without any risk management strategy 

and in the second approach we compute the daily VaR for the year while hedging the main 

sources of risk, in the days that the portfolio surpasses a pre-defined maximum daily EC. We 

define this maximum target at 1.6% of the portfolio value on 27 January 2023, which translates 

to almost 160 000€, and it is in concordance with the historical range of risk. The hedging 

strategy is defined every day according to the VaR decompositions. 

To compare the approaches, we use a risk sensitive performance measure, the Return on 

Risk-Adjusted Capital (RORAC), which shows that the portfolio achieves a better performance 

with a risk management strategy. 

The rest of work is organized as follows: Chapter 2 presents the relevant literature to this 

dissertation, Chapter 3 describes the data and the details about the characteristics and 

composition of the portfolio, Chapter 4 dives into the necessary methodology, Chapter 5 

presents the VaR models, Chapter 5 reveals the results of Backtesting, Chapter 6 uncovers the 

hedging strategy and the impact on the P&L of the portfolio and finally Chapter 7 concludes 

and summarizes the results of this work. 
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Chapter 2. 

Literature Review 

Financial institutions’ distress not only impacts the financial markets, but also has a major 

impact in the real economy (Dell’Ariccia et al., 2008; Hoggarth et al., 2002), which can be 

proven historically. Efficient risk management can help prevent some of these main 

consequences (Bessis, 2010). Therefore, it is important that the banks have some degree of 

regulation (Dow, 1996), to create stability and confidence in the banking system (Hull, 2015). 

With the globalization, the financial instability started to affect market failures in an 

international level, so in 1988, the Basel Accords were introduced by the Basel Committee on 

Banking Supervision as a series of recommendations to reinforce and strengthen the minimum 

capital requirements by monitoring and reporting the risk (Shakdwipee & Mehta, 2017). 

The risk can be categorized into three main categories: the operational risk, the credit risk 

and the market risk. In this work we will deal with market risk, which measures the uncertainty 

in the portfolio’s profit and loss (Alexander, 2008b). The VaR is a statistical risk measurement 

metric that is widely used in the financial market (Khindanova & Rachev, 2019), and even with 

its own limitations, it is recommended by the regulators (Krause, 2003). VaR can be defined as 

the maximum loss that can be expected that will not be exceeded over a given time horizon for 

a given level of confidence (Jorion, 2007). This work will follow the Basel guidelines, so we 

will consider a confidence level of 99% and a daily time horizon. 

In the past regulations for financial institutions were more focused on regulatory capital, 

however since Basel II the regulations are based on risk sensitive measures (Jorion, 2007; 

Porteous & Tapadar, 2006). The EC can be defined as the amount of capital necessary to protect 

against a set of risks and absorb potential losses, during a time horizon and up to a certain 

confidence level (Porteous & Tapadar, 2006). Considering only market risks, the EC is 

commonly estimated based on the VaR measure (Jorion, 2007). Therefore, the VaR measures 

the risk of a portfolio, and then we can use a pre-defined maximum value for the EC to manage 

that risk. 

The VaR started gaining faster adoption when J.P. Morgan (1996) released their VaR model 

RiskMetrics. Afterwards, the VaR was adopted by the regulators and the financial institutions 

as a standard measure of market risk, that can be calculated based on standardized or internal 



4 
 

models (Hull, 2015; Khindanova & Rachev, 2019). The application of different VaR methods 

provides distinctive VaR estimates (Khindanova & Rachev, 2019), the model that best fits a 

specific portfolio depends on its characteristics and composition. We will see two main 

categories of models: the parametric models and the non-parametric models. The parametric 

methods assume that returns follow a specific distribution, while the non-parametric models do 

not impose any distribution assumption, it uses the empirical distribution of the returns 

(Khindanova & Rachev, 2019).  

VaR is a forward-looking risk measure which means that the focus must be on the current 

market conditions, so to compute the VaR models we need to estimate the variances and 

covariances in a way that the recent observations in the sample have more weight than the older 

observations (Alexander, 2008b; Hull, 2015). To tackle this issue, diverse researchers proposed 

volatility models, such as the Autoregressive Conditional Heteroskedasticity (ARCH) proposed 

by Engle (1982), the Generalized ARCH (GARCH) proposed by Bollerslev (1986) and the 

Exponentially Weighted Moving Average (EWMA) that is very popular due to its simplicity 

and its use in the RiskMetrics model (J.P. Morgan, 1996). In this work, we will use the EWMA 

volatility model. 

The RiskMetrics model is categorized as a Normal VaR model, which is the most 

commonly used parametric model. This parametric model assumes that the returns follow a 

normal distribution (Krause, 2003), however this contradicts the conclusions of Fama (1965) 

that normally the financial returns show negative skewness and excessive kurtosis. Therefore, 

if the returns of our portfolio do not follow a normal distribution, then the Normal VaR will not 

capture real risk, whereas for higher confidence levels the Normal VaR is likely to 

underestimate the true VaR (Alexander, 2008b; Stefaniak, 2018). 

Taking this into account and still in the parametric methods, Theodossiou (1998) developed 

a flexible distribution that accommodates both skewness and excess kurtosis, the Skewed 

Generalizes Student-t (SGSt), which is a skewed extension of the standard Student-t distribution 

created by Mcdonald & Newey (1988). Lee & Su (2011) compared the VaR estimates of the 

normal, standard Student-t and SGSt models, using daily data of thirteen stock indices, in North 

America, Europe and Asia. The authors concluded that the SGSt VaR model was the better fit 

of the three, followed by standard Student-t VaR and the worst was the Normal VaR model. 

Despite that, all models leaned to underestimate the real market risk, for all confidence levels, 

which can indicate that maybe the parametric models were not the best fit for that specific data. 
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The most used non-parametric method is the Historical VaR model that constructs the 

distribution of the portfolio from historical data, assuming that the trends of past returns will 

continue in the future (Khindanova & Rachev, 2019). This model relies completely on historical 

returns, so the choice of the sample size is crucial, however the larger the sample size, the less 

the model reflects the current market conditions (Alexander, 2008b; Pritsker, 2006). To tackle 

this issue, some authors proposed some refinements to the standard Historical model. Barone-

Adesi et al. (1998) and Boudoukh et al. (1998) suggested assigning more weight to recent 

observations, whereas Hull & White (1998) suggested adjusting the volatility of the returns to 

reflect the current market volatility. Hull & White (1998) studied the three refinements of the 

historical model, where they compared nine years of daily data on twelve exchange rates and 

five different stock indices and based on their findings their refinement of the model has better 

results than the Boudoukh et al. (1998) methodology, for the significance level of 1%. 

Another non-parametric method is the Quantile Regression (QR) that was proposed by 

Koenker & Bassett (1978), which might be a good fit to estimate the VaR, since it summarized 

by current regulations as a conditional quantile (Xiao et al., 2015). The biggest advantage of 

the QR VaR methodology consists of its flexibility of choosing the explanatory variables, which 

expands the modeling options (Xiao et al., 2015). Xiao et al. (2015) studied the five bigger 

world market indexes, and he concluded that the QR model is more robust than the Normal 

model, to a series of confidence levels. Steen et al. (2015) studied nineteen different commodity 

futures, where it concluded that the Quantile Regression model outperforms the Normal and 

the Historical models in predicting the VaR for most of these commodities. 

Based on the findings of Alexander (2008b), it is possible that the same VaR model will 

create different results for two different portfolios, even if they have identical underlying risk 

factors. Consequently, we need to test the model’s performance to evaluate which VaR model 

is the best fit to the specific portfolio, which will be done by the Backtest method. The Backtest 

is a statistical framework that uses historical data to verify the accuracy and effectiveness of a 

model (Zhang & Nadarajah, 2018), by analyzing if the actual losses are in line with the 

projected losses, when a model is a good fit, the number of observations falling outside VaR 

should be in line with the confidence level (Jorion, 2007). In this work we will adopt two 

Backtest methods: the Unconditional (UC) test proposed by Kupiec (1995) and the Berkowitz, 

Christoffersen and Pelletier (BCP) test proposed by Berkowitz et al. (2011). The UC test 

analyzes, for a certain period of time, the number of exceedances, which happens when the 

actual portfolio loss is higher than the VaR estimated in the previous day (Alexander, 2008b; 



6 
 

Kupiec, 1995). The BCP test analyzes if the exceedances are autocorrelated or independent 

from each other (Berkowitz et al., 2011).  

VaR is not only a useful tool for reporting purposes, but also as a risk control tool, where 

we can define a pre-defined maximum value EC, and then define a risk management strategy 

(Jorion, 2007). By doing this the adjusted portfolio will have a different risk profile than the 

original portfolio. The P&L of the adjusted portfolio will be achieved with a lower VaR than 

the original portfolio, so to make a fair comparison between the two approaches we need to use 

a risk-adjusted performance metric. To do this, we will use the Risk-adjusted return on capital 

(RAROC) proposed by Matten (1996) that is a ratio between the P&L and the risk incurred. 
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Chapter 3.  

Portfolio Composition 

In this work we will study a portfolio composed of positions in stocks and bonds. The bonds in 

our portfolio are from the European and the United States (U.S.) markets, whereas the positions 

in stocks are from European, the U.S. and the United Kingdom markets. Giving this, we define 

our local currency as Euro (EUR) so we need to convert the assets defined in foreign currency, 

U.S. dollar (USD) and the British pound (GBP), to our local currency. 

This portfolio is composed of 27 positions in stocks from 5 different indices, the S&P500 

from U.S., the DAX from German, the CAC 40 from France, the FTSE 100 from United 

Kingdom and the AEX from Netherlands. The daily adjusted closing prices and the exchange 

rates were downloaded from the Yahoo Finance website (https://finance.yahoo.com/).  

The bond portion consists of 6 fixed coupon government bonds, with different 

specifications, which can be seen in Table 3.1 and they were obtained from the Borse Frankfurt 

website (https://www.boerse-frankfurt.de/bonds). The bonds from the European market were 

issued by Denmark and Netherlands, so we retrieved the daily interest rate of AAA-rate 

sovereign bonds issued in EUR from the European Central Bank website 

(https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15). The daily interest rate 

data for bonds issued in USD were retrieved from the Federal Reserve Economic Data website 

(https://sdw.ecb.europa.eu/browseSelection. do?node=9689726). 

Bond Currency Maturity 
Maturity 

(Years) 

Coupon 

Rate 

Coupons 

per year 
Face Value 

Face Value 

(EUR) 

Fair Value 

(EUR) 

NL0009446418 EUR 15/01/2042 18.97 3.750% 1 1,300,000.00 1,300,000.00 1,583,529.21 

US91282CJJ18 USD 15/11/2033 10.80 4.500% 2 1,150,000.00 1,055,585.00 1,156,041.69 

US91282CJU62 USD 02/02/2026 3.02 5.553% 4 1,400,000.00 1,285,060.00 1,363,046.84 

US912810QL52 USD 15/11/2040 17.80 4.250% 2 800,000.00 734,320.00 797,081.56 

DE000BU2Z023 EUR 15/02/2034 11.05 2.200% 1 1,000,000.00 1,000,000.00 1,008,915.10 

DE0001135069 EUR 04/01/2028 4.94 5.625% 1 1,200,000.00 1,200,000.00 1,388,201.44 

Table 3.1. Bond Characteristics. The exchange rate on 27 January 2023 and used 

to convert to EUR the U.S. bonds is 0.9179. 

 

 

https://finance.yahoo.com/
https://www.boerse-frankfurt.de/bonds
https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H15
https://sdw.ecb.europa.eu/browseSelection.%20do?node=9689726
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Table 3.2 presents the broad components and specifications of the portfolio on 27 

September 2023. 

Stock Ticker Currency Market Quantity 
Share 

Price 
Value (EUR) 

Allocation 

(%) 

Pfizer, Inc. PFE USD GSPC 15,000.00 41.03 564,900.53 5.68% 

Nasdaq, Inc. NDAQ USD GSPC 4,500.00 59.29 244,920.21 2.46% 

FedEx Corporation FDX USD GSPC 3,500.00 185.69 596,572.58 6.00% 

Electronic Arts, Inc. EA USD GSPC 2,000.00 127.91 234,809.71 2.36% 

eBay, Inc. EBAY USD GSPC -15,000.00 47.62 -655,689.57 -6.59% 

CVS Health Corp CVS USD GSPC 1,500.00 84.04 115,706.92 1.16% 

Bank of New York Mellon 
Corporation 

BK USD GSPC 2,400.00 47.94 105,615.47 1.06% 

Apple, Inc. AAPL USD GSPC 3,600.00 144.74 478,276.70 4.81% 

American Express Company AXP USD GSPC -2,800.00 169.31 -435,157.28 -4.38% 

Amazon.com, Inc. AMZN USD GSPC 10,500.00 102.24 985,383.99 9.91% 

Accenture plc ACN USD GSPC 1,600.00 272.00 399,469.81 4.02% 

Heineken N.V. HEIA.AS EUR AEX -7,000.00 88.01 -616,044.06 -6.19% 

Koninklijke Philips N.V. PHIA.AS EUR AEX -70,000.00 14.40 -1,008,317.52 -10.14% 

Aegon Ltd. AGN.AS EUR AEX -120,000.00 4.81 -577,045.56 -5.80% 

ASML Holding N.V. ASML.AS EUR AEX 1,300.00 611.59 795,072.11 8.00% 

Shell plc SHELL.AS EUR AEX -25,000.00 25.39 -634,862.10 -6.38% 

Siemens Aktiengesellschaft SIE.DE EUR GDAXI 3,400.00 136.09 462,698.78 4.65% 

SAP SE SAP.DE EUR GDAXI 7,200.00 101.95 734,041.57 7.38% 

Deutsche Bank 
Aktiengesellschaft 

DBK.DE EUR GDAXI -70,000.00 11.42 -799,371.44 -8.04% 

Continental Aktiengesellschaft CON.DE EUR GDAXI -1,600.00 60.85 -97,367.58 -0.98% 

Commerzbank AG CBK.DE EUR GDAXI 100,000.00 9.50 949,986.80 9.55% 

Bayer Aktiengesellschaft BAYN.DE EUR GDAXI -1,800.00 53.57 -96,432.22 -0.97% 

Allianz SE ALV.DE EUR GDAXI 2,000.00 199.52 399,046.36 4.01% 

adidas AG ADS.DE EUR GDAXI 3,500.00 144.23 504,811.34 5.08% 

Crédit Agricole S.A. ACA.PA EUR FCHI 35,000.00 9.99 349,716.05 3.52% 

Airbus SE AIR.PA EUR FCHI -2,100.00 114.28 -239,988.57 -2.41% 

Vodafone Group Public Limited 

Company 
VOD.L GBP FTSE -1,200.00 82.77 -113,186.03 -1.14% 

Total Equity         2,647,566.99 26.62% 

Bonds ISIN   Face Value 
Fair 

Price 

Fair Value 

(EUR) 
 

Dutch Bond 2042 NL0009446418 EUR  1,300,000.00 121.81% 1,583,529.21 15.92% 

US Treasury 2033 US91282CJJ18 USD  1,150,000.00 109.52% 1,156,041.69 11.63% 

US Treasury 2026 US91282CJU62 USD  1,400,000.00 106.07% 1,363,046.84 13.71% 

US Treasury 2040 US912810QL52 USD  800,000.00 108.55% 797,081.56 8.02% 

German Bond 2034 DE000BU2Z023 EUR  1,000,000.00 100.89% 1,008,915.10 10.15% 

German Bond 2028 DE0001135069 EUR  1,200,000.00 115.68% 1,388,201.44 13.96% 

Total Bonds         7,296,815.85 73.38% 

Total Equity + Bonds         9,944,382.84 100.00% 

 

Table 3.2. Portfolio composition on 27 September 2023. This table presents the 

assets and bonds that compose the portfolio as well as the amount invested in each 

one in EUR and the respective proportion of each asset on the portfolio value. 
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Chapter 4.  

Methodology 

The purpose of this work is to estimate the VaR of a portfolio over a period of one-year, starting 

on 30/01/2023 until 02/02/2024, and then manage the VaR, by implementing a hedging strategy, 

in order to not exceed the pre-defined value of Economic Capital.  

To achieve this goal, we need to first do the risk factor mapping for the Total VaR and the 

Systematic VaR and select the volatility model that will be applied in the computation of the 

VaR models. Then we need to select a VaR model and the settings that are more suitable for this 

portfolio. To do this we need to test different possibilities and evaluate their precision, which is 

achieved with the Backtesting process.  

In this Chapter we will go through the steps of risk factor mapping and the choice and 

methodology of the volatility model that will be used in the VaR models. In the next chapter, 

Chapter 5, we will cover the different VaR Models and the settings that we will test. In Chapter 

6 we will proceed with the Backtesting of the models. 
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4.1. Risk Factor  

We need to start by identifying the risk factors that contribute to the portfolio risk, to then be 

possible to manage the portfolio exposure to each risk factor.  

The total risk of a portfolio can be decomposed into two types of risk, the systematic risk, 

which is the risk that is inherent of the market, so it is not reduced by diversifying the portfolio, 

and the residual risk that can be mitigated through diversification. In this work we will compute 

the Total VaR and the Systematic VaR at risk factor level, which can help us understand if the 

portfolio is well diversified, because if it is, then the total risk must be very close to the 

systematic risk.  

The Systematic VaR is computed based on a mapped portfolio, where each portfolio 

position is mapped into a smaller set of common risk factors. This mapping process preserves, 

as much as possible, the risk profile of the actual portfolio. Nonetheless, the Systematic VaR is 

only an approximation of the real VaR that is measured by the Total VaR, which is based on the 

actual portfolio and its risk factors. It is important to estimate and backtest both of them, because 

when the portfolio has a large number of risk factors it may be infeasible to compute the Total 

VaR, whereas the Systematic VaR is, by design, much easier to estimate even for large 

portfolios. Therefore, with a Systematic VaR model we lose some accuracy in exchange for a 

less complex and more scalable model. 

We will use the process of risk factor mapping, where we will need to quantify the exposure 

of each risk factor and map each portfolio position to an equivalent exposure, in terms of risk, 

to those risk factors. To do that we will set a vector that lists all risk factors and the 

corresponding exposures of the portfolio, which is called vector of risk factor loadings. Let Θ 

represent the portfolio and 𝜃𝑖 , 𝑖 = 1,… , 𝑛 represent one of the n risk factors affecting the 

portfolio, then the vector of risk factor loadings is given by: 

 Θ = [
𝜃1

⋮
𝜃𝑛

] 
(1) 

 

To estimate the VaR in our local currency, EUR, all exposures will have to be quantified in 

EUR, so we need to convert each exposure mapped from foreign currency to EUR using the 

corresponding exchange rate. 
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Each risk factor has its own exposure mapping methodology and by the characteristics of 

our portfolio we have three types of risk factors: stocks, interest rates (bonds) and currency. 

Furthermore, the risk factor exposures for the Total VaR and for the Systematic VaR only differ 

in the methodology of stocks. 

4.1.1. Stocks 

For equity we estimate the future volatility of the stock price returns based on past observations 

of the stock price return. The risk factors of stocks for the Total VaR and the Systematic VaR 

are different. 

For the Total VaR, the risk factor is the change in the market price of the stock, and the 

exposure to the risk factor is the amount invested in the stock in the currency used to compute 

the VaR (in our case the EUR). Therefore, the risk factor exposure of stock 𝑖 at time t (𝜃𝑖,𝑡) is 

given by: 

 𝜃𝑖,𝑡 = 𝑀𝑖,𝑡 = 𝑁𝑖,𝑡 × 𝑃𝑖,𝑡 × 𝐹𝑋𝑖,𝑡 (2) 

 

Where 𝑀𝑖,𝑡 denotes the amount in EUR invested on the stock, 𝑁𝑖,𝑡 denotes the number of 

shares, 𝑃𝑖,𝑡 the stock price per share and 𝐹𝑋𝑖,𝑡 the spot exchange rate for stock’s denomination 

currency against the EUR. 

In the case of the Systematic VaR, the risk factor is replaced by a stock market index and 

the risk factor exposure is given by: 

 

𝜃𝑖,𝑡 = 𝑀𝑖,𝑡 × 𝛽𝑆𝑡𝑜𝑐𝑘,𝐼𝑛𝑑𝑒𝑥,𝑡 

= 𝑀𝑖,𝑡 ×
𝜎𝑆𝑡𝑜𝑐𝑘,𝐼𝑛𝑑𝑒𝑥,𝑡

𝜎𝐼𝑛𝑑𝑒𝑥,𝑡
2  

(3) 

 

Keeping the capital invested in each stock constant, its P&L is given by the change in the 

market price of its risk factor, which is the respective stock or the index, if we are computing 

the Total VaR or the Systematic VaR, respectively. 

 𝑃&𝐿𝑖,𝑡 = 𝑀𝑖,𝑡 × (
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1) (4) 
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4.1.2. Bonds 

In the case of bonds, it does not make sense to use the same methodology of stocks because the 

volatility of the past returns of the bonds is a bad estimator of the future volatility of those 

returns. As the bonds have a defined maturity it is expected that the volatility decreases over 

time as maturity approaches. Furthermore, unlike stocks, which main source of risk is the 

change in expectations for future cash flows, in the case of bonds these cash flows are fixed and 

known. Therefore, as only the variations in interest rates can explain the bond’s price changes, 

that is the main source of risk of bonds. 

To relate the variations in interest rates with the impact in the bond’s price we will use the 

Present Value of a Basis Point (PV01) to quantify the sensitivity of the fair value of each bond 

cash flow to changes in interest rates. PV01 measures the change in the sum of the present value 

of a collection of cash flows, when the yield curve shifts down by one basis point, which means 

that all spot rates decrease by 0.01%. 

To calculate the PV01 of a cash flow (𝐶𝑇) first we need to compute its present value (PV) 

converted to EUR, by the exchange rate (𝐹𝑋𝑖), with continuously compounded interest rate 

from now until time T (𝑟𝑇), which is given by: 

 𝑃𝑉𝐶𝑇,𝑟𝑇
= 𝐶𝑇 × 𝑒−𝑟𝑇×𝑇 × 𝐹𝑋𝑡 (5) 

 

The PV01 can then be calculated by a first-order Taylor approximation as follows: 

 
𝑃𝑉01𝐶𝑇,𝑟𝑇

≈
𝜕𝑃𝑉𝐶𝑇,𝑟𝑇

𝜕𝑟𝑇
× (−0.01%) 

                     = 𝑇 × 𝑃𝑉𝐶𝑇,𝑟𝑇
× 0.01% 

(6) 

 

A portfolio with bonds with many cash flows can become a problem, since it will have as 

many interest rates for risk factors as different cash flow maturities, and it is possible that not 

all necessary data of interest rates is available. To surpass this problem Alexander (2008a) 

proposes that we adopt an approach where we map the cash flows with non-standard maturity 

to a group of standard maturity interest rates that we have data available, which are called the 

vertices of the cash flow mapping.  
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To map the cash flows at nonstandard maturities into standard maturities we will preserve 

two conditions of the originals cash flows, the present value and the PV01, which is 

denominated as the PV+PV01 invariant mapping, which we do by using the following 

condition: 

 {

𝑥𝑇2
= 1 − 𝑥𝑇1

𝑥𝑇1
=

𝑇2 − 𝑇

𝑇2 − 𝑇1

 (7) 

Note that 𝑥𝑇1  and 𝑥𝑇2  represent the proportions of the present value of the original cash flow 

mapped into the vertex maturities 𝑇1 and 𝑇2, respectively, which are the standard maturities 

with interest rate data available that are directly below and above 𝑇.  

We need to repeat the PV+PV01 invariant map for every cash flow of our portfolio, 

generalizing to n vertices we can compute the PV01 of each vertex as: 

 𝑃𝑉01𝑇𝑖
≈ 𝑇𝑖𝑥𝑇𝑖

× 0.01% (8) 

 

Given that P&L ≡ Δ𝑃𝑉 and that 
Δ𝑟𝑡𝑖

0.01%
 is the absolute change in interest rate in basis point, 

then we can reformulate Equation 6 to compute the P&L of a bond with 𝑛 cash flows as: 

 𝑃&𝐿𝐵𝑜𝑛𝑑𝑡
= ∑−𝑃𝑉01𝑡𝑖

×
Δ𝑟𝑡𝑖

0.01%

𝑛

𝑖=1

 
(9) 

 

Therefore, the P&L of a bond 𝑡 depends on the sensitivity of that bond to an increase of 

one basis point in the interest rate, −𝑃𝑉01𝑡, and the absolute change in interest rate, Δ𝑟𝑡. Given 

this, if the change in the interest rate is positive the P&L will be negative, and if the change in 

the interest rate is negative the P&L will be positive. 
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4.1.3. Currency 

In our portfolio, we have positions in assets from foreign markets, so these positions are 

exposed not only to the risk factors of the specific asset, but also are exposed indirectly to the 

exchange rate between the respective foreign and our local currency, EUR. 

The methodology of the exposure of the exchange rate risk factor mapping consists of the 

sum of the capital invested in each stock and bond that is denominated in a specific foreign 

currency, in our case is either USD or GBP, converted to the local currency EUR. With 𝐹𝑋𝑖,𝑡 as 

the exchange rate between foreign currency i and local currency at time t, the P&L generated 

by the exposure to a foreign currency of size 𝑀𝑖,𝑡 is given by: 

 𝑃&𝐿𝑖,𝑡 = 𝑀𝑖,𝑡 × (
𝐹𝑋𝑖,𝑡

𝐹𝑋𝑖,𝑡−1
− 1) (10) 
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4.1.4. Portfolio 

The vector of risk factor loadings is the aggregation of the risk factor loadings identified for 

each risk factor that is associated with each portfolio’s position. Table 4.1 presents the risk 

factor exposures of our portfolio, for Total VaR and Systematic VaR, on 27 September 2023. 

Type of Risk Factor Risk Factor Total VaR Systematic VaR 

Stock 

PFE 564,900.53 0.00 

NDAQ 244,920.21 0.00 

FDX 596,572.58 0.00 

EA 234,809.71 0.00 

EBAY -655,689.57 0.00 

CVS 115,706.92 0.00 

BK 105,615.47 0.00 

AAPL 478,276.70 0.00 

AXP -435,157.28 0.00 

AMZN 985,383.99 0.00 

ACN 399,469.81 0.00 

HEIA.AS -616,044.06 0.00 

PHIA.AS -1,008,317.52 0.00 

AGN.AS -577,045.56 0.00 

ASML.AS 795,072.11 0.00 

SHELL.AS -634,862.10 0.00 

SIE.DE 462,698.78 0.00 

SAP.DE 734,041.57 0.00 

DBK.DE -799,371.44 0.00 

CON.DE -97,367.58 0.00 

CBK.DE 949,986.80 0.00 

BAYN.DE -96,432.22 0.00 

ALV.DE 399,046.36 0.00 

ADS.DE 504,811.34 0.00 

ACA.PA 349,716.05 0.00 

AIR.PA -239,988.57 0.00 

VOD.L -113,186.03 0.00 

Index 

GSPC 0.00 2,596,274.19 

AEX 0.00 -867,683.71 

GDAXI 0.00 2,333,655.11 

FCHI 0.00 86,720.68 

FTSE 0.00 -149,618.59 

Interest Rate 

EUR3M -0.98 -0.98 

EUR6M 0.29 0.29 

EUR1Y -12.77 -12.77 

EUR2Y -26.32 -26.32 

EUR3Y -68.00 -68.00 

EUR5Y -625.89 -625.89 

EUR7Y -104.84 -104.84 

EUR10Y -814.99 -814.99 

EUR15Y -769.90 -769.90 

EUR20Y -1,462.58 -1,462.58 

USD3M -2.05 -2.05 

USD6M -1.62 -1.62 

USD1Y -10.69 -10.69 

USD2Y -27.65 -27.65 

USD3Y -384.12 -384.12 

USD5Y -70.78 -70.78 

USD7Y -106.56 -106.56 

USD10Y -965.17 -965.17 

USD20Y -834.85 -834.85 

Currency 
USDEUR 5,950,979.16 5,950,979.16 

GBPEUR -113,186.03 -113,186.03 

Table 4.1. Risk factor exposures map of the portfolio on 27 September 2023.  
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4.2. Volatility 

Before computing the VaR models we need to define and estimate the volatility of the risk 

factors. The easiest way of doing this is to select a sample of historical behavior and calculate 

its standard deviation. Note that historical behavior differs according to the risk factors, for 

example for the interest rates this behavior refers to the change in basis point of the interest 

rates, but in the case of the stocks it refers to the returns. 

However, this approach implies that the oldest observations will have exactly the same 

weight as the recent observations, influencing the results with observations that are so far into 

the past, that have minimal relation with the current market conditions. 

VaR is a forward-looking risk measure, so the current market conditions are of more 

relevance than the distant past, so we need to use a volatility model. In this work we will use 

the Exponential Weighted Moving Average (EWMA), that assigns more weight to the most 

recent observations, and as time passes the weight given to a specific observation decreases 

exponentially. The weight attribution to each observation is given by λ, that is known as the 

smoothing factor, and it can vary between 0 and 1. The lower the λ, the more overweight are 

the most recent observations.  

The EWMA variance is estimated recursively as follows: 

 �̂�𝑡
2 = (1 − 𝜆)𝑥𝑡

2 + 𝜆�̂�𝑡−1
2  (11) 

Where �̂�𝑡
2 is the variance estimated on day 𝑡 for day 𝑡 + 1 and 𝑥𝑡 is the observed behavior 

of the risk factor on day 𝑡. 

The EWMA covariance is estimated as follows: 

 �̂�𝑖,𝑗,𝑡 = (1 − 𝜆)𝑥𝑖,𝑡𝑥𝑗,𝑡 + 𝜆�̂�𝑖,𝑗,𝑡−1 (12) 

 

Where �̂�𝑖,𝑗,𝑡 is the covariance estimated on day 𝑡 for day 𝑡 + 1 and 𝑥𝑖,𝑡 is the observed 

behavior of the risk factor 𝑖, on day 𝑡. 

The value chosen for λ is usually between 0.9 and 0.98. However, the decision is subjective 

(Alexander, 2008b). For instance, J.P. Morgan (1996) in the RiskMetrics model proposes as the 

optimal choice of λ=0.94, for daily data. In this work, we will test some different values of λ to 

evaluate the best option to our portfolio. 
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Chapter 5.  

VaR Models 

The 𝑉𝑎𝑅ℎ,𝛼 represents for a future time horizon ℎ, the loss that it is expected to not be exceeded 

100(1 − 𝛼)% of the time. Furthermore, statistically the 100𝛼% h-day VaR is the symmetric of 

the 𝛼-quantile of the h-day discounted P&L distribution (𝑋ℎ), therefore we have that: 

 𝑃(𝑋ℎ < −𝑉𝑎𝑅ℎ,𝛼) = 𝛼 (13) 

 

As proposed by the Basel Committee guidelines, we will adopt a confidence level of 

(1 −  𝛼) = 99% and a future time horizon of ℎ = 1. The 𝑉𝑎𝑅1,1%, represents the loss that we 

are 99% confident that will not be exceeded over the next day. 

In this Chapter we will use the methodology applied in Chapter 5 to compute four different 

classes of VaR models. We will compute two parametric models, the Normal VaR and the 

Skewed Generalized Student-t (SGSt) VaR, and two non-parametric models, the Historical VaR 

and the Quantile Regression VaR. In the end of this chapter, we show the 17 models that we 

computed to evaluate the performance of each model in our portfolio, in Chapter 7. 

 

 

 

 

 

 

 

 

 

 



18 
 

5.1. Normal VaR 

Let the h day portfolio returns be given by 𝑋ℎ, where 𝑋 is a continuous random variable that 

follows a non-standard normal distribution, 𝑋ℎ~𝑁(𝜇, 𝜎2), where 𝜇ℎis the estimated mean and 

𝜎ℎ
2 is the estimated variation. Therefore, we have that:            

 𝑉𝑎𝑅ℎ,𝛼 = −Φ𝜇,𝜎
−1 (𝛼) (14) 

where  Φ𝜇,𝜎
−1 (𝛼) denotes the 𝛼 quantile of the normal distribution with mean 𝜇 and standard 

deviation 𝜎.  

Let 𝑄𝑋(𝛼) denote the 𝛼 quantile of the random variable 𝑋 which follows some distribution, 

and 𝑔(𝑥) be an increasing function of 𝑥. Then the equivariance property of quantile functions 

is given by: 

 𝑄𝑔(𝑋)(𝛼) = 𝑔{𝑄𝑋(𝛼)} (15) 

 

Using this property, we can formulate the portfolio return as a linear function of a standard 

normal random variable, and then rewrite the Equation 14 as: 

 𝑉𝑎𝑅ℎ,𝛼 = −Φ−1(𝛼)𝜎 − 𝜇 (16) 

 

The 𝜇 works as a drift adjustment. Since we are working with daily VaR estimates (h = 1), 

Alexander (2008b) proposes using 𝜇 = 0, because when the measurement horizon is small, the 

expected return is close to zero, so ignoring the drift adjustment has a minor impact on the VaR 

estimation, besides it is difficult to accurately estimate the expected returns (𝜇). Therefore, we 

compute the 100𝛼% h-day Normal VaR by the following: 

 𝑉𝑎𝑅ℎ,𝛼 = −Φ−1(𝛼) × 𝜎 (17) 

 

Where 𝜎 is estimated using the EWMA volatility model that results from the Equation 11. 
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5.2. SGSt VaR 

The standardized Skewed Genralized Student-t (SGSt) distribution proposed by Theodossiou 

(1998), is a generalization of the classical Student-t distribution that allows for asymmetry and 

extra flexibility in the shape of its tail and central regions. The SGSt density function 𝑇𝜇,𝜎,𝜆,𝑝,𝑞, 

depends on the 𝜇, 𝜎, 𝜆, 𝑝 and 𝑞 parameters, where 𝜇 is the mean of the distribution, 𝜎 > 0 is 

the standard deviation, −1 < 𝜆 < 1 determines the skewness, 𝑝 > 0 controls the shape of the 

central region of the distribution and 𝑞 > 0 controls the shape of the tail region of the 

distribution. To estimate these parameters, we will use the maximum likelihood method.  

To compute the SGSt VaR, we use the same process used for the Normal VaR, where the 

only difference is that T𝜇,𝜎,𝜆,𝑝,𝑞
−1 (𝛼) represents the 𝛼 quantile of the SGSt distribution. Therefore, 

we compute the h day 100𝛼% SGSt VaR as: 

 𝑉𝑎𝑅ℎ,𝛼 = − T𝜇,𝜎,𝜆,𝑝,𝑞
−1 (𝛼) (18) 

Similar to the Normal VaR, we can use the equivariance property and assume 𝜇 = 0 to 

rewrite the SGSt VaR as: 

 𝑉𝑎𝑅ℎ,𝛼 = − T0,1,𝜆,𝑝,𝑞
−1 (𝛼) × 𝜎 (19) 

 

5.3. Historical VaR  

To estimate the Historical VaR we need to follow some steps, first we need to choose a sample 

size (𝑛), then compute non-overlapping ℎ-day returns or interest rate change in basis point, in 

the case of the interest rates, for the portfolio risk factors over the sample period, by keeping 

these portfolio risk factor loading constant to compute the empirical ℎ-day portfolio P&L 

distribution from the risk factor returns. Afterwards we need to obtain the empirical cumulative 

function by summing the probabilities from the smallest P&L of the portfolio to the largest, 

where each observation has a probability of  
1

𝑛
. Finally, the VaR is obtained by minus the 100𝛼% 

smallest portfolio P&L. 

The main problem of the basic Historical VaR model is that it gives the same weight to all 

observations, and the larger the sample size, the less this model reflects the current market 

conditions. On the Normal and SGSt models we solved this problem by using EWMA volatility 

estimates, however in the case of the basic Historical model this is not possible, because the 

EWMA can be used to estimate the covariance matrix, but not the whole distribution. Hull and 
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White (1998) proposed the volatility-adjusted Historical VaR with the purpose of solving this 

problem, where it gives the same weight to every observation but adjusts the volatility of the 

series of returns to match the current volatility. Therefore, we are adjusting the sample, so it 

reflects the current market conditions. To do this adjustment in a single series of portfolio 

returns (or P&Ls), we need to obtain a series of volatility estimates, �̂�𝑡, knowing that T is the 

VaR measurement date (𝑡 < 𝑇), we can adjust the series of returns (�̂�𝑡) by: 

 �̂�𝑡 =
𝑟𝑡
�̂�𝑡

�̂�𝑇 =
�̂�𝑇

�̂�𝑡
𝑟𝑡 (20) 

 

All things considered we compute the h day 100𝛼% volatility adjusted Historical VaR as 

minus the 𝛼-quantile of the sample of volatility adjusted returns given by Equation 20. 

 

5.4. Quantile Regression VaR  

Since the VaR is defined as the symmetric of the 𝛼 quantile, we can estimate the VaR through 

a quantile regression of the portfolio return onto some explanatory variables that we choose.  

Let 𝑦 represent the P&L of a portfolio, �̂� and �̂� represent the estimated parameters of the 

𝛼-quantile regression of 𝑥 onto 𝑦, then we can estimate the 𝛼-quantile regression (𝑞𝛼,𝑦) as: 

 𝑉𝑎𝑅𝛼 = −𝑞𝛼,𝑦 = −(�̂� + �̂�𝑥𝑖) (21) 

 

The estimates parameters, �̂� and �̂�, can be determined by solving the following 

minimization problem: 

 (�̂�, �̂�) = 𝑎𝑟𝑔 min
𝑎,𝑏

∑[𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)](𝛼 − 𝐼𝑦𝑖−(𝑎+𝑏𝑥𝑖)<0)

𝑛

𝑖=1

 (22) 

where  𝐼𝑦𝑖−(𝑎+𝑏𝑥𝑖)<0 is an indicator function of event: 

 𝐼𝑦𝑖−(𝑎+𝑏𝑥𝑖)<0 = {
1, 𝑖𝑓 𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖) < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

 (23) 

 

To compute the ℎ -day 100𝛼% QR VaR, we tested different parameters, where we choose 

between some specifications, like whether we used a constant or not and whether it had one or 
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two independent variables, which were always the estimated volatility of the portfolio through 

the EWMA method with different smoothing factors. 

 

5.5. Summary of the VaR Models  

We tested multiple configurations for each class of model, but it was not viable to present 

them all, so in Table 5.1 we present the best settings of each model class. To note that the models 

are numerated to facilitate the analysis, and each model is computed for the Total VaR and 

Systematic VaR. 

Model 

number: 
Description 

1 Normal, with EWMA smoothing factor 0.93 

2 Normal, with EWMA smoothing factor 0.94 

3 Normal, with EWMA smoothing factor 0.96 

4 Normal, with EWMA smoothing factor 0.98 

5 SGSt, with EWMA smoothing factor 0.93 and sample size 300 

6 SGSt, with EWMA smoothing factor 0.93 and sample size 800 

7 SGSt, with EWMA smoothing factor 0.98 and sample size 300 

8 SGSt, with EWMA smoothing factor 0.98 and sample size 800 

9 Historical with volatility adjustment, EWMA significance level 0.94 and sample size 300 

10 Historical with volatility adjustment, EWMA significance level 0.94 and sample size 800 

11 Historical with volatility adjustment, EWMA significance level 0.96 and sample size 300 

12 Historical with volatility adjustment, EWMA significance level 0.96 and sample size 800 

13 Historical with volatility adjustment, EWMA significance level 0.98 and sample size 300 

14 Historical with volatility adjustment, EWMA significance level 0.98 and sample size 800 

15 

Quantile Regression, with EWMA volatility with 0.94 smoothing factor as independent 

variable, sample size 800 

16 

Quantile Regression, with EWMA volatility with 0.94 smoothing factor and EWMA 

volatility with 0.90 smoothing factor as independent variables, sample size 800 

17 

Quantile Regression, with a constant and EWMA volatility with 0.94 smoothing factor and 

EWMA volatility with 0.90 smoothing factor as independent variables, sample size 800 

 

Table 5.1 Description of the VaR models. 
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Chapter 6.  

Backtesting 

In the previous Chapter we refer to the necessary methodology to compute the four types of 

VaR models. Altogether we computed 17 different models with different settings to test the 

performance of the Total VaR and Systematic VaR and choose the best one. For each model we 

computed a series of daily historical VaR estimates for over 10 years from 11 February 2013 to 

27 January 2023, which we define as the global period. 

An exceedance is an event where the actual P&L for the day is worse than the VaR estimate 

for that day, and it is considered one of the main performance metrics. We will adopt two tests: 

the Unconditional Coverage test (UC) proposed by Kupiec (1995), which evaluates the number 

of exceedances and the BCP test proposed by Berkowitz et al. (2011) that evaluates the 

autocorrelation between those exceedances.  

For the same number of exceedances in close proximity, a model with fewer exceedances 

in total has a higher probability of failing the BCP. Therefore, we need to primarily focus on 

the results for the UC test to the global period and then differentiate the models with the best 

performance using the BCP test to the global period, finally we will apply the UC to annual 

subperiods to assess the model that has more consistent results on an annual basis, and that will 

be the model chosen to go forward one year. 
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6.1. Unconditional test  

Remembering the definition of VaR as the worst loss we are 1 − 𝛼 confident will not be 

exceeded, so there is a chance that the loss will be worse than the VaR. For example, for a 

sample of 500 daily VaR estimates at 99% confidence level (𝛼 = 1%), we expect that the VaR 

to be exceeded 500 × 𝛼 = 5 times, which means that we expect 5 exceedances to occur. 

For each observation of a sample, we can identify an exceedance through an indicator 

function. Let 𝑉𝑎𝑅𝑡,𝛼 be the VaR estimated for the day t, then we have a time series with elements 

given by: 

 𝐼𝑡,𝛼 = {
1, 𝑖𝑓 𝑃&𝐿𝑡 < −𝑉𝑎𝑅𝑡,𝛼 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (24) 

 

Let 𝜋𝑜𝑏𝑠 and 𝜋𝑒𝑥𝑝 be the observed and the expected exceedance rates, respectively, then 

the null and alternative hypothesis, for the UC test are given by: 

 
𝐻0: 𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥𝑝 = 𝛼 

𝐻𝛼: 𝜋𝑜𝑏𝑠 ≠ 𝜋𝑒𝑥𝑝 
(25) 

 

Let 𝑛1and 𝑛0 be the number of exceedances and non-exceedances, respectively, then the 

test statistic is given by: 

 𝐿𝑅𝑢𝑐 = (
𝜋𝑒𝑥𝑝

𝜋𝑜𝑏𝑠
)
𝑛1

(
1 − 𝜋𝑒𝑥𝑝

1 − 𝜋𝑜𝑏𝑠
)
𝑛0

 (26) 

 

This test statistic under the null hypothesis (𝜋𝑜𝑏𝑠 = 𝜋𝑒𝑥𝑝) follows a chi-squared distribution 

with one degree of freedom: −2 ln(𝐿𝑅𝑢𝑐)~𝜒1
2. 

Therefore, the model is well specified if the null hypothesis defined at Equation 25 is not 

rejected at 95% confidence level, meaning that the model passes the UC test if the exceedance 

rate is within the expected value of 𝛼 = 1%. 
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6.2. BCP test 

Berkowitz, Christoffersen and Pelletier (BCP) test, assesses that a model is well specified if the 

exceedances are independent from each other, which means that the exceedances do not follow 

a pattern. Therefore, the autocorrelation in exceedances is 0 at all lags.  

Let �̂�𝑘 = 𝐶𝑜𝑟𝑟(𝐼𝛼, 𝐿𝑘𝐼𝛼) be the 𝑘-th order autocorrelation of the time series of exceedances 

given by Equation 24 and 𝐾 is the maximum autocorrelation lag considered in the test. Then, 

the null and alternative hypothesis, for the BCP test are given by: 

 
𝐻0: �̂�𝑘 = 0, ∀𝑘 ∈ {1,… , 𝐾} 

𝐻𝛼: ∃𝑘 ∈ {1,… , 𝐾} 𝑠. 𝑡. �̂�𝑘 ≠ 0 
(27) 

 

Let the 𝑛 be the sample size, then the test statistic is: 

 𝐵𝐶𝑃𝐾 = 𝑇(𝑇 + 2) ∑
�̂�𝑘

2

𝑇 − 𝑘

𝐾

𝑘=1

 (28) 

 

This test statistic under the null hypothesis (�̂�𝑘 = 0) follows a chi-squared distribution with 

𝐾 degrees of freedom: 𝐵𝐶𝑃𝐾~𝜒𝐾
2 . 

There is a tradeoff to consider when choosing the number of lags 𝐾. On one hand, a larger 

𝐾 helps detect autocorrelation present at higher-order lags. But on the other hand, a larger 𝐾 

makes it harder to reject the null hypothesis when autocorrelation is only present at lower-order 

lags. This happens because with a larger 𝐾 the critical value for rejection increases but, if there 

is no evidence of autocorrelation at higher-order lags, the value of the test statistic will not 

increase enough to compensate for this increase in the critical value, resulting in a failure to 

reject the model. Knowing this, we compute the BCP test for a range of lags, from the 1 to 10 

lags.  
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6.3. Results of Backtesting  

In this section, we will use the UC and BCP tests to evaluate the performance of each model to 

conclude the best model for our current portfolio. Recalling that we computed the daily VaR 

estimates for every model for the global period of 10 years, it totalizes 𝑛 = 2600 observations. 

Since, the VaR models were computed at a significance level of 𝛼 = 1%, in the perspective of 

the UC test, a model will be considered well specified if it has near to 2600 × 1% ≈ 26 

exceedances. 

Usually, the null hypothesis is rejected when the 𝑝-value of the test statistic is less than 5%, 

so a model will be accepted by the UC and BCP tests when their 𝑝-value is higher than 5%.  

Table 6.1 presents the UC test for Total VaR estimated by each model, for the global period. 

 
Model Exceedances 

Exceedance 

Rate (%) 
p-value (%) 

  

Normal 

1 48 1.85% 0.00% *** 

2 47 1.81% 0.00% *** 

3 43 1.65% 0.20% *** 

4 38 1.46% 2.70% ** 

SGSt 

5 27 1.04% 84.47%  

6 28 1.08% 69.70%  

7 23 0.88% 54.64%  

8 23 0.88% 54.64%  

Historical 

9 44 1.69% 0.12% *** 

10 50 1.92% 0.00% *** 

11 38 1.46% 2.69% ** 

12 39 1.50% 1.70% ** 

13 30 1.15% 44.15%  

14 35 1.35% 9.20% * 

Quantile 

Regression 

18 30 1.15% 44.15%  

19 32 1.23% 25.37%  

20 40 1.54% 1.06% ** 

Table 6.1. UC test results for the global period, for the Total VaR. The *** 

indicates rejection with 99% confidence level, ** show rejection with 95% 

confidence level and * rejection with 90% confidence level. The models with *** 

and ** are rejected because their p-value is lower than 5% 
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As we can see from the table above, we reject all the Normal VaR models, which is not a 

surprise, as the main weakness of this model is that it assumes a normal distribution for the 

returns, which is normally not the case of the financial assets (Fama, 1965). As expected, the 

Normal VaR models produce too many exceedances, which is a clear sign that the distribution 

of our portfolio has fatter tails, which implies that the Normal distribution underestimates the 

VaR when it is computed at a high confidence level. Furthermore, we can observe in Appendix 

A.1 that presents the descriptive statistics of the portfolio during the Backtesting period, that 

our portfolio has negative skewness and a leptokurtic distribution. 

Model 2 is the RiskMetrics model and as we can observe it has one of the worst results, 

which means that the proposal of J.P.Morgan (1996), that the optimal EWMA smoothing factor 

is 𝜆 = 0.94, is not the best choice in all cases.  

Table 6.2 presents the results of the UC test for the Systematic VaR against the actual 

portfolio P&Ls. Note that the Systematic VaR is computed by the mapped portfolio, but it has 

to be backtested against the actual portfolio. 

  
Model Exceedances 

Exceedance 

Rate (%) 
p-value (%) 

  

Normal 

1 96 3.69% 0.00% *** 

2 90 3.46% 0.00% *** 

3 86 3.31% 0.00% *** 

4 82 3.15% 0.00% *** 

SGSt 

5 79 3.04% 0.00% *** 

6 59 2.27% 0.00% *** 

7 77 2.96% 0.00% *** 

8 60 2.31% 0.00% *** 

Historical 

9 84 3.23% 0.00% *** 

10 83 3.19% 0.00% *** 

11 74 2.85% 0.00% *** 

12 70 2.69% 0.00% *** 

13 62 2.38% 0.00% *** 

14 58 2.23% 0.00% *** 

Quantile 

Regression 

15 55 2.12% 0.00% *** 

16 62 2.38% 0.00% *** 

17 61 2.35% 0.00% *** 

 

Table 6.2. UC test results for the global period, for the Systematic VaR against 

the actual portfolio. The *** indicates rejection with 99% confidence level, ** 

show rejection with 95% confidence level and * rejection with 90% confidence level. 

The models with *** and ** are rejected because their p-value is lower than 5% 
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All the Systematic VaR models are rejected by the UC test because the actual portfolio is 

considerably different from the mapped portfolio. In Appendix B.1, we can observe the UC test 

results for the Systematic VaR against the mapped portfolio, which has relatively better results 

than the Systematic VaR against the actual portfolio. Therefore, the Systematic VaR is not a 

good solution for our portfolio, because the actual portfolio is considerably different from the 

mapped portfolio, which implies that our portfolio is not diversified enough. On the other hand, 

since the portfolio is not very large, there is no problem estimating the Total VaR, and so from 

now on we will only consider the Total VaR models. 

Advancing in the backtesting, we exclude the models that were rejected by the UC test. 

Table 6.3 presents the 𝑝-value of the BCP test with the lowest p-value among the 10 BCPs 

conducted for each model (all of them Total VaR models), for the global period. 

  Model 

number 
Worst  p-value Lag 

  

SGSt 

5 59.22%  1 

6 7.66% * 5 

7 37.47%  2 

8 18.40%  2 

Historical 
13 3.15% ** 5 

14 15.72%  10 

Quantile 

Regression 

15 55.13%  1 

16 50.63%  2 

 

Table 6.3. BCP test results for the global period. It represents only the worst p-

value among the 10 BCP tests conducted and the respective lag it corresponds to. 

The *** indicates rejection with 99% confidence level, ** show rejection with 95% 

confidence level and * rejection with 90% confidence level. The models with *** 

and ** are rejected because their p-value is lower than 5% 

 

We observe that the only model that passes the UC test and does not pass the BCP test is 

the model 13. In Appendix B.2 we have the BCP test for all the Total VaR models, even the 

ones that were rejected by the UC test and we can see that the models 4 and 12 passed the BCP 

test, even though they did not pass the UC test. 
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 To help with a deeper analysis Table 6.4 presents the 𝑝-value of the UC test for each model, 

for the annual subperiods. 

 SGSt Historical Quantile Regression 

 5 6 7 8 14 15 16 

2023-2022 0.38% 0.38%  0.00%  0.00%  0.77%  0.38% 0.38%  

  (25.44%) (25.44%) 
 

(2.22%) ** (2.22%) ** (69.67%)  (25.44%) (25.44%)  

2022-2021 0.77% 0.77% 
 

0.77%  0.77%  1.15%  0.77% 1.15%  

  (69.67%) (69.67%) 
 

(69.67%)  (69.67%)  (80.77%)  (69.67%) (80.77%)  

2021-2020 1.54% 1.54%  1.15%  1.54%  2.31%  1.92% 1.54%  

  (41.87%) (41.87%) 
 

(80.77%)  (41.87%)  (7.01%) * (18.44%) (41.87%)  

2020-2019 0.38% 0.00%  0.38%  0.00%  0.38%  1.54% 1.54%  

  (25.44%) (2.22%) ** (25.44%)  (2.22%) ** (25.44%)  (41.87%) (41.87%)  

2019-2018 0.77% 0.77%  0.77%  0.77%  1.92%  0.77% 0.77%  

  (69.67%) (69.67%) 
 

(69.67%)  (69.67%)  (18.44%)  (69.67%) (69.67%)  

2018-2017 1.15% 0.77%  1.15%  0.77%  1.54%  1.15% 1.15%  

  (80.77%) (69.67%) 
 

(80.77%)  (69.67%)  (41.87%)  (80.77%) (80.77%)  

2017-2016 1.54% 0.77%  1.54%  1.15%  1.54%  1.15% 1.54%  

  (41.87%) (69.67%) 
 

(41.87%)  (69.67%)  (41.87%)  (80.77%) (41.87%)  

2016-2015 1.54% 1.15%  2.69%  1.92%  1.54%  1.54% 2.31%  

  (41.87%) (80.77%) 
 

(2.34%) ** (18.44%)  (41.87%)  (41.87%) (7.01%) * 

2015-2014 1.54% 1.54%  1.54%  1.15%  1.54%  1.54% 1.92%  

  (41.87%) (41.87%) 
 

(41.87%)  (80.77%)  (41.87%)  (41.87%) (18.44%)  

2014-2013 0.77% 0.77%  0.77%  0.77%  0.77%  0.77% 0.77%  

  (69.67%) (69.67%) 
 

(69.67%)  (69.67%)  (69.67%)  (69.67%) (69.67%)  

 

Table 6.4. UC test for annual subperiods. The p-value is in parenthesis and below 

the exceedance rate for each model and for the respective subperiod. The *** 

indicates rejection with 99% confidence level, ** rejection with 95% confidence 

level and * rejection with 90% confidence level. The cells with *** and ** are 

rejected because their p-value is lower than 1% and 5%, respectively, so do not pass 

the UC test. The cells with * denote the p-value range between 5% and 10%, so it 

passes the UC test, but is not consistent enough. 

 

As we can see from the table above, model 5 and model 15 are clearly two good candidates 

to be chosen. Remembering Table 6.1, in the global period the model 5 has 27 exceedances 

which is a closer number to the supposed (26 exceedances), while the model 15 has 30 

exceedances. Therefore, we will choose the model 5, which corresponds to the Total VaR of 

SGSt with EWMA smoothing factor of 𝜆 = 0.93 and sample size of 300. 
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Figure 6.1 shows the daily P&L, daily VaR and the exceedances that occurred during the 

global period of 10 years of the SGSt model number 5. 

 

Figure 6.1. Global period performance of SGSt VaR model number 5. The green 

dots in the 1st panel represent the exceedances. In the 2nd panel we can visualize by 

how much the VaR is exceeded whenever an exceedance occurs. In the Appendix 

B.3 is the table with the specifications of the exceedances 

 

We can observe that during this period it did not occur any exceedance clustering. The 

exceedances that occurred more closely to each other were in 2020 with 17 trading days of 

interval between two exceedances and in 2014 and 2016 both with 23 trading days of interval 

between two exceedances. In Appendix B.4 we have the global period performance of the 

Historical VaR model number 13 and there we can clearly see the exceedance clustering that 

occurred in 2020. Both models have a similar number of exceedances, but the model 13 failed 

the BCP test because of the exceedance clustering that we can visualize in Appendix B.4. 
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Chapter 7.  

VaR Management 

As mentioned in the previous chapter, we will use from now on model 5, the SGSt with EWMA 

smoothing factor of 𝜆 = 0.93 and sample size of 300, to measure and manage the VaR. From 

now on, we will define two approaches.  

In the first approach we go forward one year without using any risk management strategy, 

and in the second we go forward one year, by defining a maximum target of VaR for our 

portfolio. Therefore, in the second approach we will employ a risk management strategy every 

day the estimated VaR surpasses the pre-determined target. This strategy will consist of 

hedging, using a future contract, the risk factors that contribute more to the risk, which are the 

risk factors that have the larger Marginal VaR, 

In both approaches we need to reinvest the coupon payments of the bonds as they occur, 

which will be done by reenforcing the long positions of some stocks. The specific details of the 

coupon reinvestments are presented in Appendix C.1. 

As we can see in Figure 6.1, during the Backtesting period the VaR of our portfolio ranged 

primarily between 100 000€ and 200 000€, except during the Covid-19 period (2020-2022), 

where we can observe more volatility. Therefore, knowing that on 27 January 2023 our portfolio 

value is almost €10 million, we will set our maximum daily VaR to 1.6% of the portfolio value, 

translating in 159 110€, which is in conformity with the historical data.  

In this chapter we will first present the methodology of VaR decompositions and then the 

hedging strategy that we will use to reduce the VaR when it surpasses the pre-determined target. 

At the end of this chapter, we present the results of the strategy and compare them to the 

approach where we do not define any daily maximum EC. 
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7.1. VaR decompositions  

We compute the VaR at the risk factor level, to make it possible to disaggregate the portfolio by 

decomposing the VaR, which supports an effective risk management strategy.  

In this work we will use the Marginal VaR that will assist with the selection of the risk 

factor that will be hedged to then determine the quantity of the required hedging position. 

The Marginal VaR for slice Θ𝑠 of the vector of risk factor loadings Θ representing the whole 

portfolio measures the proportion of the portfolio’s VaR that can be attributed to the risk factor 

exposures in slice Θ𝑠. The Marginal VaR for slice Θ𝑠 is given by:     

 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑅𝑠 = ∇𝑓(Θ)𝑇Θ𝑠 = ∑
𝜕𝑉𝑎𝑅

𝜕𝜃𝑖
× 𝜃𝑖

𝑠

𝑛

𝑖=1

 (29) 

 

The gradient vector, ∇𝑓(Θ), represents the set of sensitivities of the portfolio VaR to small 

changes in the exposure to each risk factor, which is given by the following condition: 

 ∇𝑓(Θ) ≡
𝜕𝑓(Θ)

𝜕Θ
=

[
 
 
 
 
𝜕𝑉𝑎𝑅

𝜕θ1

⋮
𝜕𝑉𝑎𝑅

𝜕θ𝑛 ]
 
 
 
 

 (30) 
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7.2. VaR management strategy 

The VaR estimated for 30 January 2023 of 174 374€ is the first day that surpasses the maximum 

daily value of 159 110€, so we need to hedge it, reducing the VaR by 15 264€ (9.6%). To do 

this we computed the Marginal VaR to see from where most of the risk came, which is 

represented on Table 7.1. 

Risk Factor Type Equity Currency Interest Rate 

Marginal VaR (EUR) 79,721.10 27,142.46 67,511.15 

Marginal VaR (%) 45.72% 15.57% 38.72% 

Risk Factor Group S&P500 AEX DAX CAC FTSE USDEUR GBPEUR IR_EUR IR_USD 

Marginal VaR (EUR) 30,694.45 10,391.52 39,207.15 -860.18 288.15 27,263.45 -120.99 43,288.23 24,222.92 

Marginal VaR (%) 17.60% 5.96% 22.48% -0.49% 0.17% 15.63% -0.07% 24.82% 13.89% 

 

Table 7.1. Marginal VaR decomposition by risk factor. This table shows how 

much each risk factor is contributing to the VaR on 30 September 2023. The 

decomposition by the risk factor group is a decomposition of the risk factor type. 

 

As we can see from the table above, the risk factor type with the highest Marginal VaR is 

equity, and consequently the index that is contributing more to that is the DAX. Therefore, to 

lower the VaR on this day we will add a short position on a future contract on the DAX of €1.7 

million. 

Since the VaR is estimated daily, this strategy is also adjusted daily, including the choice of 

the risk factor that will be hedged, which is based on updated marginal VaR decompositions. 

Note that whenever the VaR is below the target, or the main risk factor that contributes to the 

VaR differs we remove their hedging position. We keep on repeating this process for 265 trading 

days until the estimation of VaR for 2 February 2024.  

By hedging a particular risk factor, we are changing the portfolio exposure to it which 

changes the sensitivity of the VaR to all risk factors. Sometimes those sensitivities have big 

variations, making it impossible to decrease the VaR to the target value with only one risk factor, 

making it necessary to hedge two risk factors to be possible to reach the target. To do this, we 

first reduce a part of the VaR with the risk factor that is the main source of risk and then we 

reduce the VaR to the target value with the risk factor that has the second highest Marginal VaR.  
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Figure 7.1 shows the hedging strategy that throughout the year is used to manage the VaR.  

 

Figure 7.1. Hedging strategy by risk factor and its quantification by day. Note 

that the index represents the sum of all indices hedged by day. 

 

As we can see from the figure above, some days we had to hedge directly a stock. This 

happened because on two different occasions the stock PHIA.AS from the AEX index, 

increased the price significantly from one day to another, changing the correlations with the 

AEX and decreasing the sensitivity of the Total VaR to that index. Therefore, on those occasions 

it was not sufficient to hedge with an index position, we had to hedge directly in a position on 

that stock. As we have short positions in that stock, we need to add long positions financed in 

the short term. Note that we have to do this not only on the day of the price change but also on 

the next days until the situation is enough in the past that the correlations and sensitivities 

normalized. When everything is minimally normalized, we return to the original position.  

From Figure 7.1 we can observe that we mostly hedged indices, so in Figure 7.2 we show 

the decomposition hedging strategy, by index. 

 

Figure 7.2. Decomposition of the hedging strategy by each index hedged and its 

value 
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From the figure above we can observe that the S&P500 was the index that we hedged more 

frequently, which makes sense knowing from the composition of our portfolio that the positions 

in stocks from the S&P500 represented almost 25% of the portfolio value on 27 January 2023. 

As the S&P500 is from the U.S. market, it has associated a currency exposure, so when we 

hedge the S&P500 it involves a change in the exposure to the USDEUR risk factor. 

Overall, the portfolio has a long exposure to the risk of each index via the respective stock 

positions, then in most cases the hedging is done by a short position on a future contract of the 

respective index. However, as we can observe the hedging positions of each index in Figure 

7.2, in some days the hedging is done with a long position on a future contract, which is 

explained by the sensitivities and the correlations between the stocks and the respective index, 

for example when their correlation is negative it is only possible to hedge the index by a long 

position on a future contract.  

 

7.3. Comparison and Results of VaR management  

In Figure 7.3 we can observe the daily VaR estimates of the portfolio for the two approaches: 

the VaR without hedging and the VaR with hedging, for the one-year period.  

In the days that we do the hedging, which are 151 days, the VaR is kept at a maximum of 

close 160 000€, whereas in the case where we left the portfolio unhedged, the VaR reaches a 

maximum of more than 220 000€ (40.8% above the target), on 3 February 2024.  

 

Figure 7.3. Daily VaR of the portfolio with hedging and without hedging. 
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Figure 7.4 shows the daily P&L for both approaches for the one-year period, and the 

difference between the P&L of the portfolio with hedging and the portfolio without hedging. 

 

Figure 7.4. Daily P&L of the portfolio with hedging and the portfolio without 

hedging. In the 2nd section we represent the difference between the P&L of the 

portfolio hedged and the P&L of the portfolio unhedged 

 

As we can observe from the figure above, some days the strategy increases the P&L, and 

in another days, it decreases even more the P&L. This happens because it is normal that by 

hedging, we are mitigating our losses, but we are also limiting our profits.  

The maximum that the hedging strategy increased the P&L was on 22 February 2023 by an 

increase of almost 100 000€. On the other hand, on 13 February 2023 the hedging strategy 

caused a lower P&L than the portfolio without hedging, by almost 60 000€. Furthermore, 

considering only the days that we do hedging, the average difference between the P&L hedged 

and the P&L unhedged is -122.5€ and the median is -470.7€, which indicates that on average 

the P&L hedged is slightly lower than the P&L unhedged. Overall, the hedging strategy 

contributes to lower P&Ls, suggesting that the hedging strategy is not working as intended. 

To investigate this issue, we analyze the P&L differences between the two strategies 

separately on days with positive and negative P&Ls.  
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Figure 7.5 shows that difference in those two different scenarios. 

 

Figure 7.5. Difference of the P&L hedged and unhedged, when the P&L is 

positive and when the P&L is negative. The grey area represents the days that the 

hedging happens.  

 

As we can observe in the graphs above, when we hedge, we are reducing the risk, therefore 

when the P&L is negative, most of the days the hedging improves the result, by having a 

positive difference and reducing the loss. However, when the P&L is positive, it is normal that 

by reducing the risk, we will have a worst P&L result, reducing the profit.  

Table 7.2 shows the statistics for the P&L differences represented in Figure 7.5 

Statistics 
P&L hedged – P&L unhedged 

Total When P&L>0 When P&L<0 

Positive Difference (%) 43.7% 26.0% 62.2% 

Average (€) -122.51 -4,725.10 4,666.67 

Median (€) -470.76 -2,153.58 1,062.65 

Maximum (€) 95,417.65 27,017.96 95,417.65 

Minimum (€) -63,309.16 -63,309.16 -28.486,49 

Table 7.2. Statistics of the difference between the P&L hedged and unhedged, 

when the P&L is positive and when it is negative. 
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We can conclude from Table 7.2 that when the P&L is positive, the hedging only increases 

the profit by 26% of the days we hedge, whereas when the P&L is negative, the hedging reduces 

the loss 62.2% of the hedged days, improving the P&L. In the days that we hedge, we are 

improving our losses on average by 4 666€, but we are also limiting our profits on average by 

4 725€. When the P&L is positive, the median of the difference is -2 153.58€ and when the 

P&L is negative the median is 1 062.65€ 

Therefore, as expected in the days that we hedge, we are reducing our risk and in contrast 

we are on most days limiting our profits and improving our losses. 

Figure 7.6 presents the comparison between the Unhedged and Hedged VaR (shown as a 

loss) performance for the one-year period. 

 

Figure 7.6. Comparison of performance of the Portfolio Unhedged and the 

Portfolio Hedged. The VaR is shown as a loss. In the panels below we show the 

exceedances occurring and by how much they exceed the VaR of that day. 

 

We observe from Figure 7.6 that the unhedged portfolio and the hedged portfolio presented 

the same number of exceedances for the year. Considering this it is important to note that three 

out of the four exceedances occurred during days that was not necessary a risk management 

strategy, because the VaR was below the pre-defined maximum. The fourth exceedance 

occurred on 14 December 2023, a day that the hedging strategy even increased the P&L, but 

just slightly and not enough to compensate for the decrease of the VaR. As we can see in 

Appendix C.2. that presents the exceedances that occur during the one-year period, for both 

strategies (with and without hedging), the increase in the P&L was lower than the decrease in 

the VaR, so the exceedance became even bigger, but only slightly so, with the hedging strategy.  
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Figure 7.7 presents the daily cumulative P&L of both approaches 

 

Figure 7.7. Daily cumulative P&L of the portfolio with hedging and the portfolio 

without hedging. In the 2nd panel we represent the difference between the daily 

cumulative P&L of the portfolio hedged and the P&L of the portfolio unhedged 

 

As we can see from the figure above, both strategies generated a profit at the end of the 

year, and even though at the end of the period in analysis there is a difference in the cumulative 

P&L, that difference is not very significant. 

Both approaches studied have distinct risk profiles due to the hedging, so it is not fair to 

compare the P&L of each approach without considering the risk profile. Therefore, we need to 

use a risk-adjusted performance metric to make this comparison possible. The RORAC measure 

associates the P&L with the risk that is incurred to achieve that P&L, and it is given by: 

 𝑅𝑂𝑅𝐴𝐶 =
𝑃&𝐿

𝐸𝐶
 (31) 

  

We will compute the average RORAC by two different methodologies. The first one we 

computed by: 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑂𝑅𝐴𝐶 =
 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃&𝐿

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝐶
 (32) 
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The second method consists of computing for the year, the daily RORAC by Equation 31, 

and then computing the average of the RORAC, which is given by: 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑂𝑅𝐴𝐶 =

 ∑
 𝑃&𝐿𝑛

𝐸𝐶𝑛

𝑛
𝑖=1

𝑛
 

(33) 

 

In Table 7.3 we present the RORAC for the portfolio with hedge and the portfolio without 

hedging, where we used two methodologies to compute the average RORAC. 

  Without hedge With hedge 

P&L (€) 1,367,969 1,349,470 

Average P&L (€) 5,162 5,092 

EC (€) 43,428,314 40,547,292 

Average EC 163,880 153,009 

Average RORAC (1) 3.15% 3.33% 

Average RORAC (2) 3.01% 3.16% 

 

Table 7.3. Average RORAC. (1) is computed by Equation 32 and (2) is computed 

by Equation 33. 

 

The results of the RORAC in the two methodologies were different, but their conclusions 

are the same. We can observe that even though the portfolio with the hedging strategy had a 

lower P&L, it still provided a better RORAC than the portfolio without hedging because of the 

reduction in the risk incurred. So, we can conclude that by implementing a risk management 

strategy it benefits the performance of the portfolio. 
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Chapter 8.  

Conclusion 

The main purpose of this work was to measure and manage the daily VaR of the portfolio, such 

that it did not exceed a pre-defined maximum value, during the period of one-year. 

Firstly, we had to measure our portfolio that consisted of positions on stocks from the 

S&P500, the DAX, CAC40, FTSE100 and the AEX and a part of bonds from U.S. and European 

markets. To do this, we had to choose one model to measure the VaR. Given the large range of 

choices, we computed four classes of VaR models with various settings: Normal VaR, SGSt 

VaR, Historical VaR and Quantile Regression VaR, which in total we computed 17 different 

models to test which one is the best fit to our portfolio. To tackle this topic, we analyzed the 

performance of each model applying the UC and BCP tests through the Backtesting assessment. 

In the Backtesting analysis we had some expected and unexpected results. As expected, 

Normal VaR failed the Backtesting, which is in accordance with the assumption that the returns 

of the financial assets do not follow a normal distribution, indicating that this class of model is 

unfit for our portfolio. The Risk Metric model with EWMA 𝜆 = 0.94, proposed by J.P.Morgan 

(1996), had was rejected by the UC test, which entails the necessity of testing various models 

and settings to a specific portfolio, because what is a best fit to a portfolio might not be to 

another portfolio, even if they are similar.  

The Systematic VaR requires a less complex computation but implies less accuracy. In the 

case of our portfolio, the Systematic VaR is not adequate because the mapped portfolio 

computed for the Systematic VaR is very different from the actual portfolio, which means that 

our portfolio is not very diversified. 

We measure the VaR applying the model chosen, the SGSt with EWMA smoothing factor 

of 0.93 and sample size of 300. To manage the VaR we choose a pre-determined daily maximum 

for VaR of close to 160 000€, and during the period of one-year, we implement a hedging 

strategy based on the VaR decompositions every day that the VaR exceeds the pre-determined 

limit.  

The hedging strategy consists of a position on futures contract in the source or sources that 

represent higher risk according to the Marginal VaR. Generally, the main risk came from the 
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equity part of the portfolio, which is expected because a stock is riskier than a bond. Therefore, 

we mostly hedged the market risk of stocks, which we did by entering into a future contract of 

the corresponding index. The primary source of risk that we needed to hedge was mostly the 

stocks from the U.S. market, which on 27 January 2023 represented almost 25% of the portfolio. 

Even though, some days we had to hedge an European bond, the unexpected was that on certain 

days we had to hedge directly a stock, because its price changed drastically from one day to 

another. 

Results reveal that in the approach where we did not manage the VaR it reached a maximum 

of almost 225 000€, which is 40% higher than the target. In addition, the hedging clearly helped 

minimize the losses, which were improved on average by 4 666€, although it was at the expense 

of reduced profits, which were limited on average by 4 725€. Lastly, by analyzing and 

comparing the performance of the portfolio with and without management using the average of 

RORAC we can conclude that even though the cumulative P&L had decreased with the risk 

management strategy, the limit of VaR, and therefore the decrease of EC offset it, causing a 

better risk-adjusted performance to the portfolio with a risk management strategy. 
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Appendices 

 

Appendix A: Descriptive Statistics 

Appendix A.1. Descriptive Statistics of P&L and return of the portfolio, during the global 

period  

 Mean Median Maximum Minimum 
Standard 

Deviation 
Skewness Kurtosis 

P&L 3,533.25 4,802.83 808,339.79 -989,938.41 69,929.14 -0.35 18.05 

Return 0.036% 0.048% 8.129% -9.955% 0.703% -0.35 18.05 

 

Appendix A.1. Descriptive Statistics of the P&L and return of the portfolio, 

during the global test period, from 11 February 2013 a 27 January 2023 
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Appendix B: Backtesting Details 

Appendix B.1. UC test results of the Systematic VaR against the mapped portfolio 

  Model 

number 
Exceedances 

Exceedance 

Rate (%) 
p-value (%) 

  

Normal 

1 51 1.96% 0.00% *** 

2 51 1.96% 0.00% *** 

3 49 1.88% 0.01% *** 

4 45 1.73% 0.07% *** 

SGSt 

5 48 1.85% 0.01% *** 

6 35 1.35% 9.20% * 

7 47 1.81% 0.02% *** 

8 30 1.15% 44.15%  

Historical 

9 42 1.62% 0.38% *** 

10 43 1.65% 0.22% *** 

11 35 1.35% 9.20%  

12 39 1.50% 1.70% ** 

13 32 1.23% 25.37%  

14 35 1.35% 9.20% * 

Quantile 

Regression 

15 32 1.23% 25.37%  

16 33 1.27% 18.54%  

17 39 1.50% 1.70% ** 

 

Appendix B.1. UC test results for the global period, for the Systematic VaR 

against the mapped portfolio. The *** indicates rejection with 99% confidence 

level, ** show rejection with 95% confidence level and * rejection with 90% 

confidence level. The models with *** and ** are rejected because their p-value is 

lower than 5% 
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Appendix B.2. BCP test for all the Total VaR models 

 Model Worst p-value Lag 
  

Normal 

1 4.60% ** 2 

2 0.15% *** 2 

3 1.30% ** 3 

4 28.89%  10 

SGSt 

5 59.22%  1 

6 7.66% * 5 

7 37.47%  2 

8 18.40%  2 

Historical 

9 2.78% ** 2 

10 0.68% *** 2 

11 4.07% ** 10 

12 5.88% * 10 

13 3.15% ** 5 

14 15.72%  10 

Quantile 

Regression 

15 55.13%  1 

16 50.63%  2 

17 0.20% *** 1 

 

Appendix B.2. BCP test for all 17 Total VaR models, for the global period. The 

*** indicates rejection with 99% confidence level, ** show rejection with 95% 

confidence level and * rejection with 90% confidence level. The models with *** 

and ** are rejected because their p-value is lower than 5% 
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Appendix B.3.: Global period exceedances of model 5 

Date P&L Total VaR Exceedance % of VaR 

13/09/2022 -238,828 € 218,072 € 20,756 € 9.5% 

28/09/2021 -184,718 € 120,927 € 63,792 € 52.8% 

22/02/2021 -167,666 € 145,287 € 22,379 € 15.4% 

06/01/2021 -155,867 € 133,569 € 22,298 € 16.7% 

26/10/2020 -199,572 € 171,952 € 27,620 € 16.1% 

12/03/2020 -221,653 € 167,727 € 53,926 € 32.2% 

24/02/2020 -126,855 € 120,298 € 6,557 € 5.5% 

02/12/2019 -87,695 € 87,275 € 420 € 0.5% 

10/10/2018 -184,880 € 102,622 € 82,258 € 80.2% 

22/03/2018 -138,075 € 127,951 € 10,124 € 7.9% 

01/02/2018 -162,452 € 124,141 € 38,311 € 30.9% 

20/10/2017 -90,588 € 84,232 € 6,356 € 7.5% 

29/06/2017 -117,809 € 115,263 € 2,546 € 2.2% 

10/11/2016 -131,746 € 123,543 € 8,204 € 6.6% 

09/09/2016 -162,525 € 129,106 € 33,419 € 25.9% 

20/06/2016 -127,771 € 124,830 € 2,941 € 2.4% 

20/04/2016 -131,411 € 96,143 € 35,268 € 36.7% 

05/02/2016 -191,044 € 172,287 € 18,757 € 10.9% 

13/01/2016 -133,918 € 126,619 € 7,299 € 5.8% 

03/06/2015 -149,022 € 140,689 € 8,332 € 5.9% 

07/10/2014 -105,751 € 94,904 € 10,847 € 11.4% 

31/07/2014 -158,879 € 106,995 € 51,884 € 48.5% 

08/07/2014 -105,350 € 78,939 € 26,411 € 33.5% 

25/04/2014 -95,092 € 75,988 € 19,104 € 25.1% 

24/01/2014 -115,417 € 74,916 € 40,501 € 54.1% 

15/05/2013 -166,071 € 133,914 € 32,157 € 24.0% 

 

Appendix B.3. Global period exceedances of the model 5 
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Appendix B.4.: Global period of model 13  

 

Appendix B.4. Global period performance of Historical Var model number 13. 

The green dots in the 1st panel represent the exceedances. In the 2nd panel we can 

visualize by how much the VaR is exceeded whenever an exceedance occurs. 
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Appendix C: VaR Management Details 

Appendix C.1. Table of coupon payments of the bonds that compose the portfolio 

Date Bond 
Value of Coupon 

(EUR) 
Stock invested 

Quantity 

invested 

2023-02-03 US91282CJU62 17,648.02 Electronic Arts, Inc. 170 

2023-02-16 DE000BU2Z023 22,000.00 ASML Holding N.V. 35 

2023-05-05 US91282CJU62 17,558.61 CVS Health Corp 283 

2023-05-17 
US91282CJJ18 23,795.94 Bank of New York Mellon 

Corporation 
1,090 

US912810QL52 15,634.05 

2023-08-04 US91282CJU62 17,758.80 Accenture plc 63 

2023-11-06 US91282CJU62 18,302.41 Apple, Inc. 110 

2023-11-16 
US91282CJJ18 23,785.85 

Pfizer, Inc. 1,480 
US912810QL52 15,627.42 

2024-01-04 DE0001135069 67,500.00 Pfizer, Inc. 2,612 

2024-01-16 NL0009446418 48,750.00 Siemens Aktiengesellschaft 311 

 

Appendix C.1. Table of coupon payments. In each day that we receive a coupon 

payment from a bond we have to reinvest it in a determined stock. 

 

 

Appendix C.2. Exceedances that occur during 30 January 2023 and 2 February 2024 

Date 24/04/2023 20/07/2023 26/09/2023 14/12/2023 

Without 

Hedging 

P&L (€) -209,049.02 -148,248.01 -133,963.54 -181,152.03 

VaR (€) 142,738.66 135,732.45 116,815.43 161,367.79 

Exceedance (€) 66,310.36 12,515.55 17,148.11 19,784.23 

% of VaR 46.46% 9.22% 14.68% 12.26% 

With 

Hedging 

P&L (€) -209,049.02 -148,248.01 -133,963.54 -180,078.30 

VaR (€) 142,738.66 135,732.45 116,815.43 159,110.13 

Exceedance (€) 66,310.36 12,515.55 17,148.11 20,968.18 

% of VaR 46.46% 9.22% 14.68% 13.18% 

 

Appendix C.2. Exceedances that occur during the one-year period, from 30 

January 2023 until 2 February 2024. Value of which exceedance in the strategy 

without hedging and the strategy with hedging. 

 


