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The memory parameter is usually assumed to be constant in traditional long memory time series. We relax this restriction by
considering the memory a time-varying function that depends on a finite number of parameters. A time-varying Local Whittle
estimator of these parameters, and hence of the memory function, is proposed. Its consistency and asymptotic normality are
shown for locally stationary and locally non-stationary long memory processes, where the spectral behaviour is restricted only
at frequencies close to the origin. Its good finite sample performance is shown in a Monte Carlo exercise and in two empirical
applications, highlighting its benefits over the fully parametric Whittle estimator proposed by Palma and Olea (2010). Standard
inference techniques for the constancy of the memory are also proposed based on this estimator.
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1. INTRODUCTION

The existence of strong persistence in time series has been well documented in various fields of research. See,
for example, Palma (2007). It implies that distant observations are significantly correlated, so that the effects of
shocks die out very slowly. Detecting such behaviour requires a relatively large number of observations, usually
over a long period of time. The models traditionally used for highly dependent series assume that the strength of
the persistence, measured by the memory parameter d, is constant over time, which may be difficult to accept for
such long time series. For example, the persistence of shocks in economic series may be different in expansions
and recessions, implying that the memory parameter changes with the economic situation that exists at each point
in time. Indeed, a number of recent papers have found evidence of a persistence that changes over time at some
breakpoints (Ray and Tsay, 2002; Song and Bondon, 2012; Martins and Rodrigues, 2014) or in a regime switching
long memory context (Haldrup and Nielsen, 2006; Boutahar et al., 2008; Boubaker, 2018). However, these types
of models assume an abrupt change in persistence, whereas the behaviour of many time series suggests that a
smoothly evolving persistence may be more appropriate than sudden changes. This has led some authors to extend
the concept of locally stationary models to accommodate a smoothly varying persistence (Beran, 2009; Palma
and Olea, 2010; Roueff and von Sachs, 2011; Bisaglia and Grigoletto, 2021). In these models d is no longer
constant, but a smoothly varying function d(u) for u = t∕T in a time series from t = 1 to t = T . These models
require estimation of the memory function d(u) to assess the persistence of the series, which can be done in the
time domain (Beran, 2009; Boubaker, 2018; Bisaglia and Grigoletto, 2021), in the frequency domain (Palma and
Olea, 2010; Wang, 2019; Chan and Palma, 2020) or using log-regression of a series of wavelets (Jensen and
Whitcher, 2000; Roueff and von Sachs, 2011). The rescaling u = t∕T allows the construction of an asymptotic
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theory, since increasing the sample size means having more and more observations to identify d(u) in a finer grid,
but in the same interval.

Despite the fact that many of these estimators have good asymptotic properties (consistency, asymptotic nor-
mality and even efficiency), parametric estimators of locally stationary long memory series suffer from two main
drawbacks: first, they are restricted to locally stationary processes, meaning that d(u) < 1∕2 for every u ∈ [0, 1],
which may be difficult to sustain in many situations. Second, the usual problems of misspecification arise, so that
if the parametric model is far from the true data generating process, the estimator may be inconsistent and subject
to a large bias. We extend the parametric Whittle estimator proposed by Palma and Olea (2010) in two directions to
overcome these two problems: first, we extend the range of possible values of d(u) up to d(u) < 1 (for consistency)
or d(u) < 3∕4 (for asymptotic normality). Second, our estimator is based only on a local (in the frequency direc-
tion) knowledge of the tine varying spectral density function around the origin, with no need to specify spectral
behaviour far from those frequencies, thereby avoiding the effects of misspecification. As usual, this robustness
to misspecification comes at the price of lower efficiency when compared with parametric techniques. An addi-
tional benefit of our local estimator over the fully parametric Whittle estimator in Palma and Olea (2010) is that
Gaussianity is not required, with only linearity being imposed in terms of martingale difference innovations with
some finite moments.

Other semi-parametric estimators of d(u) have been proposed by Roueff and von Sachs (2011) and Wang (2019),
which similarly avoid the need of a fully and correctly specified data generating process. Their asymptotic prop-
erties were derived for a fixed scalar u and no joint asymptotic distribution for a set of u’s was offered, which
precludes the implementation of valid strategies to test for the constancy of the memory parameter. An additional
benefit of our proposal is that the hypothesis of constant d can be easily tested using standard inference techniques.

The rest of the article is structured as follows. Section 2 describes the time-varying long memory (TVLM)
processes in a local context such that the spectral behaviour is restricted only around frequencies close to zero.
Section 3 introduces the Time-Varying Local Whittle (TVLW) estimator, showing the identifiability of the param-
eters to be estimated, its consistency and asymptotic normality. Inference is also discussed, focusing on tests of
the hypothesis of constant memory. Section 4 analyses its finite sample performance with a Monte Carlo exercise,
paying particular attention to testing the constancy of the memory function. Finally Section 5 applies it to some
real time series. All the technical details, with proofs of lemmas and theorems, are placed in the Appendix A.

2. TIME-VARYING LONG MEMORY

The triangular array xt,T , t = 1, … T is a TVLM process if its time-varying spectral density (pseudo spectral
density in the locally non-stationary case) function satisfies

fx(u, 𝜆) = C(u)𝜆−2dP(u,𝜉0)(1 + o(1)) (1)

as 𝜆→ 0+ for 0 < infu C(u) ≤ supu C(u) < ∞ and dP(u, 𝜉0) a function of u = t∕T and a finite set of parameters 𝜉0

defining the memory at every t. Hereafter the superscript 0 denotes true parameters. We consider TVLM processes
satisfying the following assumptions:

A.1 Let u = t∕T and denote vt,T =
∑∞

j=0bj(u)𝜀t−j such that supu∈[0,1]
∑∞

j=0b2
j (u) < ∞ and E(𝜀t|Ft−1) = 0,

E(𝜀2
t |Ft−1) = 1 a.s. for t = 0,±1,±2, … , where Ft−1 is the 𝜎-field of events generated by 𝜀s, s ≤ t − 1. If

−1∕2 < dP(u, 𝜉0) < 1∕2 then xt,T = x0 + vt,T and for 1∕2 ≤ dP(u, 𝜉0) < 1 then xt,T = x0 +
∑t

s=1vs,T where x0

is a random variable not depending on t. For B(u, 𝜆) =
∑∞

j=0bj(u) exp(−i𝜆j) then

|B(u, 𝜆)| = O(𝜆−dv
P(u,𝜉

0)),
|
|
|
|

𝜕B(u, 𝜆)
𝜕u

|
|
|
|
= O

(

𝜆
−dv

P(u,𝜉
0) log(𝜆)

𝜕dv
P(u, 𝜉

0)
𝜕u

)

for all u ∈ (0, 1].

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
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LOCAL WHITTLE ESTIMATION 649

A.2 The time-varying spectral density of vt,T satisfies

fv(u, 𝜆) = C(u)𝜆−2dv
P(u,𝜉

0)(1 + o(1))

as 𝜆 → 0+ for 0 < C(u) < ∞ for all u ∈ [0, 1] and −1∕2 < dv
P(u, 𝜉

0) = dP(u, 𝜉0) < 1∕2 in the locally
stationary case and −1∕2 ≤ dv

P(u, 𝜉
0) = dP(u, 𝜉0) − 1 < 0 for a locally non-stationary xt,T .

Assumption A.1 avoids the restriction of Gaussianity and only imposes linearity and local stationarity of vt,T

with bounded second moments of the innovations. Under this condition the spectral representation of vt,T is

vt,T =
∫

𝜋

−𝜋
B
( t

T
, 𝜆

)
ei𝜆tdZ(𝜆), t = 1, 2, … ,T ,

where dZ(𝜆) is the spectral representation of a centred weak white noise with unit variance. The time-varying
spectral density function is then fv(u, 𝜆) = |B(u, 𝜆)|2∕2𝜋. Local non-stationarity is considered as in Velasco (1999a)
extending the concept of Type I long memory. The time-varying pseudo spectral density function of xt,T is in this
case fx(u, 𝜆) = |1− exp(i𝜆)|−2fv(u, 𝜆) such that in both the local stationary and non-stationary cases the spectral or
pseudo spectral density function of xt,T satisfies (1) with dP(u, 𝜉0) ∈ (−1∕2, 1) for all u ∈ [0, 1]. Assumption A.2
precludes the possibility of seasonal or cyclical long memory, since no spectral poles are allowed at frequencies
far from zero. The analysis could be extended to cover other types of long memory where the spectral density
diverges at a positive frequency as in Arteche and Robinson (2000) but it is constrained here to the empirically more
popular case of standard long memory at frequency zero. The function C(u) includes the possibly time-varying
short memory components and, although it may change with u, it is a finite and positive constant for a given u.

The Locally Stationary AutoRegressive Fractionally Integrated Moving Average model (LSARFIMA) in Palma
and Olea (2010) is a natural example satisfying Assumptions A.1 and A.2. It is defined as

vt,T − 𝜇 = 𝜎(u)(1 − L)−dv
P(u,𝜉

0) Φ(u,L)
Θ(u,L)

𝜀t, t = 1, … ,T , (2)

for u ∈ [0, 1], Φ(u,L), Θ(u,L) are autoregressive and moving average polynomials, 𝜎(u) is a scale factor,
supu dv

P(u, 𝜉
0) < 1∕2 and 𝜀t ∼ iid(0, 1). The condition supu∈[0,1] dv

P(u, 𝜉
0) < 1∕2 entails finite variance and locally

stationarity in the sense that they can be locally approximated by a stationary process. See Dahlhaus (1996a,
1996b, 1997) or Dahlhaus and Giraitis (1998) for more details on locally stationary processes. However, condi-
tion (1) covers more general cases, including other specifications of the short memory component not belonging
to an ARMA context as well as locally non-stationary fractionally integrated ARMA models where supu dP(u, 𝜉0)
can be larger than 1∕2 implying non-square summability and infinite variance. Assumption A.1 details how a
locally non-stationary specification is achieved by extending the concept of Type I long memory as defined in
Velasco (1999a) to allow for a time-varying memory parameter.

Different specifications for dP(u, 𝜉0) are possible, including level shifts (Song and Bondon, 2012; Martins and
Rodrigues, 2014) or more complicated functional forms (e.g. Palma and Olea, 2010; Roueff and von Sachs, 2011)
capable of capturing a smoothly varying persistence of the series. In particular, we consider that the time-varying
memory function dP(u, 𝜉0) is a linear combination of a finite number of Chebyshev polynomials of the form

dP(u, 𝜉0) =
P∑

v=0

𝜉
0
v Pv,T (u), (3)

where the (P + 1) Chebyshev polynomials Pv,T (t) are defined as

P0,T (u) = 1, Pv,T (u) =
√

2 cos
(

v𝜋
(

u − 0.5
T

))
, v = 1, 2, 3, …

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12782 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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650 J. ARTECHE and L. F. MARTINS

We choose this basis of functions because they allow for smooth transitions and posses convenient mathematical
properties. For example, they are orthonormal such that for all integers v, q, 1

T

∑T
t=1Pv,T (t∕T)Pq,T (t∕T) = 1(v = q),

where 1(⋅) is the indicator function. Exploiting this orthonormality property, Bierens and Martins (2010) show
that a linear combination of Chebyshev polynomials is a good representation of any square integrable and differ-
entiable real function (see their Lemma 1), so that dP(u, 𝜉0) is a good approximation of a time varying d for large
enough P.

3. TVLW ESTIMATION

Given the local (in the frequency dimension) behaviour of the pseudo-spectral density function in (1), the vector
of parameters 𝜉

0 = (𝜉0
0 , 𝜉

0
1 , … , 𝜉

0
P)
′ can be estimated by minimising a local version of the parametric Whittle

function in Dahlhaus (1997) for weakly dependent and Palma and Olea (2010) for long memory locally stationary
processes. The TVLW estimator is then defined as

(Ĉ′
, 𝜉0, … , 𝜉P) = arg min LT (C′

, 𝜉0, … , 𝜉P),

where

LT (C′
, 𝜉0, … , 𝜉P) =

m∑

k=1

M∑

j=1

⎧
⎪
⎨
⎪
⎩

log Cj𝜆
−2dP(uj,𝜉)
k +

IN(uj, 𝜆k)

Cj𝜆
−2dP(uj,𝜉)
k

⎫
⎪
⎬
⎪
⎭

,

for C = (C1, … ,CM)′, Cj = C(uj), uj = tj∕T , tj = S( j − 1) + N∕2 for j = 1, … ,M portions (blocks),
where S is the number of positions shifted between two consecutive portions of the full sample and N is the
length of the portions in which the full sample is divided such that T = S(M − 1) + N. Also dP(uj, 𝜉) =

∑P
v=0𝜉v

Pv,T

(
uj

)
and

IN(uj, 𝜆k) = |DN(uj, 𝜆k)|2, (4)

is the periodogram for each block of N observations at frequency 𝜆k = 2𝜋k∕N with, for u ∈ [0, 1]

DN(u, 𝜆) =
1

√
2𝜋N

N−1∑

s=0

x[uT]−N∕2+s+1,Te−i𝜆s
.

The objective function LT (C′
, 𝜉0, … , 𝜉P) is based on the periodogram computed in M (possibly overlapping)

blocks of N observations in a neighbourhood of each uj, j = 1, … M, spanning the interval {uj −N∕2, uj +N∕2},
with N∕T → 0 as T → ∞. It differs from the parametric objective function in Palma and Olea (2010) in
that only m frequencies close to the origin are considered. Including the low frequency behaviour of the M
periodograms, IN(uj, 𝜆k) for j = 1, … ,M and k = 1, … ,m, allows us to detect the possible time-varying char-
acter of the memory function. For instance, if we split a time series of T = 652 observations into M = 100
blocks of length N = 256 each, shifting S = 4 positions forward each time, we compute the periodogram
in the 100 overlapping blocks (x1,652, x2,652, … , x256,652), (x5,652, x7,652, … , x260,652), … , (x397,652, x398,652, … ,

x652,652).
The different Cj are finite positive constants, and concentrating their estimators out of the objective function,

the TVLW estimator of 𝜉0 is defined as

𝜉 = (𝜉0, … , 𝜉P) = arg min
Θ

RT (𝜉),

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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LOCAL WHITTLE ESTIMATION 651

where RT (𝜉) = M−1∑M
j=1RT ,j(𝜉) for

RT ,j(𝜉) = RT ,j(𝜉0, … , 𝜉P) = log Ĉj(𝜉) −
2
m

dP(uj, 𝜉)
m∑

k=1

log 𝜆k,

Ĉj(𝜉) = Ĉj(𝜉0, … , 𝜉P) =
1
m

m∑

k=1

IN(uj, 𝜆k)

𝜆
−2dP(uj ,𝜉)
k

,

with dP(uj, 𝜉) =
∑P

v=0𝜉vPv,T

(
uj

)
and Θ = {𝜉 ∶ Δ1 ≤ infj dP(uj, 𝜉) ≤ supj dP(uj, 𝜉) ≤ Δ2; j = 1, 2, … ,M}.

The following assumptions are sufficient to prove the consistency of 𝜉 in Theorem 1:

A.3 𝜉
0 ∈ Θ where Θ = {𝜉 ∶ Δ1 ≤ infj dP(uj, 𝜉) ≤ supj dP(uj, 𝜉) ≤ Δ2; j = 1, 2, … ,M} with −1∕2 < Δ1 < Δ2 < 1

and Δ2 − Δ1 < 1∕2.
A.4 In a neighbourhood 𝜆 ∈ (0, 𝜖) of the origin,

|
|
|
|

𝜕

𝜕𝜆

fv(u, 𝜆)
|
|
|
|
= O
(
𝜆
−1−2dv

P(u,𝜉
0)
)
,

as 𝜆→ 0+, for all u ∈ (0, 1].
A.5 As T →∞

1
M
+ N

SM
log N → 0.

A.6 As T →∞

1
m
+ m

N
→ 0.

Assumption A.3 allows for locally stationary and non-stationary processes but restricts the value of the
time-varying memory function to belong to an interval of width 0.5. This restriction is far less severe than
other requirements imposed by other authors. For example, Palma and Olea (2010) require 0 < infu dP(u, 𝜉0) <
supu dP(u, 𝜉0) < 1∕2. We relax this restriction by allowing for local non-stationarity (but mean reversion) and neg-
ative values of the memory parameter. Assumption A.5 imposes the condition that the number of blocks M should
go to infinity with T but the shifting period S can diverge or remain fixed. It implies that N log N∕T → 0. This
condition permits the identifiability of the vector of parameters 𝜉 as stated in the next lemma. Finally, Assumption
A.6 imposes the typical limitation in the rate of divergence of the bandwidth in local Whittle estimation.

Lemma 1 (Identifiability). Consider two (P + 1) × 1 vectors 𝜉1 and 𝜉
2. Then, under A.5

• 𝜉
1 = 𝜉

2 implies dP(uj, 𝜉
1) = dP(uj, 𝜉

2) for j = 1, ..,M.
• If dP(uj, 𝜉

1) = dP(uj, 𝜉
2) for j = 1, ..,M, then ||𝜉1 − 𝜉

2||2 → 0 as T →∞.

Theorem 1. Under Assumptions A.1–A.6, 𝜉
p
→ 𝜉

0 = (𝜉0
0 , … , 𝜉

0
P) as T → ∞

The proofs of the lemmas and theorems are in the Appendix A. Theorem 1 is valid for overlapping (S < N) and
non-overlapping (S ≥ N) blocks. The next theorem shows the asymptotic normality for the case of non-overlapping
blocks. When S < N, there are many non-negligible correlation terms between the different blocks in the score of
the TVLW estimator, which makes the analytical analysis of their convergence almost untreatable and precludes
obtaining the asymptotic distribution. Therefore, the analysis below focuses on the case S ≥ N. The effects of
overlapping blocks on the distribution of the TVLW estimator are analysed in the Monte Carlo of Section 4.

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12782 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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652 J. ARTECHE and L. F. MARTINS

The following assumptions are required to get the asymptotic distribution:

B.1 Assumption A.1 holds and E[𝜖3
t |Ft−1] = 𝜇3, E[𝜖4

t |Ft−1] = 𝜇4 a.s. for t = 0,±1,±2, … , and finite constants
𝜇3, 𝜇4.

B.2 The time-varying spectral density of vt,T satisfies for some 𝛽 ∈ [1, 2]

fv(u, 𝜆) = C(u)𝜆−2dv
P(u,𝜉

0)(1 + O(𝜆𝛽)),

as 𝜆 → 0, where C(u) ∈ (0,∞) for all u ∈ [0, 1] where −1∕2 < dv
P(u, 𝜉

0) = dP(u, 𝜉0) < 1∕2 in the locally
stationary case and −1∕2 ≤ dv

P(u, 𝜉
0) = dP(u, 𝜉0) − 1 < −1∕4 for a locally non-stationary xt,T .

B.3 A.3 holds with Δ2 < 3∕4.
B.4 In a neighbourhood (0, 𝜀) of the origin, B(u, 𝜆) is differentiable with respect to 𝜆 and

|
|
|
|

𝜕B(u, 𝜆)
𝜕𝜆

|
|
|
|
=
(
|B(u, 𝜆)|

𝜆

)

,

as 𝜆→ 0+.
B.5 Assumptions A.5 (for identifiability) and A.6 (for consistency) hold and for any 𝛾 > 0, as T → ∞

m1+2𝛽

N2𝛽
(log m)2 +

N
√

m

SM
log N +

log N

m𝛾
→ 0.

The last term in Assumption B.5 is similarly imposed in assumption 4’ in Shimotsu (2007), who deals with Local
Whittle estimation in a multi-variate context. Although our focus is univariate, the multiple parameter estimation
needs to similarly strengthen the restrictions on m with the last term in Assumption B.5, which is not required in
the univariate single-parameter estimation in Robinson (1995b) or Velasco (1999b). This assumption is satisfied
for example if N = S, m = O(Na) with 0 < a < 𝛽∕(0.5+ 𝛽) and M = O(Nb) with b > a∕2, with the O() term here
meaning exact proportionality.

Theorem 2. Under Assumptions B.1–B.5,

√
mM(𝜉 − 𝜉

0)
d
→

(
0,

1
4

IP+1

)
as T →∞,

for IP+1 the identity matrix of order P + 1.

Remark 1. The asymptotic distribution in Theorem 2 is only valid for non-overlapping blocks S ≥ N. When
S < N the correlation between different blocks would at least affect the variance in the asymptotic distribution.
In this case some bootstrap approach could be used to approximate the distribution of the TVLW estimator, as
for example the local bootstrap in Arteche and Orbe (2016). This procedure exploits the consistency of 𝜉 for
overlapping and non-overlapping blocks. It is based on resampling the locally Studentized periodogram defined

as Ijk𝜆
2dP(uj,𝜉)
k for Ijk = IN(uj, 𝜆k) in a neighbourhood of every frequency. The bootstrap replicates I∗jk, k = 1, … ,m

for every j = 1, … ,M are then obtained by resampling locally the studentized periodogram. With those bootstrap
replicates the bootstrap objective function can be constructed to obtain the bootstrap estimate 𝜉

∗. Repeating the
procedure B times the distribution of 𝜉 − 𝜉

0 can be approximated by the empirical distribution of 𝜉
∗ − 𝜉.

Remark 2. A Hessian based approximation of the variance of
√

mM𝜉 in the asymptotic distribution is A−1
Mm where

AMm =
4

Mm

m∑

k=1

v2
k

M∑

j=1

PjP
′
j ,

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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LOCAL WHITTLE ESTIMATION 653

for vk = log k − m−1∑m
l=1 log l and Pj = (P0,T (uj),P1,T (uj), … ,PP,T (uj))′. We have found in the simulations that

A−1
Mm leads to a better approximation of the finite sample variance than the asymptotic expression 4−1IP+1.

Remark 3. The first restriction in Assumption B.5 implies that m = O(Na)with a arbitrarily close to 2𝛽∕(1+2𝛽).
Consider the case S = N, which is recommended because it means that all the observations are used in the esti-
mation and leads to higher efficiency. It implies that T = MN. Theorem 2 shows that the TVLW estimator 𝜉

converges at a rate O(
√

mM) = O(Na∕2M1∕2) = O(Ta∕2M(1−a)∕2). The LW estimator of a constant d in Robin-
son (1995b) achieves the rate of convergence O(Ta∕2) with a bandwidth O(Ta). Since a < 2𝛽∕(1 + 2𝛽) < 1, the
rate of convergence of the TVLW is faster than that of the LW, tending to equalise as 𝛽 increases.

Remark 4. The result in Theorem 2 justifies the asymptotic approximation of the distribution of any linear combi-

nation of 𝜉. For a non-stochastic P+1 vector 𝜄 = (𝜄0, … , 𝜄P)′ the distribution of
√

mM𝜄
′(𝜉−𝜉0) can be asymptotically

approximated as 
(

0, 4−1∑P
v=0𝜄

2
v

)
. For example, dP(u, 𝜉) = 𝜄

′
𝜉 for 𝜄 = (P0,T (u), … ,PP,T (u))′ is an estimator of

the memory parameter and the distribution of
√

mM(dP(u, 𝜉) − dP(u, 𝜉0)) can be asymptotically approximated as



(
0, 4−1∑P

v=0Pv,T (u)2
)

.

Remark 5. The pivotal character of the asymptotic distribution in Theorem 2 permits the implementation of
standard inference techniques to test any linear hypothesis of the form H0 ∶ R𝜉 = r for some q× (P+ 1) matrix R
and q × 1 vector r. The next corollary establishes the testing strategy discussing its validity and consistency.

Corollary 1. Consider the test statistic

W(R, r) = mM(R𝜉 − r)′
[
RA−1

MmR′
]−1(R𝜉 − r),

for the hypothesis H0 ∶ R𝜉 = r. If the assumptions in Theorem 2 are satisfied:

(a) Under H0

W(R, r)
d,H0
→ 𝜒

2
q , as T → ∞.

(b) Under H1 ∶ R𝜉 = r + r for r a q × 1 vector with constant element ri ≠ 0 for some or all i = 1, .., q,

lim
T→∞

P(W(R, r) > 𝜒
2
q|𝛼) → 1.

for any significance level 𝛼 > 0.
(c) Under H1 ∶ R𝜉 = r + r for r = (nM)−1∕2(𝜃1, … , 𝜃q)′ with constant 𝜃i ≠ 0 for some or all i = 1, .., q,

W(R, r)
d,H1
→ 𝜒

2
q

(

4
q∑

i=1

𝜃
2
i

)

, as T → ∞.

Corollary 1(b) shows the consistency of the test based on the asymptotic distribution obtained in (a) and (c) gives
the asymptotic distribution against local alternatives. The non-centrality parameter 4

∑q
i=1𝜃

2
i delimits the asymp-

totic power of the test and its efficiency. A hypothesis of interest is H0 ∶ 𝜉i1
= … = 𝜉iq

= 0 against the
alternative that one or some of the q ≤ P + 1 equalities are not satisfied, for i1, … , iq ∈ {0, 1, … ,P}. In this
case, R is a matrix of zeros except for the elements [R]s,is+1 = 1, s = 1, … , q, and r is a vector of zeros. For
example, the constancy of the memory parameter implies q = P and i1, … , iq = 1, … ,P, and this hypothesis
can be easily tested to assess whether the series under consideration has a constant memory parameter (under
H0) or whether it is a TVLM process instead. A power analysis of this test is included in the Monte Carlo in the
next section.

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12782 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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654 J. ARTECHE and L. F. MARTINS

4. FINITE SAMPLE PERFORMANCE

Here, we study the finite sample performance of the TVLW estimator presented in Section 3 for different values
of P and different models. Time-invariant and time-varying long-memory parameters are considered in the model

vt,T = (1 − L)−dv
P(t∕T ,𝜉0)at, t = 1, … ,T ,

with at being a Gaussian unit variance white noise or a weakly dependent AR(1) process. The true memory is

defined as dv
P(u, 𝜉

0) =
∑P0

v=0𝜉
0
v Pv,T (u) for some P0 and 𝜉

0
v , such that −0.5 ≤ dv

P(u, 𝜉
0) < 0.5 for all u ∈ [0, 1]. The

autoregressive coefficient takes the value 0.5, as considered in Henry (2001). The Time-Varying (TV) fractional
difference operator is defined as

(1 − L)−dv
P(t∕T ,𝜉0) =

∞∑

j=0

cj(t∕T , 𝜉0)Lj for cj(t∕T , 𝜉0) =
Γ[j + dv

P(t∕T , 𝜉0)]
Γ( j + 1)Γ[dv

P(t∕T , 𝜉0)]

and the series are generated by truncating the sum in the previous expression as

vt,T =
t+K−1∑

j=0

cj(t∕T , 𝜉0)at−j,

for t = 1, … ,T and T + K observations of the weak dependent at, say a1−K , a2−K , … , aT . The deviation between
vt,T and the Type I long memory defined in Assumption A.1 is

∑∞
j=t+Kcj(t∕T , 𝜉0)at−j with mean zero and variance

O
(
(t + K)2dv

P(t∕T ,𝜉0)−1
)

because cj(t∕T , 𝜉0) is proportional to jdv
P(t∕T ,𝜉0)−1 as j → ∞ for dv

P(t∕T , 𝜉0) < 0.5. Then vt,T

approaches a locally stationary Type I long memory series for K large enough (see Marinucci and Robinson, 1999;
Davidson and Hashimzade, 2009). In this Monte Carlo we use K=100 (similar results, available on request, have
been obtained with K = 1000). In the locally stationary case xt,T = vt,T such that dP(t∕T , 𝜉0) = dv

P(t∕T , 𝜉0) <
0.5 and for dP(t∕T , 𝜉0) ≥ 1∕2 the series xt,T were generated as

∑t
s=1vs,T as explained in Assumption A.1 and

dP(t∕T , 𝜉0) = dv
P(t∕T , 𝜉0) + 1. See also Johansen and Nielsen (2016) for an analysis of the effects of the initial

values in the estimation of non-stationary standard fractionally differenced series.
Two different Data Generating Processes (DGP) are considered: DGP1 is a time-invariant process with P0 = 0

and d = 𝜉0 = 0.4; and DGP2 is time-varying with P0 = 1, and three different sets of values for 𝜉0 = (𝜉0
0 , 𝜉

0
1 ),

namely 𝜉
0 = (0.6, 0.1) (d in the range 0.458 to 0.741), 𝜉0 = (0.2, 0.2) (d ranging from −0.082 to 0.482) and

𝜉
0 = (0.3, 0.3) (d in the range −0.124 to 0.724). We consider different polynomials P = 1, 2, 5 so that the true

parameter vector is 𝜉0 =
(
𝜉

0
0 , 0

′
P

)′
for DGP1 and 𝜉

0 =
(
𝜉

0
0 , 𝜉

0
1 , 0

′
P−1

)′
for DGP2 where 0P is a P×1 vector of zeros.

The results do not change significantly for different coefficients 𝜉0. All of them are available on request.
We split the time series of T observations into M blocks of length N, shifting S positions forward each time.

For the sake of comparison, we use the same (optimal) values proposed by Palma and Olea (2010) for the case of
overlapping blocks, that is, the integer parts of M = 12.629,N = 105, S = 35 for T = 512 and M = 19.311,N =
200, S = 45 for T = 1024. For non-overlapping blocks, we consider powers of two, namely M = 8,N = S = 64
for T = 512 and M = 8,N = S = 128 for T = 1024. With respect to the selection of the bandwidth m (number
of frequencies used in the estimation, 𝜆k = 2𝜋k∕N, k = 1, … ,m) we consider three different cases to analyse
the sensitivity of the results to the bandwidth: m = N𝜏

, where 𝜏 = {0.6, 0.7, 0.8} for the white noise case, and
𝜏 = {0.3, 0.4, 0.5} for the AR(1) process. The lower values of m aim to reduce the biasing effects of the weak
dependent noise, as in other local estimators in long memory series.

In this Monte Carlo exercise we compare our semi-parametric estimator with the fully parametric one proposed
by Palma and Olea (2010) when at follows the weakly dependent AR(1) process under DGP1. Notice that under
DGP1, Palma and Olea’s model specifies d(u) = 𝛼0+𝛼1u with true values 𝛼0 = d and 𝛼1 = 0. For completeness, we
consider a correctly specified model (ARFIMA(1,d,0), p = 1, q = 0), an over-specified model (ARFIMA(1,d,1),

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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LOCAL WHITTLE ESTIMATION 655

Table I. Finite sample performance of the TVLW estimator under a time-invariant long-memory parameter (white noise errors)

T 512 1024

EstM MAD 95%Cov EstM MAD 95%Cov
m 𝜉0

𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

DGP1 - Overlap
P = 1 N0.6 0.398

−0.0002
0.063

0.066
0.819

0.785
0.402
−0.0005

0.044
0.047

0.746
0.686

N0.7 0.391
−0.001

0.046
0.046

0.805
0.799

0.398
−0.0008

0.032
0.034

0.732
0.691

N0.8 0.374
0.0003

0.039
0.036

0.755
0.783

0.383
−0.0003

0.028
0.025

0.657
0.709

P = 2 N0.6 0.395
−0.0007

0.063
0.066

0.856
0.815

0.400
−0.001

0.045
0.046

0.784
0.720

N0.7 0.389
−0.0002

0.047
0.048

0.856
0.810

0.396
−0.0007

0.033
0.034

0.759
0.718

N0.8 0.372
−0.0007

0.041
0.036

0.791
0.802

0.382
−0.001

0.028
0.024

0.689
0.732

P = 5 N0.6 0.386
0.0003

0.066
0.063

0.919
0.870

0.396
−0.001

0.045
0.042

0.841
0.814

N0.7 0.384
0.0001

0.050
0.044

0.914
0.881

0.394
−0.0004

0.033
0.030

0.838
0.813

N0.8 0.368
−0.0002

0.043
0.033

0.868
0.887

0.380
−0.001

0.029
0.022

0.760
0.828

DGP1 – No overlap
P = 1 N0.6 0.394

−0.002
0.060

0.059
0.933

0.930
0.401
0.0002

0.044
0.046

0.934
0.931

N0.7 0.385
−0.002

0.046
0.043

0.923
0.944

0.396
−0.0004

0.031
0.032

0.939
0.935

N0.8 0.364
−0.001

0.044
0.034

0.841
0.926

0.378
−0.0005

0.029
0.023

0.865
0.938

P = 2 N0.6 0.390
−0.002

0.061
0.061

0.932
0.929

0.398
−0.0007

0.044
0.046

0.934
0.925

N0.7 0.382
−0.001

0.046
0.045

0.924
0.936

0.394
−0.0006

0.032
0.032

0.936
0.937

N0.8 0.362
−0.001

0.046
0.034

0.824
0.920

0.377
−0.001

0.030
0.023

0.853
0.941

P = 5 N0.6 0.379
−0.001

0.063
0.062

0.913
0.923

0.391
−0.0009

0.045
0.046

0.930
0.932

N0.7 0.374
−0.001

0.049
0.045

0.904
0.931

0.389
−0.0006

0.033
0.032

0.935
0.935

N0.8 0.357
−0.001

0.049
0.034

0.786
0.931

0.374
−0.0006

0.032
0.023

0.829
0.936

Notes: The top value in each cell is for d̂ ≡ 𝜉0 and the bottom one for the average over 𝜉1, … , 𝜉P. True values: 𝜉0 = 0.4; 𝜉1 = · · · = 𝜉P = 0.

p = 1, q = 1), and two misspecified models that neglect the existing AR dependence (ARFIMA(0,d,1), p =
0, q = 1, and ARFIMA(0,d,0), p = 0, q = 0). As in Palma and Olea (2010), we consider two different situations
regarding the time-varying nature of the parameters. First, only the memory parameter is considered as being
time-varying, while the rest of parameters are constant. In the second specification, all the parameters are allowed
to be time-varying as linear functions of u, introducing a higher degree of flexibility. It is important to remember
that Palma and Olea’s optimal N and S satisfy N >> S and, therefore, their estimator would be expected to do
much better in the case of overlapping blocks than under the non-overlapping scheme. We use their ‘LS.whittle’
function in their R library ‘LSTS’ to compute the point estimates and confidence intervals.

Tables I–III report the results for DGP1 of our TVLW estimator together with Palma and Olea’s results to com-
pare the performance of both estimation methods. Tables IV and V show the results for DGP2 with

(
𝜉0, 𝜉1

)
=

(0.6, 0.1) (under white noise and AR(1) with a constant autorregressive parameter respectively). Table VI presents
the empirical size and power of the test of time-constancy of d(u) (cf Remark 5 and Corollary 1) for DGP1 and
DGP2 respectively, and both error’s models, all based on 1000 replications. Tables I–V present the average (EstM)
and the mean absolute deviation (MAD) of the estimates, as well as the 95% coverage rates (95%Cov) of confi-
dence intervals calculated based on the limit distribution in Theorem 2 and Remark 2. The coverage rates are the
percentage of cases in which 𝜉

0
j falls within the confidence interval [𝜉j± 1.96SE], where se is the standard error

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12782 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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656 J. ARTECHE and L. F. MARTINS

Table II. Finite sample performance of the TVLW estimator under a time-invariant long-memory parameter (AR(1) errors)

T 512 1024

EstM MAD 95%Cov EstM MAD 95%Cov
m 𝜉0

𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

𝜉0
𝜉1 ,… ,𝜉P

DGP1 – Overlap
P = 1 N0.3 0.431

0.004
0.179

0.180
0.839

0.818
0.408
−0.002

0.139
0.145

0.735
0.714

N0.4 0.462
−0.005

0.136
0.132

0.793
0.794

0.424
0.0007

0.095
0.099

0.729
0.720

N0.5 0.508
−0.0006

0.126
0.088

0.613
0.803

0.461
−0.003

0.082
0.068

0.606
0.700

P = 2 N0.3 0.423
0.0004

0.180
0.185

0.875
0.831

0.399
−0.006

0.142
0.142

0.764
0.731

N0.4 0.455
−0.005

0.135
0.132

0.849
0.829

0.418
−0.002

0.095
0.096

0.771
0.747

N0.5 0.506
0.0005

0.124
0.089

0.692
0.820

0.458
−0.001

0.081
0.067

0.648
0.726

P = 5 N0.3 0.401
0.002

0.197
0.202

0.929
0.842

0.386
−0.004

0.148
0.140

0.826
0.790

N0.4 0.436
−0.0006

0.142
0.138

0.903
0.854

0.408
−0.003

0.098
0.093

0.843
0.808

N0.5 0.495
−0.0007

0.121
0.088

0.829
0.868

0.452
−0.0002

0.080
0.062

0.760
0.810

DGP1 – No overlap
P = 1 N0.3 0.452

−0.003
0.214

0.206
0.897

0.904
0.420

0.004
0.151

0.150
0.910

0.923

N0.4 0.497
−0.002

0.147
0.119

0.866
0.932

0.450
−0.002

0.099
0.090

0.904
0.924

N0.5 0.566
−0.006

0.172
0.081

0.568
0.929

0.491
−0.003

0.102
0.063

0.749
0.939

P = 2 N0.3 0.445
−0.009

0.215
0.206

0.896
0.904

0.414
−0.001

0.151
0.152

0.914
0.915

N0.4 0.491
−0.001

0.146
0.123

0.872
0.922

0.445
−0.001

0.099
0.091

0.908
0.921

N0.5 0.562
−0.003

0.169
0.082

0.585
0.927

0.488
−0.0009

0.100
0.063

0.757
0.934

P = 5 N0.3 0.408
−0.008

0.217
0.219

0.892
0.882

0.388
−0.001

0.156
0.157

0.916
0.897

N0.4 0.469
−0.001

0.143
0.130

0.889
0.902

0.429
−0.0006

0.097
0.093

0.909
0.914

N0.5 0.549
−0.001

0.158
0.085

0.638
0.915

0.478
−0.0006

0.094
0.064

0.787
0.927

Notes: The top value in each cell is for d̂ ≡ 𝜉0 and the bottom one for the average over 𝜉1, … , 𝜉P. True values: 𝜉0 = 0.4; 𝜉1 = · · · = 𝜉P = 0.

defined in Remark 2. For DGP1 when P = 2 and 5 and DGP2 with P = 5, the results show the averages over the
corresponding individual 𝜉′vs when there is more than one 𝜉v = 0, v = 1, … . Acknowledging the fact that some
positive and negative biases may cancel out, special attention is given to the MAD and the 95%Cov measures.

In general, Tables I,II,IV and V show that the finite sample performance of the proposed TVLW estimator seems
to be quite good in terms of bias and precision, with estimated coefficients close to the true ones and absolute
deviations relatively small (for small m if the noise comes from an AR(1), as it avoids the bias caused by the weak
dependence). The results do not seem to be sensitive to the choice of P or to the value of d, performing similarly
for stationary and non-stationary values. As expected, the mean absolute deviation (MAD) of the estimates for the
models with white noise innovations is smaller than for the AR(1) case. Moreover, comparing overlapping and
non-overlapping TVLW estimation, the coverage rate is far from the nominal 95% in the overlapping case when
the limiting distribution in Theorem 2 is used. This confirm the suspicion that the requirement of non-overlapping
blocks is necessary in Theorem 2. Unlike Palma and Olea’s parametric estimator, the use of non-overlapping
blocks leads to better results, with coverage rates close to the nominal 95%, even for the smaller T . In fact, our
coverage rates compare very favourably with the ones shown by Wang (2019) for his estimators, as they are closer
to the 95% level. He considers pointwise GPH and local Whittle estimators for locally stationary long memory
processes with a TVLM parameter by fixing d(u) for each u = u0 ∈ [0, 1]. In this way he obtains an estimator
for d
(
u0

)
, discussing its consistency and asymptotic normality for a given u0. Considering a sequence of values

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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LOCAL WHITTLE ESTIMATION 657

Table III. Finite sample performance of Palma and Olea’s (2010) estimator under a time-invariant long-memory parameter

T 512 1024 512 1024

only d linear in u all linear in u

EstM MAD 95%Cov EstM MAD 95%Cov EstM MAD 95%Cov EstM MAD 95%Cov
𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

𝛼0
𝛼1

DGP1 – Overlap
p = 1, q = 0 0.325

0.002
0.157

0.148
0.801

0.597
0.336

0.002
0.116

0.090
0.811

0.599
0.329
−0.010

0.222
0.384

0.878
0.919

0.324
0.019

0.199
0.334

0.831
0.861

p = 1, q = 1 0.265
0.002

0.219
0.147

0.791
0.598

0.310
0.002

0.143
0.090

0.859
0.595

0.285
−0.037

0.298
0.501

0.851
0.876

0.306
−0.018

0.238
0.406

0.829
0.837

p = 0, q = 1 0.649
0.002

0.251
0.154

0.118
0.590

0.638
0.001

0.238
0.095

0.014
0.611

0.640
0.022

0.245
0.212

0.607
0.959

0.636
0.005

0.236
0.131

0.284
0.958

p = 0, q = 0 0.856
0.003

0.456
0.164

0.001
0.615

0.842
0.001

0.442
0.103

0.000
0.644

0.856
0.003

0.456
0.166

0.017
0.949

0.842
0.001

0.442
0.103

0.000
0.955

DGP1 – No overlap
p = 1, q = 0 0.318

0.003
0.177

0.166
0.754

0.503
0.327

0.002
0.144

0.105
0.708

0.530
0.328
−0.003

0.229
0.364

0.829
0.879

0.325
0.008

0.202
0.314

0.770
0.802

p = 1, q = 1 0.229
0.004

0.253
0.164

0.754
0.504

0.282
0.002

0.188
0.105

0.745
0.520

0.248
−0.001

0.328
0.500

0.790
0.787

0.291
−0.021

0.263
0.409

0.757
0.763

p = 0, q = 1 0.662
0.003

0.267
0.172

0.162
0.496

0.647
0.002

0.247
0.111

0.028
0.537

0.658
0.015

0.269
0.243

0.521
0.890

0.645
0.007

0.245
0.154

0.247
0.887

p = 0, q = 0 0.880
0.002

0.480
0.181

0.001
0.516

0.854
0.0006

0.454
0.120

0.000
0.551

0.879
0.001

0.479
0.182

0.016
0.887

0.853
0.0007

0.453
0.121

0.000
0.864

Notes: The top value is for d̂ ≡ 𝛼0 and the bottom one for 𝛼1. True model is d(u) = 𝛼0 + 𝛼1u, where 𝛼0 = 0.4, 𝛼1 = 0. Correct specification:
p = 1, q = 0.

u0 ∈ [0, 1] a discrete series of estimators of d
(
u0

)
is obtained, but their joint asymptotic distribution is not obtained.

However, our TVLW estimator provides estimation of the entire continuous path d(u) given the point estimates of
𝜉
′s, which allows a standard testing strategy for consistency of the memory parameter. Interestingly, our estimator

also compares very favourably with the semi-parametric local Whittle estimator of Robinson (1995b), which is
in agreement with the fastest convergence discussed in Remark 3. For T = 512, with m = 44 (close to T0.6 and
thus comparable with our TVLW estimator with m = N0.6), the EstM of the local Whittle estimator of d equals
0.350, the MAD is 0.082 and the 95%Cov of 0.850 for the ARFIMA(0,d,0) model, which are slightly worse than
the results in Table I obtained with the TVLW estimator.

We now turn to Palma and Olea’s parametric estimator (Table III). Overall, the results with only d or all the
parameters linear in u are very similar and, not surprisingly, the performance of the estimator is better with overlap-
ping blocks. The estimator performs well under a correct specification of the short-memory component, but things
get really problematic when the parametric specification is overfitted or wrong: the estimator is imprecise under
misspecification (large MAD and poor coverage) and it is biased upwards, with an average estimate of around 0.65
under p = 0, q = 1 when the true value is 0.4. Comparing Tables II and III, the main conclusion is that under the
correct specification of the DGP our semi-parametric TVLW estimator performs barely as well as the parametric
Whittle estimator (the MAD of the TVLW estimator is even lower and has a better percentage coverage with no
overlapping blocks), but when the parametric specification of the Whittle estimator is wrong our semi-parametric
estimator is definitely the best option.

Table VI shows that the proposed test for time-invariant d(u) is slightly oversized, especially for larger P and
AR(1) errors, but the size approaches the nominal 0.05 as the sample size increases. As expected, the power
increases with the value of 𝜉1 and gets close to one for T = 1024 and 𝜉1 = 0.3 with white noise errors and also
with a bandwidth of m = N0.5 for AR(1) errors. The power decreases as P gets larger. Increasing P unnecessarily
implies that the true DGP is closer to the null hypothesis (remember that 𝜉v = 0 for v > 1) and thus reduces the
power of the test. The results are quantitatively and qualitatively similar for a time-varying AR(1) coefficient close
to one (results available on request) where the estimates of 𝜉0

j , j > 0 show a similar small MAD and coverage rates

close to 0.95. However, as in the standard LW estimation with constant d, the results for 𝜉0
0 deteriorate as the AR

coefficient gets close to 1.

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12782 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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658 J. ARTECHE and L. F. MARTINS

Table IV. Finite sample performance of the TVLW estimator under a stationary time-varying long-memory parameter
(white noise errors)

T 512 1024

EstM MAD 95%Cov EstM MAD 95%Cov

m 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P

DGP2 – Overlap
P = 1 N0.6 0.574

0.093
— 0.061

0.063
— 0.820

0.813
— 0.593

0.097
— 0.045

0.047
— 0.726

0.695
—

N0.7 0.564
0.088

— 0.053
0.046

— 0.774
0.807

— 0.586
0.096

— 0.034
0.034

— 0.709
0.691

—

N0.8 0.540
0.084

— 0.062
0.036

— 0.589
0.782

— 0.565
0.092

— 0.038
0.026

— 0.481
0.673

—

P = 2 N0.6 0.573
0.092

0.006 0.063
0.064

0.064 0.865
0.808

0.827 0.592
0.097

0.004 0.046
0.048

0.045 0.768
0.695

0.775

N0.7 0.564
0.087

0.005 0.053
0.047

0.045 0.790
0.803

0.842 0.586
0.096

0.005 0.034
0.034

0.034 0.748
0.699

0.749

N0.8 0.541
0.083

0.007 0.062
0.037

0.036 0.578
0.771

0.831 0.566
0.092

0.006 0.038
0.026

0.025 0.535
0.667

0.744

P = 5 N0.6 0.565
0.094

0.001 0.068
0.075

0.062 0.913
0.822

0.877 0.587
0.098

0.001 0.046
0.050

0.041 0.831
0.760

0.821

N0.7 0.558
0.090

0.001 0.058
0.051

0.043 0.855
0.842

0.885 0.583
0.097

0.002 0.035
0.034

0.030 0.804
0.774

0.822

N0.8 0.537
0.084

0.002 0.065
0.040

0.033 0.687
0.838

0.890 0.564
0.092

0.001 0.039
0.026

0.022 0.594
0.764

0.818

DGP2 – No overlap
P = 1 N0.6 0.573

0.094
— 0.065

0.059
— 0.914

0.940
— 0.595

0.098
— 0.045

0.046
— 0.947

0.917
—

N0.7 0.560
0.089

— 0.055
0.044

— 0.868
0.938

— 0.586
0.096

— 0.034
0.033

— 0.919
0.923

—

N0.8 0.528
0.083

— 0.072
0.036

— 0.569
0.931

— 0.560
0.092

— 0.042
0.025

— 0.694
0.928

—

P = 2 N0.6 0.570
0.094

0.003 0.066
0.059

0.062 0.906
0.937

0.932 0.592
0.098

0.004 0.046
0.046

0.046 0.939
0.914

0.924

N0.7 0.558
0.089

0.005 0.057
0.045

0.046 0.854
0.931

0.924 0.584
0.097

0.005 0.035
0.033

0.032 0.913
0.917

0.942

N0.8 0.526
0.083

0.005 0.074
0.036

0.034 0.559
0.928

0.913 0.559
0.092

0.005 0.043
0.025

0.024 0.682
0.928

0.929

P = 5 N0.6 0.559
0.095

0.001 0.071
0.060

0.061 0.871
0.937

0.930 0.585
0.099

0.001 0.047
0.046

0.046 0.930
0.901

0.929

N0.7 0.550
0.089

0.001 0.061
0.045

0.045 0.811
0.936

0.932 0.579
0.097

0.001 0.036
0.033

0.032 0.897
0.917

0.938

N0.8 0.521
0.082

0.002 0.079
0.036

0.033 0.505
0.927

0.932 0.555
0.092

0.001 0.046
0.025

0.024 0.651
0.926

0.930

Notes: In the left, the top value is for 𝜉0 and the bottom one for 𝜉1. In the right, it is the average over 𝜉2, … , 𝜉P. True values: 𝜉0 = 0.6, 𝜉1 = 0.1,
and 𝜉2 = · · · = 𝜉P = 0.

5. EMPIRICAL APPLICATION

Here we discuss the application of the TVLW estimator to two different sets of time series previously considered
in the long memory literature. In the first application we analyse the inflation rate in the USA and compare our
results with those obtained using the estimator proposed by Palma and Olea (2010), bearing in mind the findings
published in the previous study by Martins and Rodrigues (2014). Inflation in developed countries displays very
strong persistence, approaching that of a random-walk process (e.g., Fuhrer and Moore, 1995 or Arteche, 2007),
and apparently this persistence has been changing over time with a decrease in memory over recent decades. Mar-
tins and Rodrigues (2014) only considered a single change in persistence at an unknown date. Using monthly
data from January 1951 to December 2009 they found an I(1) process for the annual US inflation rate through-
out the entire period, with d̂ = 1.148 for the period January/1951–April/1982 and d̂ = 0.855 for the period
May/1982–December/2009, but in both regimes the null hypothesis of d = 1 was not statistically rejected. We
update the inflation rate up to December 2020 and consider the possibility of TVLM in this series.

In the second example, we aim to add some further discussion to the empirical literature on climate variables
by looking at the time series of tree ring widths. To compare methods, we use exactly the same tree ring data used
by Palma and Olea (2010), who applied their parametric Gaussian long-memory locally stationary methodology

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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LOCAL WHITTLE ESTIMATION 659

Table V. Finite sample performance of the TVLW estimator under a stationary time-varying long-memory parameter
(AR(1) errors)

T 512 1024

EstM MAD 95%Cov EstM MAD 95%Cov

m 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P 𝜉0
𝜉1

𝜉2, … , 𝜉P

DGP2 – Overlap
P = 1 N0.3 0.596

0.086
— 0.171

0.171
— 0.849

0.840
— 0.600

0.102
— 0.136

0.137
— 0.767

0.731
—

N0.4 0.630
0.084

— 0.127
0.125

— 0.841
0.810

— 0.616
0.098

— 0.093
0.096

— 0.736
0.726

—

N0.5 0.681
0.082

— 0.109
0.086

— 0.702
0.815

— 0.654
0.097

— 0.077
0.064

— 0.622
0.725

—

P = 2 N0.3 0.594
0.084

0.010 0.177
0.175

0.180 0.888
0.833

0.849 0.598
0.102

0.010 0.139
0.138

0.142 0.783
0.725

0.763

N0.4 0.625
0.083

0.001 0.129
0.127

0.124 0.875
0.808

0.868 0.613
0.098

0.005 0.094
0.097

0.097 0.776
0.727

0.749

N0.5 0.678
0.081

0.005 0.110
0.088

0.084 0.762
0.818

0.863 0.651
0.097

0.001 0.077
0.064

0.065 0.683
0.724

0.745

P = 5 N0.3 0.572
0.085

−0.001 0.198
0.227

0.195 0.915
0.806

0.840 0.581
0.106

0.004 0.143
0.164

0.136 0.840
0.750

0.805

N0.4 0.613
0.080

0.0009 0.139
0.155

0.130 0.921
0.810

0.867 0.602
0.100

0.003 0.095
0.106

0.090 0.867
0.764

0.812

N0.5 0.671
0.081

0.003 0.111
0.104

0.087 0.860
0.834

0.866 0.645
0.098

0.002 0.075
0.067

0.059 0.792
0.783

0.816

DGP2 – No overlap
P = 1 N0.3 0.628

0.094
— 0.205

0.201
— 0.914

0.920
— 0.618

0.099
— 0.152

0.154
— 0.922

0.928
—

N0.4 0.676
0.085

— 0.133
0.121

— 0.900
0.918

— 0.641
0.098

— 0.096
0.092

— 0.908
0.920

—

N0.5 0.743
0.084

— 0.151
0.082

— 0.651
0.924

— 0.682
0.098

— 0.096
0.063

— 0.790
0.934

—

P = 2 N0.3 0.622
0.094

0.017 0.210
0.204

0.211 0.907
0.915

0.894 0.610
0.100

0.008 0.151
0.156

0.161 0.915
0.924

0.900

N0.4 0.670
0.086

0.011 0.133
0.122

0.122 0.889
0.928

0.912 0.636
0.097

0.004 0.095
0.092

0.092 0.904
0.915

0.918

N0.5 0.739
0.084

0.006 0.149
0.082

0.082 0.654
0.918

0.921 0.679
0.098

−0.0006 0.094
0.064

0.063 0.801
0.936

0.924

P = 5 N0.3 0.588
0.095

−0.0004 0.218
0.213

0.215 0.897
0.899

0.894 0.585
0.100

0.001 0.158
0.164

0.163 0.911
0.902

0.892

N0.4 0.651
0.089

0.003 0.132
0.126

0.130 0.896
0.908

0.898 0.621
0.097

−0.0005 0.094
0.095

0.092 0.907
0.905

0.918

N0.5 0.726
0.084

0.001 0.140
0.087

0.086 0.690
0.914

0.918 0.670
0.095

0.001 0.090
0.064

0.064 0.822
0.931

0.927

Notes: In the left, the top value is for 𝜉0 and the bottom one for 𝜉1. In the right, it is the average over 𝜉2, … , 𝜉P. True values: 𝜉0 = 0.6, 𝜉1 = 0.1,
and 𝜉2 = · · · = 𝜉P = 0.

in the supplementary material. These annual data extend from 0 AD to 1989 AD. Based on the sample ACF, they
concluded that the strength of the persistence decreases with time. Palma and Olea (2010) estimated a Gaussian
locally stationary ARFIMA(1,d,1) model with a linear time-varying d and found that d̂ dropped from 0.328 in 0
AD to 0.139 in 1989 AD. We reassess these findings below using our alternative TVLW semi-parametric estimator.

For both illustrations, we select P in the specification of dP(u, 𝜉) by testing the statistical significance of the
coefficients using non-overlapping blocks and the results in Theorem 2 and Remark 2. We consider the range of
P = 0, 1, 2, … , 10 polynomials, doing backwards elimination starting from the largest model Pmax. Using the test
statistic in Corollary 1, we also test for the constancy of the memory parameter dP(u, 𝜉). Moreover, we calcu-
late the confidence intervals of dP(u, 𝜉) as usual from the asymptotic normality in Theorem 2 and Var(d̂P(u, 𝜉)) =∑P

v=0var(𝜉v)P2
v,T (u) using the asymptotic independence of the different 𝜉v. Finally, the goodness-of-fit of the esti-

mated memory function is assessed by studying the long-memory properties of the filtered time series obtained
by plugging the estimated dP(u, 𝜉) into the expansion of (1 − L)dP(u,𝜉). The statistical significance of all the 𝜉’s in
the filtered series is then tested to assess that no memory remains in the filtered series, implying that our estimator
correctly captures all the persistence of the series.

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12782 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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660 J. ARTECHE and L. F. MARTINS

Table VI. Empirical size and power for the test of time-constancy of d(u)

T 512 1024
m

Size
P = 1

(
N0.6

,N0.3
)

(0.070, 0.096) (0.069, 0.077)
(
N0.7

,N0.4
)

(0.056, 0.068) (0.065, 0.076)
(
N0.8

,N0.5
)

(0.074, 0.071) (0.062, 0.061)
P = 2

(
N0.6

,N0.3
)

(0.079, 0.120) (0.080, 0.099)
(
N0.7

,N0.4
)

(0.079, 0.093) (0.061, 0.095)
(
N0.8

,N0.5
)

(0.077, 0.081) (0.069, 0.078)
P = 5

(
N0.6

,N0.3
)

(0.128, 0.202) (0.093, 0.166)
(
N0.7

,N0.4
)

(0.078, 0.168) (0.081, 0.133)
(
N0.8

,N0.5
)

(0.097, 0.124) (0.083, 0.097)
Power

𝜉0 = 0.6
𝜉1 = 0.1

𝜉0 = 0.2
𝜉1 = 0.2

𝜉0 = 0.3
𝜉1 = 0.3

𝜉0 = 0.6
𝜉1 = 0.1

𝜉0 = 0.2
𝜉1 = 0.2

𝜉0 = 0.3
𝜉1 = 0.3

P = 1 N0.6

N0.3
0.288
0.110

0.713
0.159

0.971
0.254

0.473
0.137

0.936
0.259

1.000
0.437

N0.7

N0.4
0.393
0.116

0.896
0.264

0.997
0.481

0.711
0.170

0.994
0.485

1.000
0.760

N0.8

N0.5
0.541
0.164

0.979
0.457

0.999
0.769

0.883
0.276

1.000
0.716

1.000
0.959

P = 2 N0.6

N0.3
0.233
0.131

0.616
0.170

0.939
0.243

0.371
0.139

0.892
0.249

0.999
0.397

N0.7

N0.4
0.332
0.121

0.831
0.234

0.990
0.404

0.625
0.152

0.990
0.423

1.000
0.696

N0.8

N0.5
0.460
0.145

0.961
0.388

0.999
0.712

0.827
0.231

1.000
0.655

1.000
0.937

P = 5 N0.6

N0.3
0.196
0.192

0.516
0.209

0.862
0.248

0.308
0.221

0.808
0.286

0.990
0.391

N0.7

N0.4
0.269
0.182

0.711
0.275

0.977
0.395

0.485
0.175

0.974
0.361

1.000
0.583

N0.8

N0.5
0.357
0.185

0.883
0.356

0.999
0.616

0.704
0.204

1.000
0.527

1.000
0.871

Notes: m = N0.6
,N0.7

,N0.8 are for white noise errors (See DGP1 in Table I for size and DGP2 in Table IV for power); m = N0.3
,N0.4

,N0.5 are
for AR(1) errors (See DGP1 in Table II for size and DGP2 in Table V for power).

5.1. Inflation Rates

The US inflation rate series, defined as the annual growth rate of the consumer price index, spans from January
1951 to December 2020 and can be obtained from the OECD website https://data.oecd.org/price/inflation-cpi.htm.
Figure 1 shows the plot of this time series. As we observe, the US inflation rate was so volatile that it even led to
a period of deflation (from March to October 2009).

To keep the range of estimated memory parameters within the region where the asymptotic theory in Section 2
remains valid, the estimator is applied to the first-differences of the inflation to get estimates of dFD

P (u, 𝜉). The
memory of the inflation series is then obtained as dP(u, 𝜉) = dFD

P (u, 𝜉) + 1.
Based on the Monte Carlo simulations, we consider M = 12 non-overlapping blocks shifting S = N = 26

observations at each block. Thus, we have T = 768 observations (from January 1957 to December 2020). The
number of frequencies considered are m = ⌊N0.6⌋ and m = ⌊N0.7⌋. The results for this non-overlapping scheme
are in Table VII, where we report the selected P, the estimated parameters 𝜉0, 𝜉1, … , 𝜉P, the standard errors, the
95% confidence interval based on Theorem 2 and Remark 2, and the test statistic for memory constancy. With
both bandwidths the constancy of the memory is rejected, resulting in P = 3 Chebyshev polynomials needed if
m = ⌊N0.7⌋ is used and P = 2 with m = ⌊N0.6⌋.

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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Figure 1. US inflation rate series

Table VII. TVLW estimation: US Inflation

P 2 3
m N0.6 N0.7

𝜉0 0.134
0.057

∗∗ 0.209
0.043

∗∗∗

[0.021,0.247] [0.124,0.295]
𝜉1 0.099

0.057

∗ 0.117
0.043

∗∗∗

[−0.013,0.212] [0.032,0.203]
𝜉2 −0.105

0.057

∗ −0.043
0.043

[−0.218,0.007] [−0.129,0.041]
𝜉3 −0.109

0.043

∗∗

[−0.194,-0.023]
StatConst 6.347∗∗ 14.512∗∗∗

Notes: *,**,*** denote 10%, 5%, 1% significant levels; point estimates on top and the SEs below; 95%Cov in square brackets; M = 12;
S = N = 26; T = 768; StatConst is the test statistic for constant d(u).

Figure 2 shows the time-varying estimated long-memory function d3(u, 𝜉) with m = N0.7. The form of the
estimated memory with m = N0.6 is very similar and is thus not included. The adequacy of d3(u, 𝜉) to estimate
the memory of the series is assessed by testing the significance of the different elements in 𝜉 in the fractionally
differenced series. The test statistic in Corollary 1 with R = IP+1 gives a p-value of 0.200 for P = 10 and it ranges
from 0.111 for P = 1 to 0.601 for P = 6, which evidences that d3(u, 𝜉) captures all the memory of the series.

The results in Figure 2 confirm the main findings of Martins and Rodrigues (2014), but are at the same time more
specific in terms of the degree of nonlinear persistence of the inflation rate throughout the whole period. Indeed,
for the US economy, the assumption of an I(1) process for the inflation rate1 (cf. Martins and Rodrigues, 2014, and
others) seems to be incorrect for one specific period. At the end of the 70s/early 80s, d(u) is certainly greater than
one, with a confidence interval ranging from 1.2 to 1.6. In the remaining periods (before the mid 70s and after the
early 90s), we have that d(u) = 1 is inside the 95% confidence set so that unit root is a possibility for a given u.
The evolution of the memory function in Figure 2 shows that the persistence tends to be greater in periods of high
inflation than in periods of low inflation, with the peaks in the 70s related to the recession caused by the oil crises.

1 Following Palma and Olea (2010), we estimated the stationary ARFIMA model with time-invariant coefficients using the Haslett–Raftery
method in R. The point estimate for d is 1.00005 for the fractional noise model and 1.238 for the (1, d, 0) model.

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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Figure 2. TVLW estimation of dP(u, 𝜉): US inflation

The Great Recession of 2008/2009 saw a further increase in persistence. This suggests that negative shocks are
more persistent than positive ones.

To complete the analysis, we also apply Palma and Olea’s parametric estimator to the US inflation rate. The same
strategy prior-differencing-adding-one strategy is here used with the purpose of bounding the memory function
between the values where the theory applies, i.e. 0 < infu dP(u, 𝜉) < sup dP(u, 𝜉) < 1∕2. We consider their
optimal pair N = 105 and S = 35 and, following their approach, the LSARFIMA models are selected from the
Akaike Information Criterion and by analysing the significance of the parameters involved. The model selected
includes one AR and one MA coefficient (p = q = 1), the function d(u) is of power 4, the SD and the AR are
linear functions of u, and the MA coefficient is constant for all u. All parameters are statistically significant, with
the exception of the constant and linear components of d(u). Noticeably, the estimated AR function is 𝜙(u) =
−0.984+ 1.833u which means that for values of u close to the boundaries (u near 0 or 1)the AR coefficient is near
one, in absolute value. The estimated values for the parameter d(u) is represented in Figure 3 (p = q = 1), where
d̂P(u) = 0.162 − 0.193u + 9.451u2 − 25.499u3 + 16.221u4. Note that the validity of Palma and Olea’s estimator
cannot be guaranteed because the condition that dP(u, 𝜉) < 0.5 for all u is not satisfied. However our TVLW
estimator remains valid for a larger range of values and, contrary to Palma and Oleas’s estimator, the asymptotic
theory can be safely used for the estimates obtained.

The main conclusion is that the parametric and semi-parametric estimators show a similar evolution in the
persistence of the series: large values of the memory function around the 80s and, after the 80s, they show a
downward trend until 2000, when they begin to rise again.

5.2. Tree Ring

The tree ring dataset used is the same as in Palma and Olea (2010) and represents annual tree ring width measure-
ments (tree ring standardised growth index) at Mammoth Creek, Utah, as reported by Graybill (1990). Figure 4
shows the observed time series.

We consider the non-overlapping case with M = 15 blocks of observations, shifting S = N = 27 observations
at each block, with a total of T = 1920 datapoints (from 70 AD to 1989 AD). Using the same strategy as before
based on Theorem 2 we find that P = 0 is selected for bandwidths m = ⌊N0.5⌋ and m = ⌊N0.6⌋, implying a constant
d. However, for m = ⌊N0.4⌋ there is statistical evidence against a constant d(u) with a decreasing tendency being
observed after t = 1250 (around year 1320 AD). See Table VIII for the results of the TVLW estimation and the

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782
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Figure 3. US inflation: P&O estimation (p = q = 1)
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Figure 4. Tree ring width

test of constant memory parameter and Figure 5 for the time-varying estimated memory function dP(u, 𝜉) and its
95% confidence bands when m = ⌊N0.4⌋.

As in Palma and Olea (2010) we obtain evidence for a time-varying memory for the tree ring data when m =
⌊N0.4⌋. However, we do not observe a decline in d(u) over the whole sample but only in the second half. Noticeably,
during the first half of the sample dP(u, 𝜉) is consistently around or even greater than 0.5, in contrast to the smaller
values obtained by Palma and Olea (2010). Closer to the end of the sample (after t = 1575) the value d(u) = 0
belongs to the confidence set, implying that the tree rings series may have lost its long memory since 1645. These
differences with Palma and Olea (2010) could perhaps indicate a model misspecification caused by the presence
of a short memory component that is not considered in their estimation procedure. To compare the adequacy of
both estimated memory functions, we evaluate the persistence remaining in the filtered series using both estimated

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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664 J. ARTECHE and L. F. MARTINS

Table VIII. TVLW estimates: Tree ring width

P 3
m N0.4

𝜉0 0.354
0.076

∗∗∗

[0.203,0.505]
𝜉1 0.109

0.076

[−0.041,0.260]
𝜉2 −0.149

0.076

∗

[−0.300,0.001]
𝜉3 0.150

0.076

∗

[−0.0002,0.301]
StatConst 9.618∗∗

Notes: *,**,*** denote 10%, 5%, 1% significant levels; Point estimates on top and the SEs below; 95%IC in square brackets; M = 15;
S = N = 27; T = 1920; StatConst is the test statistic for constant d(u).
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Figure 5. TVLW estimates: Tree ring width

memories: d3(u, 𝜉) = 0.354 + 0.109P1,T (u) − 0.149P2,T (u) + 0.150P3,T (u) and Palma and Olea’s estimate d̂(u) =
0.3285 − 0.189u. The test for no memory (𝜉v = 0 for v = 0, 1, … ,P) in the series filtered with d(u, 𝜉) gives
a p-value of 0.276 for P = 10, with p-values of the tests for joint significance ranging from 0.110 (for P = 6)
to 0.995 (for P = 1). However, when the series is filtered with Palma and Olea’s estimated d̂(u), the test for no
memory gives a p-value of 0.020 for P = 10, 0.442 for P = 1 and between 0.003 (for P = 6) to 0.091 (for P = 2)
for the rest of values of P. These results suggest that the TVLW estimates capture the persistence of the tree ring
series better than the parametric estimator in Palma and Olea (2010).

6. CONCLUSION

This article proposes a semi-parametric TVLW estimator of a time-varying memory function. Its main advantages
over the parametric Whittle estimator of Palma and Olea (2010) are the robustness to misspecification and to

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
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LOCAL WHITTLE ESTIMATION 665

non-Gaussian distributions, and its validity under local non-stationarity and non-invertibility. The price to pay is
the usual loss of efficiency if the model is correctly specified. Other semi-parametric estimators, such as those
proposed by Roueff and von Sachs (2011) and Wang (2019) also share some of these characteristics, but their
results cannot be directly used to test for a constant memory.

The TVLW estimator is based on a specification of d(u) as a linear combination of Chebyshev’s polynomials.
We conjecture that some other orthonormal functions can also be used, but a comparison with other specifications
is beyond the scope of this article and left to future research. An analysis of the robustness of the TVLW estimator
to a wrong specification of d(u) is also interesting but it requires a thorough theoretical and Monte Carlo analysis
to assess the impact of such misspecification, and is also left to future research.
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APPENDIX A: PROOFS OF THE LEMMAS AND THEOREMS

In all the proofs 𝜅 denotes a positive constant, 0 < 𝜅 < ∞, possibly different in every situation.

Proof of Lemma 1. Denote Pj = (P0,T (uj),P1,T (uj), … ,PP,T (uj))′, such that dP(uj, 𝜉) = 𝜉
′Pj. The first bul-

let is then obvious. For the second one note that dP(uj, 𝜉
1) = dP(uj, 𝜉

2) implies (𝜉1 − 𝜉
2)′Pj = 0 and

taking sums for j = 1, … ,M, (𝜉1 − 𝜉
2)′M−1∑M

j=1PjP
′
j(𝜉

1 − 𝜉
2) = 0 such that the statement is proved if

M−1∑M
j=1Pv,T (uj)Pk,T (uj)→ 1(v = k) as M →∞.

To prove this orthonormality property of the Chebyshev polynomials note that

Pv,T (uj)Pk,T (uj) = 2 cos

(

v𝜋

[ tj − 0.5

T

])

cos

(

k𝜋

[ tj − 0.5

T

])

= cos

(

(v − k)𝜋
[ tj − 0.5

T

])

+ cos

(

(v + k)𝜋
[ tj − 0.5

T

])

.

For a = 0, cos(a𝜋(tj − 0.5)∕T) is obviously one, and for a ≠ 0,

1
M

M∑

j=1

cos

(

a𝜋

[ tj − 0.5

T

])

= cos
(a𝜋

2T
(N − S − 1)

) 1
M

M∑

j=1

cos
(a𝜋S

2T
(2j − 1)

)
, (A1)

− sin
(a𝜋

2T
(N − S − 1)

) 1
M

M∑

j=1

sin
(a𝜋S

2T
(2j − 1)

)
, (A2)

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12782

 14679892, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12782 by Iscte, W

iley O
nline L

ibrary on [17/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LOCAL WHITTLE ESTIMATION 667

noting that tj = S( j − 1) + N∕2. Now, under Assumption A.4, as T →∞,

cos
(a𝜋

2T
(N − S − 1)

)
→ 1,

sin
(a𝜋

2T
(N − S − 1)

)
∼ N

MS
→ 0,

1
M

M∑

j=1

cos
(a𝜋S

2T
(2j − 1)

)
=

sin
(

Ma𝜋S

T

)

2M sin
(

a𝜋S

2T

)

1
M

M∑

j=1

sin
(a𝜋S

2T
(2j − 1)

)
=

sin2
(

Ma𝜋S

2T

)

M sin
(

a𝜋S

2T

) ,

where a ∼ b means that a∕b → 𝜅 and the last two equalities come from formulae 1.342.3 and 1.342.4 in Gradshteyn
and Ryzhik (1994). Also note that under Assumption A.4, and because T = S(M − 1) + N

sin
(a𝜋S

2T

)
∼ 1

M

sin
(Ma𝜋S

T

)
= sin(a𝜋) + O

( 1
M
+ N

MS

)
= O
( 1

M
+ N

MS

)

sin
(Ma𝜋S

2T

)
→ sin

(a𝜋
2

)
= (−1)(a−1)∕2I(a odd),

as T →∞. Thus M−1∑M
j=1Pv,T (uj)Pk,T (uj)→ 1(v = k) as T →∞ (note that Assumption A.5 implies M →∞). ◾

For simplicity of notation denote hereafter dj(𝜉) = dP(uj, 𝜉) and dj(𝜉0) = dP(uj, 𝜉
0) and v is the complex conjugate

of v.

Lemma 2. Let vjk = DN(uj, 𝜆k)∕C1∕2
j 𝜆

−dj(𝜉0)
k . Under Assumptions A.1, A.2 (B.2), A.4 and A.5, for any sequence

of positive integers k = k(N) and l = l(N), k > l, as T ,N → ∞,

(a) Evjkvjk = 1 + O
(

log k

k2𝛼j
+ k𝛽

N𝛽
+ N log N

T

)
, with the second term arising under B.2,

(b) Evjkvjk = O
(

log k

k2𝛼j
+ N log N

T

)
,

(c) Evjkvjl = O
(

log k

l2𝛼j
+ N log N

T

)
,

(d) Evjkvjk = O
(

log k

l2𝛼j
+ N log N

T

)
,

where 𝛼j = min(1∕2, 1 − dj(𝜉0)).

Proof. The proof uses the results in theorem 2 in Robinson (1995a) and theorem 1 in Velasco (1999a). The only
differences come from the TV character of our models. Thus, we only focus here on these differences, appealing
to Robinson (1995a) and Velasco (1999a) for the rest of the proof. Consider for example the proof of (a) for

the stationary case. Note first that under Assumption B.2, fv(uj, 𝜆l) − Cj𝜆
−2dj(𝜉0)
l = O(𝜆𝛽−2dj(𝜉0)

l ) and under A.2 is

o(𝜆−2dj(𝜉0)
l ). Also, using Assumption A.1 E

(
DN(uj, 𝜆k)DN(uj, 𝜆k)

)
is equal to

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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668 J. ARTECHE and L. F. MARTINS

1
2𝜋N

N∑

t=1

N∑

r=1

E(x[ujT]−N∕2+t,Tx[ujT]−N∕2+r,T )e−i𝜆k(t−r)

=
N∑

t=1

N∑

r=1
∫

𝜋

−𝜋
B
(

uj −
N
2T

+ t
T
, 𝜆

)
B
(

uj −
N
2T

+ r
T
,−𝜆
) 1

2𝜋N
ei(𝜆−𝜆k)(t−r)d𝜆

=
∫

𝜋

−𝜋

[

B
(
uj, 𝜆
)
B
(
uj,−𝜆

)
+ O

(
N log |𝜆|

T
|𝜆|−2dP(ū,𝜉0)

)]

K(𝜆 − 𝜆k)d𝜆

=
∫

𝜋

−𝜋

[

fv(uj, 𝜆) + O

(
N log |𝜆|

T
|𝜆|−2dP(ū,𝜉0)

)]

K(𝜆 − 𝜆k)d𝜆,

for ū in the interval
{

uj −
N

2T
, uj +

N

2T

}
where K(𝜆) = (2𝜋N)−1∑N

t=1

∑N
r=1e−i(𝜆)(t−r) is Fejer’s kernel. Then

E
(

DN(uj, 𝜆k)DN(uj, 𝜆k)
)
− fv(uj, 𝜆k)

=
∫

𝜋

−𝜋

(
fv(uj, 𝜆) − fv(uj, 𝜆k)

)
K(𝜆 − 𝜆k)d𝜆

+ O

(

∫

𝜋

−𝜋

N log |𝜆|

T

[
|𝜆|−2dP(ū,𝜉0) − |𝜆k|

−2dP(ū,𝜉0) + |𝜆k|
−2dP(ū,𝜉0)

])

= O

(

𝜆
−2dj(𝜉0)
k

[
log k

k
+

N log N

T

])

,

where the final bounds are obtained by splitting the integral as in Robinson (1995a, proof of theorem 2a) with
a different treatment in frequencies close to and far from zero, and using the properties that the integral of K(𝜆)
over (−𝜋, 𝜋) is 1, K(𝜆) = O(N−1|𝜆|−2) and |𝜆k|

−dP(ū,𝜉0) = |𝜆k|
−dj(𝜉0)(1 + O(N

T
log N)) under Assumption A.5 for ū

in the interval {uj −
N

2T
, uj +

N

2T
}. This proves the result in a) for the stationary case. The non-stationary case can

be proved similarly using the results in the proof of theorem 1 in Velasco (1999a). The steps needed for the proof
of (b), (c), and (d) are similar and are thus omitted. ◾

Proof of Theorem 1. We need to prove that ||𝜉 − 𝜉
0|| = op(1), where || ⋅ || denotes the supremum norm. Note first

that RT ,j(𝜉) = Rj(𝜉) + log(Ĉj(𝜉)∕Cj(𝜉)) where

Rj(𝜉) = log(Cj(𝜉)) −
2
m

dj(𝜉)
m∑

k=1

log 𝜆k

Cj(𝜉) =
Cj

m

m∑

k=1

𝜆
2(dj(𝜉)−dj(𝜉0))
k .

By concavity of the log function for 𝜉 ∈ Θ,

Rj(𝜉) ≥ log Cj +
1
m

m∑

k=1

log
(
𝜆

2(dj(𝜉)−dj(𝜉0))
k

)
− 2

m
dj(𝜉)

m∑

k=1

log 𝜆k = Rj(𝜉0),

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
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LOCAL WHITTLE ESTIMATION 669

and thus every Rj(𝜉) achieves a minimum at 𝜉0. Define now R(𝜉) = M−1∑M
j=1Rj(𝜉) such that

0 ≤ R(𝜉) − R(𝜉0) = R(𝜉) − RT (𝜉) + RT (𝜉) − RT (𝜉0) + RT (𝜉0) − R(𝜉0)

≤
1
M

M∑

j=1

{

log

(
Ĉj(𝜉0)
Cj(𝜉0)

)

− log

(
Ĉj(𝜉)

Cj(𝜉)

)}

,

because RT (𝜉) − RT (𝜉0) ≤ 0. Define now the RP+1 → R function Kj(s) as

Kj(s) = log

(
1
m

m∑

k=1

𝜆
2s′Pj

k

)

−
2s′Pj

m

m∑

k=1

log 𝜆k.

Denote Ki
j (s) = 𝜕Kj(s)∕𝜕si, Kil

j (s) = 𝜕Kj(s)∕𝜕si𝜕sl, K′
j (s) is the vector of first derivatives [K′

j (s)]i = Ki
j (s) and K′′

j (s)
is the matrix of second derivatives [K′′

j (s)]il = Kil
j (s). Since Kj(0) = Ki

j (0) = 0 for i = 0, 1, … ,P and considering
the continuity and twice differentiability of Kj(s), the mean value theorem gives for s ∈ Θ,

Kj(s) =
1
2

s′K′′
j (c)s,

for some ||c|| ≤ ||s||. The i × l element of the matrix K′′
j (c) is of the form Kil

j (c) = 4Pi(uj)Pl(uj)cj(c) for

cj(c) =
1

m

∑
k k2c′Pj log2k 1

m

∑
k k2c′Pj −

(
1

m

∑
k k2c′Pj log k

)2

(
1

m

∑
k k2c′Pj

)2

such that cj(c) > 0 for j = 1, … ,M by Cauchy–Schwarz inequality. Then for j = 1, … ,M

K(s) ≥ 2
M

M∑

j=1

s′PjP
′
j scj(c)

≥ min
(c,j)
{cj(c)}s′

2
M

M∑

j=1

PjP
′
j s

≥ 𝜅s′s,

for a positive generic constant 𝜅 (which in what follows can be different in each situation) and large enough T ,
since under Assumption A.5 1

M

∑M
j=1PjP

′
j → I (see Lemma 1). Replacing s by (𝜉 − 𝜉

0), then,

P∑

v=0

(𝜉i − 𝜉
0
i )

2
≤ 𝜅K(𝜉 − 𝜉

0) = 𝜅(R(𝜉) − R(𝜉0))

≤ 𝜅
1
M

M∑

j=1

{

log

(
Ĉj(𝜉0)
Cj(𝜉0)

)

− log

(
Ĉj(𝜉)

Cj(𝜉)

)}

≤ 𝜅
1
M

M∑

j=1

sup
𝜉∈Θ

|
|
|
|
|
|

log

(
Ĉj(𝜉)
Cj(𝜉)

)|
|
|
|
|
|

,
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670 J. ARTECHE and L. F. MARTINS

and the consistency is thus proved if supΘ |(Ĉj(𝜉) − Cj(𝜉))∕Cj(𝜉)| = op(1) for every j = 1, … ,M. Now

Ĉj(𝜉) − Cj(𝜉)
Cj(𝜉)

=
m∑

k=1

cjk

( Ijk

gjk

− 1

)

,

where Ij,k = IN(uj, 𝜆k), gjk = Cj𝜆
−2dj(𝜉0)
k and

cjk =
1
m

𝜆
2(dj(𝜉)−dj(𝜉0))
k

1

m

∑
k=1 𝜆

2(dj(𝜉)−dj(𝜉0))
k

= 1
m

k2(dj(𝜉)−dj(𝜉0))

1

m

∑
k=1 k2(dj(𝜉)−dj(𝜉0))

.

The proof now follows as in Robinson (1995b) and Velasco (1999b) adapting some steps to the locally stationary
and non-stationary character of the processes we deal with. Note that

m∑

k=1

cjk

( Ijk

gjk

− 1

)

=
m∑

k=1

cjk(rjk + sjk), (A3)

+
m∑

k=1

cjk
1
N

N−1∑

s=0

(𝜀2
tj−N∕2+s+1 − 1), (A4)

for rjk = Ijk∕gjk − 2𝜋I𝜀jk, I𝜀jk = I𝜀N(uj, 𝜆k) the periodogram of the innovations in Assumption A.1 and sjk =
N−1∑

s

∑N−1
t≠s 𝜀tj−N∕2+s+1𝜀tj−N∕2+t+1ei(t−s)𝜆k . By summation by parts (A3) is equal to

m−1∑

k=1

(cjk − cjk+1)
k∑

l=1

(rjl + sjl) + cjm

m∑

k=1

(rjk + sjk) = Z1(𝜉) + Z2(𝜉).

To get a bound for E|rjl| note that

rjl =
(

1 −
gjl

fjl

) Ijl

gjl

+
( Ijl

fjl

− 2𝜋I𝜀jl

)

,

for fjl = fx(uj, 𝜆l). Now we need the following results

E
|
|
|
|
|

Ijl

gjl

|
|
|
|
|
≤ 𝜅, l = 1, 2, … ,m, (A5)

|
|
|
|
|
1 −

gjl

fjl

|
|
|
|
|
= o(1), l = 1, 2, … ,m, (A6)

E
|
|
|
|
|

Ijl

fjl

− 2𝜋I𝜀jl

|
|
|
|
|
= O

(
log1∕2l

l𝛼j
+

N1∕2log1∕2N

T1∕2

)

, (A7)

for a generic positive constant 0 < 𝜅 <∞ and 𝛼j = min(1∕2, 1−dj(𝜉0)). (A6) is easily obtained from Assumption
A.2. (A5) can be deduced from Lemma 2. Finally, the result in (A7) can be similarly proved using formulae (3.17)
in Robinson (1995b) and (A2) in Velasco (1999b) together with Lemma 2.
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LOCAL WHITTLE ESTIMATION 671

These bounds lead to
∑k

l=1E|rjl| = o(k) + O(k1−𝛼j log1∕2k). Note also that cjk − cjk+1 = cjkO(k−1) and thus

m−1∑

k=1

|cjk − cjk+1|

k∑

l=1

E|rjl|

=
m−1∑

k=1

cjko(1) +
m−1∑

k=1

cjkO(k−𝛼j log1∕2k)

= o(1) + O
⎛
⎜
⎜
⎝

log1∕2m

m

∑
k k2(dj(𝜉)−dj(𝜉0))−𝛼j

1

m

∑
k k2(dj(𝜉)−dj(𝜉0))

⎞
⎟
⎟
⎠

= o(1) + O

⎛
⎜
⎜
⎜
⎝

log1∕2m

m

[
m2(dj(𝜉)−dj(𝜉0))−𝛼j+1 + log m

]

m2(dj(𝜉)−dj(𝜉0))

⎞
⎟
⎟
⎟
⎠

= o(1),

because 2(dj−d0
j )+1 > 0 under Assumption A.3 and 𝛼j > 0. Now since E[(

∑k
l=1sjl)2] = O(k) (see Robinson, 1995b,

formula (3.20), or Hurvich et al., 2005, p. 1325), proceeding similarly as before

sup
Θ

m−1∑

k=1

(cjk − cjk+1)
k∑

l=1

sjl = Op

(

sup
Θ

m−1∑

k=1

|cjk|k
−1∕2

)

= Op

(

sup
Θ

∑
k k2(dj(𝜉)−dj(𝜉0))−1∕2

∑
k k2(dj(𝜉)−dj(𝜉0))

)

= Op

(

sup
Θ

m2(dj(𝜉)−dj(𝜉0))+1∕2 + 1

m2(dj(𝜉)−dj(𝜉0))

)

= op(1),

and thus supΘ Z1(𝜉) = op(1). Proceeding similarly we also get supΘ Z2(𝜉) = op(1). Finally, (A4) is clearly op(1)
under Assumption A.6 (see formula (3.19) in Robinson, 1995b). ◾

Proof of Theorem 2. Note that

(𝜉 − 𝜉
0) =

(
d2RT (𝜉)
d𝜉d𝜉′

|
|
|
|
|𝜉=𝜉

)−1
dRT (𝜉)

d𝜉

|
|
|
|𝜉=𝜉0

,

for 𝜉 such that ||𝜉 − 𝜉
0|| ≤ ||𝜉 − 𝜉

0||. The theorem is thus proven if

(A) Hessian convergence:

d2RT (𝜉)
d𝜉d𝜉′

|
|
|
|
|𝜉=𝜉

p
→ 4IP+1.

(B) Score convergence:

√
mM

dRT (𝜉)
d𝜉

|
|
|
|𝜉=𝜉0

d
→ (0, 4IP+1).

B) Hessian convergence: Fix 𝛿 > 0 and let M = {𝜉 ∶ log4N||𝜉 − 𝜉
0|| ≤ 𝛿}. We first show that P(𝜉 ∉

M) → 0. Proceeding as in the proof of consistency, P(log4N
∑P

v=0(𝜉 − 𝜉
0)2 > 𝛿) → 0 if supΘ |(Ĉj(𝜉) − Cj(𝜉))∕

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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672 J. ARTECHE and L. F. MARTINS

Cj(𝜉)| = op(log−4N). Noting now that |1 − g−1
jl fjl| = O(𝜆𝛽j ) then

∑k
l=1E|rjl| = O(k𝛽+1N𝛽 + k1−𝛼j log1∕2k +

kN1∕2log1∕2NT−1∕2) and proceeding as in the proof of consistency, supΘ Z1(𝜉) is

Op

([m
N

]𝛽
+

log3∕2m

m𝛿
+

N1∕2log3∕2m

T1∕2

)

= op(log−4N),

for some 𝛿 > 0 under Assumptions B.3–B.5. Similarly, supΘ Z2(𝜉) is

Op

([m
N

]𝛽
+

log1∕2m

m𝛼∗
+

N1∕2log3∕2m

T1∕2

)

= op(log−4N),

under B.5, for 𝛼∗ = minj 𝛼j. Finally, (A4) has mean zero and variance O(N−1) under Assumption B.5 and S ≥ N.

Therefore, we can restrict to values d ∈ M.
Now the matrix of second derivatives has (i, h)th element

[
d2RT (𝜉)
d𝜉d𝜉′

]

ih

= 4
M

M∑

j=1

Ci−1,h−1
j2 (𝜉)Ĉj(𝜉) − Ci−1,0

j1 (𝜉)C0,h−1
j1 (𝜉)

Ĉj(𝜉)2
,

where for a = 1, 2,

Cih
ja(𝜉) =

1
m

m∑

k=1

Ij,k

𝜆
−2dj(𝜉)
k

loga
𝜆kPi,T (uj)Ph,T (uj).

Since |𝜆
2(dj(𝜉)−dj(𝜉0))
k −1| ≤ 2|dj(𝜉)−dj(𝜉0)| log 𝜆k max 𝜆

2(dj(𝜉)−dj(𝜉0))
k = Op(|dj(𝜉)−dj(𝜉0)|N1∕logN log N) = Op(log−3N)

in M, then |Cih
ja(𝜉) − Cih

ja(𝜉0)| = Op(loga−3N). Denote

Jih
ja =

Cj

m

m∑

k=1

loga
𝜆kPi,T (uj)Ph,T (uj).

Then

|Cih
ja(𝜉

0) − Jih
ja | ≤

Cj

m

m∑

k=1

loga
𝜆kPi,T (uj)Ph,T (uj)

|
|
|
|
|

Ij,k

gjk

− 1
|
|
|
|
|

≤
Cj

m

m∑

k=1

loga
𝜆kPi,T (uj)Ph,T (uj)

|
|
|
|
|
|

rjk + sjk +
1
N

N−1∑

s=0

(𝜀2
tj−N∕2+s+1 − 1)

|
|
|
|
|
|

= Op

([m
N

]𝛽
logaN +

logaNlog1∕2m

m𝛼∗
+

logaN

N1∕2
+

N1∕2log1∕2

T1∕2

)

= Op(loga−3N),

under Assumption B.5. Then

[
d2RT (𝜉)
d𝜉d𝜉′

|
|
|
|
|𝜉=𝜉

]

ih

= 4
M

M∑

j=1

Ci−1,h−1
j2 (𝜉0)Ĉj(𝜉0) − Ci−1,0

j1 (𝜉0)Ch−1,0
j1 (𝜉0) + Op(log−1N)

Ĉj(𝜉0)2 + Op(log−3N)

wileyonlinelibrary.com/journal/jtsa © 2024 The Author(s). J. Time Ser. Anal. 46: 647–673 (2025)
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= 4
M

M∑

j=1

Ji−1,h−1
j2 Cj − Ji−1,0

j1 Jh−1,0
j1 + Op(log−1N)

C2
j + Op(log−3N)

= 4
M

M∑

j=1

Pi−1,T (uj)Ph−1,T (uj) + o(1) + op(1)

= 41(i = h) + o(1) + op(1),

because Jih
j2Cj − Ji0

j1Jh0
j1 is

C2
j

m
Pi,T (uj)Ph,T (uj)

m∑

k=1

v2
k = C2

j Pi,T (uj)Ph,T + o(1).

(B) Score convergence: The result follows if for any vector 𝜂 = (𝜂0, … , 𝜂P)′

√
mM𝜂

′ dRT (𝜉)
d𝜉

|
|
|
|𝜉=𝜉0

d
→ (0, 4𝜂′𝜂). (A8)

Noting that Ĉj(𝜉0)
p
→ Cj, the left-hand side of (A8) is asymptotically equivalent to

2
√

M

M∑

j=1

P∑

v=0

𝜂vPv,T (uj)Zj for Zj =
1
√

m

m∑

k=1

vk

Ijk

gjk

.

Proceeding as in Robinson (1995, theorem 2) and Velasco (1999, theorem 3) we get that for every j = 1, ..,M,

Zj

d
→  (0, 1). Then, taking into account the asymptotic independence of Zj and Zl, l ≠ j (guaranteed by the fact

that S ≥ N) and that M−1∑M
j=1PjP

′
j → IP+1 we get the desired result. ◾

Proof of Corollary 1. The proof of a) comes directly from Theorem 2 taking into account that AMm → 4IP+1 as

T → ∞. To prove (b) and (c) note that under the assumptions in Theorem 2 and H1,
√

4mM(R𝜉 − r − r)
d,H1
→

q(0,R′R) or

√
4mM(R𝜉 − r)

d,H1
→ q(r

√
4mM,R′R),

such that W(R, r)
p,H1
→ ∞ under the constant specification of r in b) and W(R, r)

d,H1
→ 𝜒

2
q (4
∑q

i=1𝜃
2
i ) under the local

specification in (c). ◾

J. Time Ser. Anal. 46: 647–673 (2025) © 2024 The Author(s). wileyonlinelibrary.com/journal/jtsa
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