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Abstract: For automated quayside container cranes, accurate measurement of the three-dimensional
positioning and attitude of the container spreader is crucial for the safe and efficient transfer of
containers. This paper proposes a high-precision measurement method for the spreader’s three-
dimensional position and rotational angles based on a single vertically mounted fixed-focus visual
camera. Firstly, an image preprocessing method is proposed for complex port environments. The
improved YOLOv5 network, enhanced with an attention mechanism, increases the detection accuracy
of the spreader’s keypoints and the container lock holes. Combined with image morphological
processing methods, the three-dimensional position and rotational angle changes of the spreader are
measured. Compared to traditional detection methods, the single-camera-based method for three-
dimensional positioning and attitude measurement of the spreader employed in this paper achieves
higher detection accuracy for spreader keypoints and lock holes in experiments and improves the
operational speed of single operations in actual tests, making it a feasible measurement approach.

Keywords: container spreader; YOLOv5; machine vision; optical method; segmentation

1. Introduction

In the operation of automated quayside container cranes, the three-dimensional po-
sition and rotational angles of the spreader are crucial parameters. Automated quayside
container cranes are specifically designed for container terminals and are responsible for
transferring containers between container trucks and container ships; a process known as
container lifting operations. During the automated container lifting process, the spreader
is first moved to an approximate position over the target container, then the spreader’s
position is fine-tuned, and finally, the twist lock on the spreader relates to the container
lock holes. As shown in Figure 1, Figure 1a depicts the displacement and rotation between
the spreader and the container, and Figure 1b depicts the aligned state of the spreader with
the container. This alignment work relies on the perception system’s accurate measurement
of the spreader’s three-dimensional position and rotational angles, where the timeliness
and accuracy of measurements are important factors affecting operational efficiency.

Currently, various sensor-assisted spreader positioning methods are used in engineer-
ing applications, primarily employing LiDAR (Light Detection and Ranging) to collect
posture data of container spreaders for positioning. The advantage of LiDAR is its ability
to support all-weather operations, which performs well in the unstable lighting conditions
of container terminal environments [1,2]. However, disadvantages include susceptibility
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to interference in rainy and foggy weather conditions. Additionally, LiDAR presents chal-
lenges with complex installation and limited measurement range [3]. For example, in the
positioning tasks of gantry cranes, the optimal installation location for LiDAR is on the
crane’s crossbeam. However, due to the significant distance from the crossbeam to the
containers on the ground, laser devices capable of precise positioning at such distances are
expensive. If the radar is mounted on the legs of the gantry crane, the narrow field of view
may result in measurement blind spots. These issues introduce certain limitations to the
LiDAR approach in practical applications.
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Thus, improving the accuracy and reliability of spreader position and orientation
measurements remains an important research direction. Current proposals include vision-
based object pose measurement systems, which exhibit good measurement accuracy in
stable environments but still face challenges in complex measurement environments and
with the limited computational resources in engineering applications.

This paper describes a method for detecting the three-dimensional position and ro-
tational angles of a spreader using only a single visual camera. This method utilizes a
pure visual detection approach without LiDAR, enhances the YOLOv5 network with an
attention module, and integrates image morphological algorithms to reduce computational
power consumption and increase the detection accuracy of keypoints on the spreader and
lock holes in images, offering a feasible measurement for the spreader’s three-dimensional
position and rotational angles.

The contributions of this paper are mainly reflected in the following aspects:

1. Addressing the limitations in LiDAR installation locations and lack of computational
resources in engineering applications, a pure visual detection system using only a
single camera has been proposed;

2. Considering the complex lighting conditions and noise issues of camera image sam-
ples in measurement environments, a pre-processing method for image samples has
been proposed;

3. To overcome the limitations of the conventional YOLOv5 network in keypoint detec-
tion and small target detection, an attention module has been added to the network,
enhancing the detection accuracy of keypoints on the spreader and the container
lock holes and ultimately improving the measurement accuracy of the spreader’s
three-dimensional position and rotational angles.

2. Related Works

Detection methods based on visual cameras are severely affected by strong sunlight
or reliance on artificial light sources at night, leading to distortion of the original color
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and texture information in the images, which increases the difficulty of feature extraction
and recognition for image processing algorithms. Additionally, in port environments, fine
particles such as dust scatter light, reducing scene visibility and causing noise and blurring
in images, which in turn leads to the loss of crucial detail features. To address the distur-
bances caused by non-uniform lighting conditions and other environmental factors, several
common techniques for image enhancement are currently used: histogram equalization [4],
Retinex theory [5], and methods using deep learning for image enhancement [6]. These
techniques effectively improve image display under uneven lighting conditions. However,
the limited computational power of hardware installed within the confined spaces of quay-
side cranes makes the use of complex deep learning methods for image enhancement a
computational burden.

The core of histogram equalization algorithms is to enhance contrast by expanding
the overall dynamic range of the image. Traditional histogram equalization methods of-
ten excessively enhance contrast, resulting in unnatural-looking images prone to visual
distortions, and may amplify noise during the detail enhancement process. To address
the issues of detail loss and increased noise that can arise from global histogram equaliza-
tion, Contrast Limited Adaptive Histogram Equalization (CLAHE) has been proposed [7].
CLAHE has achieved some success in improving noise robustness, but there is still room for
further improvement in enhancing local details and color naturalness. Additionally, Celik
et al. [8] proposed a Context and Variance Contrast (CVC) enhancement algorithm that
achieves non-linear pixel value mapping by analyzing contextual relationships between
image pixels and their histograms, thereby enhancing low-light images. Although these
methods have shown improvements in certain aspects, they typically perform modestly
in noise reduction, especially for images with specific color distributions, and may even
increase noise in some cases.

Methods based on Retinex theory [5], which hypothesize that an image can be decom-
posed into reflection and illumination components, are commonly used to adjust image
brightness distribution to remove overexposure and enhance dark area details. The main
challenge with Retinex methods is the selection of parameters. Most existing Retinex-based
methods rely on the classic Multi-Scale Retinex (MSRCR) method [9] and carefully designed
manual constraints and prior parameters for this highly uncertain decomposition [10,11].
However, the design of prior parameters may be limited by the parameter model when
applied to different scenes. Chen Wei et al. [12] combined deep learning technology to
propose Retinex-Net, which can be trained on given datasets. Its self-learning capability
allows it to adapt to different scenes, achieving good low-light image enhancement and
denoising effects. Similar to light enhancement algorithms, most existing image denoising
methods still rely on prior parameters to adjust dehazing effects [13,14], achieving good
results to some extent. However, due to the complex and variable nature of outdoor scenes,
their application effects are not ideal because the adjustment of prior parameters can only
be effective in certain applicable scenarios.

With the application of deep learning, recent years have seen the emergence of new
methods using autonomously learning adaptive network structures [15,16] to automatically
adjust and fit dehazing parameter designs corresponding to different images, effectively
enhancing the robustness and generalization ability of dehazing algorithms. However,
these methods lack sufficient empirical cases to demonstrate their final application effects.

In terms of object pose detection using visual cameras, the commonly used method
is the PNP (Perspective-n-Point) algorithm, which performs well with fixed camera an-
gles [17]. These pose detection methods rely on the detection of pixel coordinates of
keypoints in the image. Yin Y. et al. [18] used YOLOv4 and YOLOv5s network models,
incorporating improvements to the loss function at the center points of the bounding boxes,
successfully solving the problem of keypoint detection and pose estimation when detected
targets occlude each other. Lou H. et al. [19] proposed a small object detection algorithm
based on YOLOv8 using depth-wise separable convolution, down sampling operations to
extract feature information and improving the original model’s C2f module to achieve the
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fusion of different size features, thus enhancing the performance of the small object detec-
tion algorithm. However, despite improvements, the detection accuracy after lightweight
processing still has significant room for improvement, and the misjudgment probability
remains high in practical applications using keypoints for pose estimation. Zhang Qiang
et al. [20] used attention mechanisms to locate target heatmaps, employing a mask cross-
attention mechanism to optimize coarse-scale features and introducing fine-scale features
to improve contour details, thereby enhancing the accuracy of target detection. Mi et al. [21]
improved the detection accuracy of target poses by detecting standard parts with fixed
sizes. Wang Juan et al. [22] proposed a multi-scale target detection algorithm based on
the YOLO framework, combining a super-resolution reconstruction module and channel
attention mechanism, effectively improving the detection accuracy of targets with large
scale spans. Zwolfer M. et al. [23] studied the extraction of 2D keypoints and analyzed the
performance of pose detection algorithms using 2D keypoints.

In summary, current image preprocessing methods have certain limitations in different
environments and still require design for actual application scenarios. In the use of pure
visual image pose detection methods, YOLO algorithms have shown good experimental
results, but there is still significant room for improvement in the detection accuracy of
keypoints and small targets, especially in specific port environments, where issues in mea-
suring the three-dimensional position and rotational angle of spreaders still lack effective
and reliable solutions.

3. Three-Dimensional Positioning and Attitude Measurement System
3.1. Hardware System

This paper presents a hardware system for the three-dimensional positioning and
attitude measurement of the spreader based on visual measurement, consisting of a single
visual camera and a single-edge computing module. The visual camera in the system is a
vertically mounted fixed-focus camera, affixed to the trolley frame of the quayside crane, as
shown in Figure 2. The trolley is a mobile platform mounted on the boom of the quayside
crane, capable of smooth operation along fixed tracks, driving the movement of the spreader
during lifting operations. The spreader is connected to the trolley by steel cables, and as the
trolley moves, the spreader will swing to some extent. The single-edge computing module
is responsible for receiving and processing the images of the upper surface of the spreader
collected by the visual camera. In practice, the visual camera continuously captures images
of the spreader and transmits them to the single-edge computing module. The single-edge
computing module analyzes these images through advanced image processing algorithms
to accurately determine the position and attitude of the spreader.
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Figure 2. Equipment installation diagram.

During container loading operations, the spreader may experience changes in attitude
such as twisting and shifting. The image of the spreader captured by the camera is shown
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in Figure 3, which depicts the spreader in a twisted position. Adjustments to the spreader’s
twisting and shifting are made through the forward and backward movement of the
trolley. The distance the trolley moves depends on the rotational angle and the offset of
the spreader.
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3.2. Algorithm Design

The workflow of the three-dimensional positioning and attitude measurement algo-
rithm for spreaders based on visual measurement proposed in this paper is illustrated in
Figure 4. Initially, a raw image is input; it then undergoes image preprocessing where a
multi-channel image processing algorithm proposed in this paper is applied. This algorithm
effectively balances the image’s lighting levels and reduces noise. After preprocessing, an
enhanced image is output. For the enhanced image, keypoint and lock hole detection is
necessary. To improve the detection accuracy of keypoints and small targets, an improved
YOLOv5 algorithm is used, which includes an added attention module. Finally, by analyz-
ing the detected image keypoints and container lock holes, the spreader’s rotation angle
and offset distance relative to the baseline position are determined.
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3.2.1. Multi-Channel Image Processing Algorithm for Spreader Images

To address the interference problems caused by uncertain environmental conditions,
this paper designs a multi-channel image enhancement algorithm that combines global
and local scales for the spreader images at container terminal quaysides. This algorithm
serves as a preprocessing part of the image detection algorithm to mitigate the impacts of
lighting and visibility. As shown in Figure 5, the image processing workflow is divided
into two parts: an image denoising channel and a lighting equalization channel.
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Lighting Equalization Channel. In all-weather outdoor environments, images cap-
tured by cameras are subject to interference from sunlight and artificial lighting, and the
uneven distribution of light can easily create overly bright or dark areas in images. This
not only obscures key information in the images but may also prevent image recognition
algorithms from accurately extracting the needed features, thereby affecting the judgment
and decision-making of the entire automation system. To address these issues, this paper
introduces a lighting equalization algorithm at the initial stage of the spreader image
preprocessing workflow. This algorithm effectively adjusts the brightness distribution in
images, ensuring that details under shadows or strong light exposure are clearly captured.

The lighting equalization channel designed in this paper, considering the compu-
tational burden that neural networks might introduce, employs an image partitioning
method based on attention mechanisms and Retinex theory. According to different levels
of environmental light reflection, the image is divided into multiple focused areas. A
multi-stage Retinex algorithm is then used to adaptively enhance details in dark areas
while simultaneously suppressing halo effects in bright areas.

The image partitioning based on attention mechanisms and Retinex theory is a com-
posite process. It utilizes Retinex theory to simulate the human visual system’s perception
of lighting and employs attention mechanisms to focus on key areas in the image. The
principles of Retinex theory are illustrated in Figure 6.
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Retinex theory posits that an observed image can be decomposed into an illumination
component and a reflection component as follows:

I(x, y) = L(x, y)× R(x, y) (1)

where I(x, y) represents the observed image, x, y denote pixel positions in the image, L(x, y)
represents the illumination component, indicating the intensity and distribution of light
in the scene, and R(x, y) represents the reflection component, which reflects the inherent
color and color characteristics of the object’s surface.

The purpose of employing an attention mechanism in this paper is to enable the model
to focus on important parts of the image. In the context of image partitioning, this paper
defines an attention weight A(x, y), which is used to indicate the importance of each pixel.
Therefore, the attention-weighted image is represented as follows:

IA(x, y) = A(x, y)× I(x, y) (2)

To further clarify how to apply different treatments to different areas, this paper
defines a regional segmentation function S(x, y) for the sample images. The regional
segmentation function can divide the test image into several focused areas based on the
image’s illumination component and attention fidelity. Specific treatments are then applied
based on the characteristics of each region. For darker areas, such as the interior of a
container ship’s hold, the method enhances the illumination component L(x, y) to improve
the visibility of image details. For high-light areas, brightness adjustment measures are
taken to reduce halo effects. This focused strategy not only ensures the efficiency of the
algorithm’s processing but also significantly reduces the required processing time. Through
this method, the processing speed is enhanced while ensuring image processing quality,
achieving rapid adaptation to complex image environments, and thus optimizing the
balance between computational efficiency and effectiveness under the premise of ensuring
image quality.

Image Denoising Channel. The image denoising channel aims to restore clear images
from the haze effects caused by atmospheric scattering. When capturing images in hazy
weather, tiny droplets or dust particles in the atmosphere scatter light, leading to a decline
in image quality, which manifests as reduced contrast, color distortion, and blurred details.
Additionally, images captured in such conditions often come with a higher noise level, so
the image denoising process typically involves addressing blurring and noise issues while
enhancing image details to improve visual quality.

In terms of image denoising, this paper initially uses a multi-scale wavelet decom-
position algorithm to decompose low-quality images into low-frequency sub-images and
multi-scale high-frequency sub-images. It then employs an adaptive Bayesian wavelet
threshold estimation method to achieve nonlinear enhancement of different high-frequency
sub-images, thus suppressing image noise information caused by environmental visibility
and enhancing image details.
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The multi-scale wavelet decomposition algorithm performs a hierarchical decompo-
sition of images, allowing for the extraction of low-frequency components and multiple
scales of high-frequency components of the image. The low-frequency components contain
the main information of the image, such as the general contours and smooth areas, while
the high-frequency components contain detailed information, such as edges and textures.
The basic idea can be expressed by the following formula:

I(x, y) = ∑S
s=1 ∑ω∈{LH, HL,HH} Wω

s (x, y) + LS(x, y) (3)

where I(x, y) represents the original image and Wω
S (x, y) represents the high-frequency

wavelet coefficients at scale s, corresponding to the direction ω (horizontal details LH,
vertical details HL, and diagonal details HH). LS(x, y) represents the low-frequency
component at the final scale S, which is the approximate representation of the image. s
is the scale or level of decomposition, and S is the maximum decomposition level. The
samples collected in this paper are color images, therefore, wavelet decomposition is
required for each color channel (typically the RGB channels). The processed channels are
then recombined to form the complete image. The images after wavelet decomposition are
shown in Figure 7.
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During the initial decomposition process, this paper performs a first-level wavelet
transform on the original image I(x, y), decomposing I(x, y) into a low-frequency compo-
nent L1 and high-frequency components WLH

1 , WHL
1 , WHH

1 . The low-frequency component
reflects the general contours of the image, while the high-frequency components contain
detailed information of the image. Subsequently, the low-frequency component is decom-
posed again, being further broken down into an even lower frequency component and
new high-frequency components. This process is iterated until reaching the predetermined
scale S. As an example of a second-level decomposition, the image is first decomposed into
the first-level low-frequency component L1 and high-frequency components WLH

1 , WHL
1 ,

WHH
1 . Then, L1 is further decomposed into L2 and high-frequency components WLH

2 , WHL
2 ,

WHH
2 . At this point, the multi-scale wavelet decomposition of the image can be represented

as follows:
I(x, y) = WLH

1 + WHL
1 + WHH

1 + WLH
2 + WHL

2 + WHH
2 + L2 (4)

Multi-scale wavelet decomposition analyzes the frequency components of an image at
different scales, capturing the image’s detail and structural information to achieve noise
reduction. After decomposing low-quality images into low-frequency sub-images and
multi-scale high-frequency sub-images, this paper utilizes an adaptive Bayesian wavelet
threshold estimation method to achieve nonlinear enhancement of different high-frequency
sub-images. This method applies an adaptive threshold based on Bayesian estimation to
each high-frequency sub-image for nonlinear enhancement.



Sensors 2024, 24, 5476 9 of 20

First, consider the representation of the image in the wavelet domain. For each high-
frequency sub-image Wω

s (x, y), where s represents the scale of wavelet decomposition and
ω represents different directions, the set of wavelet coefficients is cs

i,j. After obtaining the
set of wavelet coefficients, it is necessary to determine the threshold. This paper uses the
estimation of the noise level σn to determine the threshold. The estimation of the noise
level is accomplished by analyzing the variance of the wavelet coefficients in local regions
of the image or other statistical methods.

After estimating the noise level, this paper determines the Bayesian threshold by
minimizing Bayesian risk, with the following formula:

T = µσn
√

2logN (5)

Tω
s = argminTE

[
L
(

cs
i,j, T

)]
(6)

where, µ is an adjustable parameter, N is the number of data points, L
(

cs
i,j, T

)
is the

loss function, which quantifies the discrepancy between the true coefficients cs
i,j and the

estimated coefficients under threshold T. E[·] represents the expectation operation, tak-
ing into account all possible noise and signal scenarios. This method utilizes the noise
level to dynamically adjust the threshold, achieving effective denoising under various
noise conditions.

Ultimately, for each wavelet coefficient cs
i,j, the processing follows the following non-

linear logic:

ĉs
i,j =

{
f
(

cs
i,j, Tω

s

)
, i f

∣∣∣cs
i,j

∣∣∣ > Tω
s

0, otherwise
(7)

where, f
(

cs
i,j, Tω

s

)
represents a nonlinear function that adjusts the value of the coefficient cs

i,j
based on its magnitude relative to the adaptive threshold Tω

s . The purpose of this function
is to appropriately enhance an image while preserving image details. This nonlinear
processing is based on whether the coefficients exceed the threshold to decide whether
to retain the coefficient: coefficients exceeding the threshold are adjusted as they are
considered to contain important image detail information, while those not exceeding the
threshold are deemed to be noise and are set to zero.

The processed wavelet coefficients ĉs
i,j are then used for image reconstruction via an

inverse wavelet transform, achieving nonlinear enhancement of different high-frequency
sub-images as follows:

I′(x, y) = InverseWaveletTrans f orm
(

ĉs
i,j

)
(8)

This process involves recombining the processed wavelet coefficients to form the
enhanced image I′(x, y). This method, based on adaptive Bayesian wavelet threshold
estimation, not only effectively enhances the high-frequency details of the image, thereby
improving image clarity and visual quality, but also suppresses image noise to some extent.
It is particularly suitable for cases where visual information loss is caused by environmental
factors, such as haze. Its adaptive nature allows the threshold to dynamically adjust based
on the characteristics of the image itself, thus enhancing image details while maintaining
the naturalness and realism of the image. Examples of preprocessed images are shown
in Figure 8.
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Figure 8. The preprocessed images. (a) shows the original images; (b) shows the images processed by
the multi channel image preprocessing algorithm.

3.2.2. Object Detection Method Based on an Improved YOLOv5

Traditional object detection methods tend to fail in all-weather complex backgrounds
such as docks, especially in cases of occlusion. Additionally, convolutional neural networks
(CNNs) may include a large amount of redundant information when extracting object
features, leading to incorrect object localization and a decrease in prediction accuracy. To
address these issues, this paper proposes a method for detecting keypoints on spreaders
based on YOLOv5, introducing a Mixed-Domain Attention Mechanism (MDAM). This
method combines a Spatial Attention Mechanism (SAM) [24] and a Channel Attention
Mechanism (CAM) [25] to enhance the model’s focus on important features, thereby
improving detection performance in complex dock environments.

A SAM processes the input feature maps by performing channel-wise average pooling
and max pooling, obtaining two spatial attention feature maps. These two attention maps
are concatenated along the channel dimension to form a dual-channel feature map. Then,
this map is convolved with a kernel, and a normalized attention map is obtained through an
activation function. Finally, the attention map is element-wise multiplied with the original
feature map to produce a weighted feature map, enabling the SAM to significantly enhance
the model’s focus on important features, as shown in Figure 9.
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A CAM obtains channel descriptors through global average pooling, and then gen-
erates channel weights through a series of fully connected layers. These weights are
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element-wise multiplied with the input feature map to enhance the representation of
important channels, as shown in Figure 10.
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This paper combines the SAM and CAM modules sequentially into an MDAD module,
as shown in Figure 11, with the specific steps as follows:
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Figure 11. MDAD Module.

Step One Input a feature map F of size C × H × W. Channel average pooling and
channel max pooling are used to compress the input features, generating feature layers of
size 1 × H × W each. These feature maps are then concatenated to form a dual-channel
feature map of 2 × H × W. Subsequently, a 7 × 7 convolution kernel is used to perform
convolution operations to obtain M ∈ R1×H×W , which is then passed through a Sigmoid
activation function to produce a normalized attention map. The spatial attention map
represents the importance of each positional information within the feature map.

Step Two Multiply the spatial attention map element-wise with the original feature
map to obtain a weighted feature map F′

out = F·M.
Step Three Input the spatially weighted feature map into the CAM attention channel

module. The input feature map F′
out undergoes global average pooling to generate channel

weights Wc ∈ RC. After normalizing the channel weights, the final weighted feature map
is F′′ out = F′

out·Wc.



Sensors 2024, 24, 5476 12 of 20

The MDAD module enhances the model’s sensitivity to important information by
dynamically adjusting the weights of the feature maps during the feature extraction process.
Specifically, the spatial attention mechanism identifies critical areas within the image, while
the channel attention mechanism recognizes and emphasizes important channels in the
feature maps. Combining these two attention mechanisms enhances feature expression
across different dimensions, thereby improving detection accuracy and robustness.

The detection results for the two-dimensional keypoints of the spreader obtained
through the improved YOLOv5 network are illustrated in Figure 12.
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The pixel coordinates of the four keypoints are obtained as pi = (ui, vi), where
i = 1, 2, 3, 4.

3.2.3. Spreader Three-Dimensional Position and Rotation Angle Measurement Model

The method proposed in this paper measures the rotation angle of the spreader in
the camera coordinate system as well as the offset distance of the swinging spreader from
the vertical position. During the lifting process of the spreader, the measurement system
simultaneously detects the keypoints of the spreader and the lock holes of the containers
in the ship’s hold. The coordinates and confidence level of the m-th detected lock hole
are given as lockholem = (um, vm, con f idencem). When multiple lock holes are detected in
the image, lock hole pairs are selected using the pixel coordinates values (um, vm). The
selection criterion is that the difference in the v coordinates between two lock holes should
be within ±20 pixels as follows:

|vm − vn| ≤ 20 (9)

When multiple pairs of lock holes are detected in the image, for each pair that meets
the criteria, calculate the average confidence level as follows:

avg_con f idence =
con f idencem + con f idencen

2
(10)

Select the lock hole pair with the highest avg_con f idence to define the baseline for the
spreader’s rotation angle. Therefore, the spreader’s rotation angle γ is calculated as follows:

γ = tan−1
(

vn − vm

un − um

)
− tan−1

(
v2 − v2

u1 − u1

)
(11)
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The reference position for the spreader’s three-dimensional position is a preset point
on the bracket, which is the coordinate point when the spreader descends vertically. The
vertical distance d between the spreader and the camera is provided by the rope length
sensor. The preset point is shown in Figure 13.
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The pixel coordinates of the reference keypoints are (ua, va), (ub, vb), (uc, vc), and
(ud, vd), in sequence. Therefore, the changes in the spreader in the pixel coordinate system
are as follows:

∆u = 1
4 (u1 + u2 + u3 + u4 − ua − ub − uc − ud) (12)

∆v = 1
4 (v1 + v2 + v3 + v4 − va − vb − vc − vd) (13)

where ∆u is the change in the spreader’s center along the u-axis in the pixel coordinate
system, and ∆v is the change in the spreader’s center along the v-axis. The camera focal
length used in this paper is f . Since the camera is mounted on the trolley frame, the change
in the vertical distance between the spreader and the camera can be obtained from the rope
length sensor. At the reference position, the vertical distance between the spreader and the
camera is D, and the vertical distance between the spreader and the camera is d. Therefore,
the relationship between the displacement of the spreader in the pixel coordinate system
and its displacement in the camera coordinate system is as follows:

∆x = f ∆u
d (14)

∆y = f ∆v
d (15)

∆z = D − d (16)

The final three-dimensional position of the spreader is (∆x, ∆y, ∆z), and the spreader’s
rotation angle is γ.

4. Experiment and Evaluation
4.1. Experimental Environment and Equipment Configuration

To validate the effectiveness of the proposed image-processing-based spreader pose
measurement algorithm, a series of related experiments were conducted. The improved
YOLOv5 was trained using a dataset annotated with spreader keypoints, and the experi-
mental results were compared against target detection evaluation metrics.

The training environment parameters for this experiment are shown in Table 1 below.
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Table 1. The training environment parameters for this experiment.

Configuration Name Parameter Settings

Hardware Environment
GPU NVIDIA GeForce RTX 3090
CPU Intel Xeon Processor E52680 v4

Software Environment
Operating System Ubuntu 20.04

Programming Language Python = 3.8
Machine Learning Library Pytorch = 1.8

The camera used in this paper is a vertically mounted camera with a pixel resolution of
1920 × 1080 and an fps of 24. The actual installation of the camera is shown in Figure 14. In
Figure 14, Figure 14a shows the red box indicating the quayside crane trolley, and Figure 14b
shows the details of the quayside crane trolley frame with the green box indicating the
actual installation position of the camera.
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The dataset collected a total of 5670 images, which were divided into training and
testing sets at a ratio of 8:2. This dataset includes samples from various lighting conditions
such as daytime, nighttime, and rainy weather, as specifically shown in Figure 15.
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The performance of the quayside crane spreader pose measurement system designed
in this paper mainly depends on the following aspects: the detection accuracy of the
spreader keypoints and lock holes, the real-time performance of pose measurement, and
the accuracy of pose measurement. Therefore, the experimental part focused on three
core evaluation metrics: model measurement accuracy, model inference speed, and the
single operation time of the spreader on the container. By comparative experiments, this
paper evaluated the system’s performance on these key indicators in detail to validate the
effectiveness and practicality of the proposed system.
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4.2. Model Estimation Accuracy Experiment

To test the effectiveness of the image preprocessing algorithm and the improved
YOLOv5 algorithm for detecting the spreader keypoints and the lock holes on the con-
tainer’s upper surface, a comparative experiment was conducted using the original YOLOv5
algorithm and the improved YOLOv5 algorithm.

The evaluation metrics used in the experiment include the algorithm’s Precision,
Recall, and Mean Average Precision (mAP).

Precision is the proportion of positive identifications (i.e., detected targets) that are
correct. It is expressed by the following formula:

Precision =
TP

TP + FP
(17)

where TP represents the number of true positives, and FP represents the number of false
positives.

Recall is the proportion of actual positives that are correctly identified by the model. It
is expressed by the following formula:

Recall =
TP

TP + FN
(18)

where FN represents the number of instances that are actual positives but are incorrectly
predicted as negatives.

mAP is the average of the Average Precision (AP) for each category. This study
primarily utilizes two metrics: mAP@0.5 and mAP@0.5:0.95, to more comprehensively
evaluate the performance of object detection models. mAP@0.5 refers to the mAP value
when the IoU threshold is set at 0.5, meaning that a detection is considered valid only if the
predicted bounding box has an IoU of at least 0.5 with the true bounding box. mAP@0.5:0.95,
on the other hand, is the mAP calculated over an IoU threshold range from 0.5 to 0.95.

The training results of the improved YOLOv5 network compared to the original
YOLOv5 network are shown in Figure 16, where the blue line represents the improved
YOLOv5 network and the orangeline represents the original YOLOv5 network. The hori-
zontal axis in Figure 16 represents the number of epochs during the training process.
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As shown in Figure 16, when comparing the loss functions of the two algorithms, the
improved YOLOv5 surpasses the original YOLOv5 in the speed of reducing bounding box
regression loss and reaches convergence faster, with a final bounding box regression loss of
0.47. In terms of Precision, when the epoch count is between 0 and 200, the precision curves
of both algorithms exhibit oscillations with similar growth rates. However, after surpassing
200 epochs, the improved YOLOv5 gradually begins to converge and stabilizes first. In
terms of mAP comparison, the improved YOLOv5’s mAP@0.5 stabilizes after 250 epochs,
while the original YOLOv5 still shows fluctuations. Furthermore, the improved YOLOv5
consistently outperforms the original algorithm on the mAP@0.5:0.95 metric, especially
around 150 epochs of training, where its performance is significantly better than the original
algorithm. This indicates a noticeable improvement in the accuracy of target identification
and localization, as well as overall algorithm performance in the improved YOLOv5.

The above analysis demonstrates how the improvement module enhances network
performance through the trend of the curves. Next, the ablation experiment in Table 2
will detail the specific impact of this improvement module on four key metrics: Precision,
Recall, mAP@0.5, and mAP@0.5:0.95.

Table 2. Ablation experiment results of YOLOv5 with Image Preprocessing and Attention Module.

Methods
P (%) R (%) mAP

@0.5 (%)
mAP

@0.5:0.95 (%)YOLOv5 Image Preprocessing Attention Module
√

× × 91.6% 86.3% 90.0% 76.4%√ √
× 92.4% 93.6% 92.6% 80.2%√

×
√

92.2% 93.3% 93.6% 81.7%√ √ √
98.6% 96.7% 98.3% 94.0%

The improved YOLOv5-based algorithm for detecting spreader keypoints and con-
tainer lock holes shows enhancements in precision (P), recall (R), and mean precision
(mAP@0.5), and mAP@0.5:0.95. After only adding the image preprocessing algorithm,
compared to the original YOLOv5, the improved algorithm shows increases of 0.8% in
Precision, 7.3% in Recall, 2.6% in mAP@0.5, and 3.8% in mAP@0.5:0.95. After adding the
attention module, the improvements in these metrics compared to the original model are
0.6%, 7%, 3.6%, and 5.3%, respectively. When both the image preprocessing algorithm
and attention module are integrated, the enhancements in these metrics are even more
significant compared to the original YOLOv5 model, at 7%, 10.4%, 8.3%, and 17.6%, respec-
tively. These results effectively validate the efficacy and higher recognition accuracy of the
proposed spreader keypoints and container lock hole detection algorithm.

Figure 17 displays a confusion matrix. The parameters on the diagonal of the matrix
represent the recall rate for each class of object, and the level of recall directly reflects the
accuracy of classification. Figure 17a shows the confusion matrix for the improved YOLOv5,
while Figure 17b shows the confusion matrix for the original YOLOv5. It is evident from
the figures that the improved YOLOv5 algorithm has significantly enhanced accuracy in
sample classification and superior detection performance.

This paper further conducted a Grad-CAM visualization analysis of both the im-
proved YOLOv5 network and the original YOLOv5 network. The visualization results
are shown in Figure 18, where Figure 18a shows the Grad-CAM visualization results for
the original YOLOv5, and Figure 18b shows the Grad-CAM visualization results for the
improved YOLOv5.

As shown in Figure 18, it is evident that the original YOLOv5 algorithm has poorer
capability in extracting effective features, is easily disturbed by redundant information
in images, and tends to focus on more scattered areas. In contrast, the heatmaps of the
improved YOLOv5 model show that the darker areas are mainly concentrated around
the lock holes and keypoints of the spreader, indicating that the features extracted by the
improved model align with the expected features. This demonstrates that the improvement
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methods proposed in this paper effectively aid in extracting key features and significantly
reduce the interference from irrelevant features.
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to the traction coefficient obtained by the experiment. So far, research on oil–air lubrication
has primarily focused on how system parameters like oil–air pressure and rotational speed
affect bearing temperature rise, and there is a noticeable lack of studies on the oil–air
lubrication mechanism in the sliding state of point-contact friction pairs. To fill this gap,
this study establishes a test platform for the sliding state of point-contact friction pairs and
examines how oil–air lubrication behavior influences the traction characteristics of these
pairs under sliding conditions through flow field simulation. The findings aim to provide
insights into the oil–air lubrication mechanism.

2. Oil–Air Lubrication Traction Test
2.1. Test Apparatus

A custom-designed traction force testing machine utilizing oil–air lubrication was
utilized in the experiment, with its structural details depicted in Figure 1a. The test
machine is mainly composed of four modules, the traction force test module, the drive
system module, the data acquisition module, and the loading support module.

Figure 1. Diagram of the traction ball disk testing machine.

The test specimens consisted of steel balls and steel disks, with the disk sample being
driven by electric spindle II and the ball sample by electric spindle I. During the test, the
disk sample and ball sample rotated at speeds u1 and u2. The disk has a diameter of 90
mm, the ball has a diameter of 19.05 mm, and the horizontal distance from the origin to the
center of the ball is 30 mm. The upward movement of the servo–electric cylinder makes the
load sensor contact with the supporting steel ball and the air spindle core. When the air
bearing shaft core was lifted, the electric spindle I above it was also lifted to drive the ball
sample to contact the disk sample to achieve loading. The temperature controller avoids
over-burning of the motor by circulating water. The oil fog generator tubing is inserted into
the fixture through a small hole on the side of the test box to achieve oil and gas lubrication.
The control panel can adjust the speed of spindle I and spindle II and the load between the
ball and disk. Spindle I is supported by the air shaft below it because the air bearing has
extremely low friction force. Therefore, when measuring the traction force, spindle I can
keenly capture the change of force between the ball and disk specimen, resulting in a slight
swing, pressing the sensors on both sides to achieve the collection of traction force.

The principle of the oil–air lubrication device is illustrated in Figure 1b. Before testing,
the oil–air lubrication device was initiated, with the oil mist generator set to supply oil at
intervals of 2 s. The test was conducted under two different oil supply conditions: when
the oil supply quantity valve was set to 0.05 mL per time, the total oil supply amounted
to 1.5 mL per minute; and when the valve was set to 0.2 mL per time, the total oil supply
amounted to 6 mL per minute. The actual oil supply per minute from the quantitative valve

Figure 18. Grad-CAM visualization analysis. (a) Shows the Grad-CAM visualization results for the
original YOLOv5; (b) shows the Grad-CAM visualization results for the improved YOLOv5.

4.3. Engineering Application Comparative Experiment

Currently, the three-dimensional positioning and attitude measurement of port con-
tainer spreaders primarily utilize LiDAR-based technologies. The installation of LiDAR
equipment used on the engineering site is shown in Figure 19.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 18. Grad-CAM visualization analysis. (a) Shows the Grad-CAM visualization results for the 
original YOLOv5; (b) shows the Grad-CAM visualization results for the improved YOLOv5. 

As shown in Figure 18, it is evident that the original YOLOv5 algorithm has poorer 
capability in extracting effective features, is easily disturbed by redundant information in 
images, and tends to focus on more scattered areas. In contrast, the heatmaps of the im-
proved YOLOv5 model show that the darker areas are mainly concentrated around the 
lock holes and keypoints of the spreader, indicating that the features extracted by the im-
proved model align with the expected features. This demonstrates that the improvement 
methods proposed in this paper effectively aid in extracting key features and significantly 
reduce the interference from irrelevant features. 

4.3. Engineering Application Comparative Experiment 
Currently, the three-dimensional positioning and attitude measurement of port con-

tainer spreaders primarily utilize LiDAR-based technologies. The installation of LiDAR 
equipment used on the engineering site is shown in Figure 19. 

 
Figure 19. The installation of LiDAR equipment. 

To verify the effectiveness of the machine vision-based measurement method pro-
posed in this paper in practical applications, 100 operational cycles recorded on video 
were analyzed to calculate the average duration of a complete loading and unloading pro-
cess. The average time for a single cycle of measuring container pose using LiDAR and 
automatically picking up the container was 124.71 s. The comparison of field test data is 
shown in Table 3. 

  

Figure 19. The installation of LiDAR equipment.



Sensors 2024, 24, 5476 18 of 20

To verify the effectiveness of the machine vision-based measurement method pro-
posed in this paper in practical applications, 100 operational cycles recorded on video
were analyzed to calculate the average duration of a complete loading and unloading
process. The average time for a single cycle of measuring container pose using LiDAR and
automatically picking up the container was 124.71 s. The comparison of field test data is
shown in Table 3.

Table 3. The comparison of field test data.

Methods Speed (FPS) Operation Time (Seconds)

YOLOv5 10.23 /
Lidar 7.87 124.71
Ours 13.76 96.34

Additionally, using the proposed detection method for automated operations, the
average operation time for 100 datasets was 96.34 s: an improvement of 28.37 s. The
recognition results are shown in Figure 20.
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5. Conclusions

The accurate measurement of the 3D positioning and posture of container spreaders is
vital for the safe and efficient transfer of containers in automated shore-based container
cranes. This study introduces a method utilizing a single fixed-focus vertical camera for
high-precision measurement of the spreader’s 3D position and rotation angles. By em-
ploying an image preprocessing technique and integrating an improved YOLOv5 network
with an attention mechanism, we significantly enhanced the detection accuracy of spreader
keypoints and container lock holes.

Compared to traditional methods, the proposed single-camera-based approach demon-
strated superior accuracy. The improved algorithm showed marked improvements in preci-
sion, recall, and mean precision, validating its effectiveness for detecting spreader keypoints
and container lock holes. Additionally, the proposed detection method reduced operation
times, confirming its practical applicability and efficiency in enhancing the automation of
shore-based container cranes.
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