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ABSTRACT The concept of Internet of Bio-Nano Things (IoBNT) has emerged due to its revolutionary
possibilities that transcend traditional wireless communication systems. Molecular Communication (MC)
arises as a potential centrepiece for this paradigm, enabling applications in challenging environments.
However, this type of communication, which often relies on molecular diffusion, suffers from a high inter-
symbol interference (ISI), which deteriorates the reliability of the transmission. To cope with the strong ISI
as well as the typical short coherence time of the MC channel, this work considers the adoption of a data-
driven approach to accomplish non-coherent based detection at the receiver. In particular, we investigate
the performance of a low complexity one-dimensional Convolutional Neural Network (1-D CNN) based
in dilated causal convolutional layers and of a Gated Recurrent Unit based Recurrent Neural Network
(GRU-RNN) aimed at the tasks of symbol detection and synchronisation, comparing the results with a
conventional non-coherent detection. Initially, we study the performance of the proposed Neural Networks
(NNs) based detectors assuming prior synchronisation between the transmitter and the receiver and,
afterwards, we extend the approach for scenarios without prior synchronisation. Furthermore, we also
investigate the robustness of the proposed NNs schemes against unknown variations in the distance between
the transmitter and the receiver as well as in the diffusion coefficient. Finally, the results presented in this
work lead to the conclusion that the implementation of NNs for both synchronisation and non-coherent
detection can be a very effective approach for the challenging MC channel, ensuring more robustness than
conventional model-based approaches.

INDEX TERMS 6G, future wireless networks, molecular communications, neural networks.

I. INTRODUCTION
Throughout history, the Telecommunications domain has
been improving in order to enhance our knowledge, our
society and our industries. Currently, the research work
regarding to the sixth generation (6G) wireless systems
is expected to enable communications in environments
previously considered unfeasible [1]. Therefore, to fulfil
these challenges, the Internet of Bio-Nano Things (IoBNT)
paradigm emerges due to its ability to enable the formation
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of networks between bio-devices [2]. Given the extreme
environments in which IoBNT is envisioned to be deployed,
it is imperative that the devices communicate in a way that
does not deteriorate the surrounding environment, so-called
biocompatibility.

With this in mind, Electromagnetic Communication (EM)
at nanoscale has restrictions since the antenna size is propor-
tional to the signal wavelength [3], [4]. This implies operating
in the Terahertz (THz) range [4], [5]. Still, operating at these
higher frequency bands, not only increases the attenuation but
also emits high-frequency radiation, making it unfeasible for
the considered applications in IoBNT [2]. On the other hand,
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Molecular Communication (MC) has the potential to be at the
heart of this paradigm since the information is encoded in the
physical properties of the information molecules, which act
as carriers [2], [4], [6], [7], [8], [9], preventing any emission
of radiation, thus ensuring biocompatibility. Additionally,
MC is also energy efficient [4] since the propagation of
the information molecules follows the random Brownian
motion [3], [7], thus not requiring extra energy for the
information to propagate through the molecular channel [4].
Furthermore, given the lack of limitations and regulations
regarding to MC [4], it is possible to occupy the totality of
the bandwidth. This enables a wide range of applications
such as targeted drug delivery, health monitoring, pipeline
communications for leak detection and swarm control for
search-and-rescue missions [6], [10].
Despite the advantages of MC mentioned above, there are

still challenges to overcome regarding these communication
systems. One of the main challenges is the fact that the
molecular channel has memory [3], [8], [9], which means that
molecules are slowly absorbed by the molecular receivers [3],
[8], remaining in the channel for a random period of time.
This causes molecules from previous symbols to interfere
with molecules from the current symbol, leading to a high
inter-symbol interference (ISI) [4], [8], which restricts the
transmission rates. Additionally, the scale and the environ-
ments in which MC communications systems are envisioned
to be deployed require low complexity modulation, coding
and detection schemes, while still ensuring robustness in the
communication.

Similarly to traditional communication systems, MC sys-
tems are composed by a transmitter, a receiver and a channel
through which the information is conveyed [4]. Relatively
to the transmission process, it can be characterised as
passive [10], where the information molecules propagate
through the molecular channel via diffusion, or as propul-
sive [10], where the propagation of the molecules is induced
by external forces, requiring extra energy. Regarding the
propagation in the molecular channel via diffusion, it is
one of the most studied methods due to its simplicity.
In this type of MC, the information molecules propagate
through the molecular channel, introducing a certain level
of randomness into the channel itself. This implies that the
molecular channel is constantly changing, making it difficult
to estimate [11]. As for molecular receivers, they can be
passive [9], where molecules are observed in an indirect
form which does not change the concentration of molecules,
or absorbing [9], where the molecules are absorbed and
removed from the molecular channel. In order to encode
the information in the physical properties of the molecules,
there are several modulation schemes available. However,
concentration shift keying (CSK) has been the most studied
given its low complexity, since the information is encoded in
the concentration of the information molecules [3].
Given the complexity constraints of MC, a non-coherent

detection can be a solution for the detection process due
to its simplicity [4] since this type of approach does not

require the estimation of channel state information (CSI)
of the molecular channel [11]. Additionally, in MC, data-
driven detectors can potentially have a better performance
than model-driven ones [4]. Against this background, non-
coherent detection based on a data-driven approach using a
low-complexity neural network (NN) can be beneficial when
the characteristics of the molecular channel are unknown [4].
Moreover, the implementation of neural networks in the

demodulation process is proving to be very successful [12],
[13]. Both in [12] and [14] it was shown the efficiency of
convolutional neuronal networks (CNNs) in MC systems in
order to decode the information sent through the inherently
noisy molecular channel. These types of NNs are formed
by convolutional layers, each one generating a higher level
of abstraction, in order to extract essential information
from the input [15]. For this to be possible, a filter of
a given size sweeps across the input performing several
convolutions. As already mentioned, the molecular channel
has memory. Therefore, recurrent neural networks (RNNs)
have the potential to surpass the accuracy of CNNs [12], [14].
This is due to the fact that RNNs use the feedback from past
inputs to predict the current output [4], [16], thus taking into
account the temporal variations of the molecular channel.

Based on the work and concepts mentioned above,
in this paper we investigate the implementation of low
complexity NNs in MC receivers, which can accomplish
synchronisation and non-coherent detection of theMC signal.
In order to demonstrate the effectiveness of the proposed NN
architectures, we rely on extensive Monte Carlo simulations
to evaluate the bit error rate (BER) of the molecular trans-
mission. The main objective is to achieve a NN with reduced
implementation complexity, while ensuring robustness in the
communication itself. The main contributions presented in
this research paper are the following:

1) We propose both a low complexity one-dimensional
convolutional neural network (1-D CNN) based on
dilated causal convolutional layers and a gated recur-
rent unit based recurrent neural network (GRU-RNN)
architecture, which can perform non-coherent molecu-
lar detection, assuming prior synchronisation between
the transmitter and the receiver.

2) We extend the design of the proposed 1-D CNN
and GRU-RNN based approaches for scenarios where
there is no previous synchronisation between the
transmitter and the receiver. Two different methods are
presented. One relies on two separate NNs dedicated
to the synchronisation and detection tasks, whereas
the second adopts a single NN for accomplishing
simultaneous synchronisation and detection.

3) We train the proposed 1-D CNN and GRU-RNN based
synchronisation and detection schemes in order to
enhance their robustness against unknown variations in
the distance between the transmitter and the receiver
as well as in the diffusion coefficient. It is shown that
both NN architectures achieve better performance than
conventional non data-aided approaches.
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At last, regarding its structure, this paper is organised as
follows:

• In section II we introduce the considered system model.
• In section III, we present a description of the proposed
architectures adopted for the neural networks, as well as
the methods considered for synchronisation.

• Section IV describes the numerical simulations carried
out for evaluating the performance of the different
approaches.

• Section V presents a summary of the key conclusions
obtained with this investigation.

II. SYSTEM MODEL
A. TRANSMITTED SIGNAL
In MC, the modulation process consists of encoding the
information in the physical properties of the information
molecules. As described in [9], there are several types of
modulation techniques such as concentration-based, type-
based, timing-based and spatial-based. Additionally, it is
also possible to have hybrid techniques that rely on the
combination of two or more modulation schemes.

CSK is a concentration-based modulation technique where
the information is conveyed in the concentration of the
information molecules. For this to be possible, the transmitter
must change the concentration of molecules over each
discrete time slot. In this paper, we consider a Binary CSK
(BCSK) modulation technique that relies upon the fact that
one symbol is represented by a single bit. In its simplest form,
bit ’1’ can correspond to the release of a specific amount of
molecules and bit ’0’ can correspond to not releasing any
molecules. This specific modulation form is called On-Off
Keying (OOK) and is represented in figure 1.

FIGURE 1. OOK modulation scheme, adapted from [3].

In communication systems, synchronisation is required for
establishing a link between the transmitter and the receiver.
In this work, we assume that a short synchronisation code
is employed to ensure that the transmitter and receiver
are synchronised. This code consists of a block of known
symbols appended to the beginning of the information
sequence, in order for the receiver to accurately detect the
start of the frame sent by the transmitter. In this work,
we consider the adoption of Barker Codes due to their good
autocorrelation properties. In addition, we can append some
’0’ bits to the considered Barker Code to act as a waiting
delay and reduce interference between the synchronisation

code and the information frame, thus resulting in a modified
Barker Code. Figure 2 illustrates the frame structure where
NBC represents the length of the modified Barker Code and
NS denotes the number of information symbols.

FIGURE 2. Frame structure.

B. CHANNEL MODEL
In MC, information molecules act as information carriers.
However, the propagation of the molecules is induced by
vibrations due to their thermal energy and collisions with
other particles, making their movement purely random [17].
Therefore, the propagation of molecules in any medium can
be described by the Brownianmotion [7], [9], [17] which, in a
three-dimensional space, can be modelled by

(xi+1, yi+1, zi+1) = ([xi +N (0, 2D1t)],

[yi +N (0, 2D1t)],

[zi +N (0, 2D1t)]). (1)

Hence, the position of an information molecule after a time
interval (1t) is given by its initial position (xi, yi, zi), adding
a spatial step N (0, 2D1t) following a standard Gaussian
distribution with mean 0 and variance 2D1t .

As shown in (1), the diffusion coefficient (D) has a direct
impact on the movement of the information molecules. The
mathematical model for this parameter can be described by
the Stokes-Einstein relation as

D =
kBT

δπµR

[
m2/s

]
(2)

where kb is the Boltzmann constant (kb = 1.38×10−23J/K),
T is the temperature of the environment in Kelvin, µ is the
viscosity of the fluid and R is the radius of the particle.
Additionally, it is important to mention that δ is determined
by the relation between the information molecules and the
molecules in the fluid [9]. If the information molecules are
bigger than the fluid particles, this parameter is equal to 6,
if not, δ has a value of 4. For the investigation proposed in
this paper, we consider a scenario where δ = 6.

To fulfil the objectives proposed in this paper, we assume
a transmission from a point transmitter to a fully-absorbing
receiver [17]. The point transmitter considers the transmitter
as a one-dimensional point where Nmolec molecules are
generated instantaneously, thus not taking into account either
the geometry or the effects of the release of the molecules.
Moreover, the model of a fully-absorbing receiver assumes
that Nrx molecules are absorbed by the receiver’s membrane
during an observation window [tu, tl], taking the geometry of
the receiver into account. With this in mind, the probability
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of an information molecule released at time t = 0 being
absorbed by the molecular receiver at time t during the
observation window can be obtained as [17]

Fhit (tu − tl) =
arx
d0

[
erfc

(
d0 − arx
√
4Dtu

)
− erfc

(
d0 − arx
√
4Dtl

)]
(3)

where erfc() is the complementary error function, arx
represents the radius of the considered receiver and d0 is the
distance between the centre of the transmitter and the centre
of the receiver.

Assuming a time-invariant channel, we can define h[t, τ ]
as the expected number of molecules absorbed at time t by
the receiver, after a release of Nmolec molecules at time τ .

h[t, τ ] = NmolecFhit (t, τ ) . (4)

Considering the diffusion of the molecules released by the
transmitter and assuming the independency of the observa-
tions of the different molecules at the receiver, we adopt a
Poisson distribution model which is commonly used in MC
literature [11], [17], [18] as an accurate approximation to the
binomial distribution that models the number of observed
molecules. Therefore, to determine the concentration of the
information molecules released at time τ and absorbed by the
receiver at time interval t we use

h[t, τ ] ∼ Poisson(h[t, τ ]) . (5)

Furthermore, as already mentioned in section I, the
molecular channel suffers from a high level ISI. Hence,
taking this effect into account, it is possible to define the
concentration of molecules observed at the k-th symbol as

y[k] =

L−1∑
l=0

h[l, k]x[k − l] + n[k] (6)

where L is the channel memory length and x[k] represents
the k-th symbol modulated with binary CSK, thus x[k] ∈

[A0,A1] where A0 and A1 represent the level for the bit
’0’ and ’1’, respectively. In addition, n[k] represents the
concentration of interfering molecules. These molecules are
of the same type of the information carrying ones, even
though they result from an independent process. As discussed
in [11], they can be modelled using the same statistical
distribution considered in (5), namely n[k] ∼ Poisson(n[k]).

At last, it is possible to define the concentration of
information molecules observed by the receiver as

y[k] = h[0, k]x[k]︸ ︷︷ ︸
signal

+ n[k]︸︷︷︸
environmental noise

+ v[k]︸︷︷︸
diffusion noise

+ I [k]︸︷︷︸
ISI

(7)

where the diffusion noise is modelled as a Poisson random
variable whose mean has been subtracted. Hence, this
variable is defined as v[k] ∼ Poisson0(h[0, k]x[k]).
Additionally, I [k] represents the ISI effect and is given by
I [k] =

∑L−1
l=1 h[l, k]x[k − l].

III. SIGNAL DETECTION
The main goal of this work is to develop and study NN-
based approaches for non-coherent detection and compare
the performance against a direct non-coherent detection. The
diagrams in figure 3 and 4 illustrate the main steps that are
performed inside the receiver in order to obtain the final
estimates of the information bits, using the two mentioned
approaches.

FIGURE 3. Demodulation process for the direct non-coherent detection.

FIGURE 4. Demodulation process for the NN-based non-coherent
detection.

A. DIRECT NON-COHERENT DETECTION
In this work, we consider the adoption of non-coherent
detection, which means that the detection process is carried
out without any CSI estimation. In the case of a conventional
non data-driven approach as illustrated in figure 3, we apply
a direct non-coherent detection to the received samples
and, afterwards, we perform a hard bit decision to the soft
estimates.

For computing soft symbol estimates in the direct non-
coherent detector, we follow our previous work in [19].
First we define the number of received molecules in each
position of theNs bits that compose the information block i as
yi = (yi[1], . . . , yi[Ns]). Additionally, considering a BCSK
modulation scheme, the k-th symbol of information block i
is represented by x i[k] ∈ [A0,A1], k = 1, . . . ,Ns, where
A0 and A1 denote the levels for bit ’0’ and ’1’, respectively,
then, we define the probabilities p1,k = P(x i[k] = A1|yi) and
p0,k = P(x i[k] = A0|yi) assuming an uniform distribution
with bounds yimin and y

i
max , where y

i
min = min(yi) and yimax =

max(yi). These probabilities can be computed as

p1,k =
yi[k] − yimin
yimax − yimin

(8)

and

p0,k =
yimax − yi[k]

yimax − yimin
. (9)

Using these probabilities it is possible to obtain the log-
likelihood ratio (LLR) for each bit as

λi[k] = log
(
p1,k
p0,k

)
(10)

which allow us to write

p1,k =
1

1 + e−λi[k]
. (11)

192542 VOLUME 12, 2024



D. Casaleiro et al.: Synchronization and Detection in MC Using a Deep-Learning-Based Approach

Bearing in mind that soft values are the conditional
expected value of the received symbols, these can be
calculated as

x̃ i[k] = E(x i[k]|yi) = (A1 − A0)p1,k + A0 . (12)

Finally, using (11), we can rewrite the expression for the
computation of soft estimates as

x̃ i[k] =
(A1 + A0)

1 + e−λi[k]
+ A0 . (13)

For OOK, we have A0 = 0 and A1 = 1 and (13) can be
reduced to

x̃ i[k] =
1
2

(
tanh

(
λi[k]
2

)
+ 1

)
. (14)

Although we do not consider here, these soft symbol
estimates can be used as input for a channel decoder when
channel coding is employed. Since in this workwe assume the
transmission of uncoded information, we apply hard decision
to the soft estimates coming from the direct non-coherent
detector. Therefore, the k-th estimated bit of information
block i, x̂ i[k], can be obtained as

x̂ i[k] =

{
0, x̃ i[k] ⩽ φ

1, x̃ i[k] > φ,
(15)

where φ represents the threshold value and is given by φ =

(A0+A1)/2. In the case of OOK, the threshold value becomes
φ = 0.5.

B. NEURAL NETWORK BASED DETECTION
As an alternative to the direct non-coherent detection,
described above in section III-A, we propose a data-driven
approach based on the implementation of NNs at the receiver.
As it can be observed in figure 4, in this approach we
apply a NN to the received samples in order to predict the
information that was sent through the molecular channel.
Similarly to the direct non-coherent detection, the adopted
NN architectures output ‘‘soft’’ symbol estimates. Therefore,
we apply hard bit decision to map these estimates into bits
’0’ or ’1’ using (15). Given that the molecular channel is very
noisy and can be constantly changing, the received signal
can vary considerably. Therefore, to address this challenge,
in this workwe adopted regression networks in order to obtain
‘‘soft’’ bit estimates, which are relevant for a channel decoder
when the transmitted information is encoded. However, it is
important to note that the architectures adopted can be easily
adapted to classification based neural networks.

Finally, it is important to note that, given the constraints
regarding MC, the proposed NNs were designed in order
to achieve a good trade-off between the complexity of the
NN and reliability, in terms of BER values achieved, for
the molecular transmission. Two different architectures were
considered: a 1-D CNN based on dilated causal convolutional
layers and a GRU-RNN, as detailed next.

FIGURE 5. Architecture of a 1-D CNN based in dilated causal
convolutional layers, adapted from [21].

1) 1-D CONVOLUTIONAL NEURAL NETWORK
The first NN-based approach proposed for accomplishing
non-coherent detection of the information that passes through
a molecular channel, corresponds to a low complexity
1-D CNN based on dilated causal convolutional layers
architecture. The main feature of this CNN architecture is
that it has the ability to memorise past inputs [20]. Therefore,
bearing in mind that the molecular channel has memory,
with this specific NN architecture, it is possible to take into
account the temporal variations of the molecular channel.

The proposed NN is a variation of traditional CNNs.
Specifically, the considered 1-D CNN is formed by dilated
causal convolutional layers, which operate over the time
steps of each sequence. In addition, one of the main features
of these specific layers is that they are causal, meaning
that each current output (x̃ i[k]) does not depend on future
inputs [21]. The basic architecture of this NN is illustrated
in figure 5. This NN is formed by convolutional layers with
dilation, in order to increase the receptive field of each
layer, without increasing the number of parameters. The
dilation factor (dF ) determines the step size for sampling the
input (yi). Consequently, as the dilation factor increases, the
distance between two consecutive filter taps also increases.
The receptive field (R) is equivalent to the time steps of the
input sequence used by the network for each estimate, which
is calculated as

R = (f − 1)(2J − 1) + 1 (16)

for a stride of 1 and a dilation factor of 2j−1 at layer j, where
f denotes the filter size and J is the number of convolutional
layers in the NN.

In particular, we propose a deep NN comprising three one-
dimension convolutional layers with a rectified linear unit
(ReLu) activation function and a batch normalization layer
between each of these layers. For the input layer, which
inputs sequence data to the 1-D CNN, a data normalization is
applied so that the input is rescaled to be in a range between
0 and 1. This network also includes a fully-connected layer as
the output layer. Furthermore, each 1-D convolutional layer
considers a stride of 1, a filter size of f = 4 and a causal
method to determine the padding size, which is given by
p = (f − 1)dF , to ensure consistency in the size of the
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frames along the network layers. Moreover, while the first
1-D convolutional layer has 2 filters, the other two have
4 filters. At last, to ensure a larger receptive field, the dilation
factor increases exponentially in each convolutional layer,
ranging from dF = 1 to dF = 4. In table 1, presented below,
it is possible to observe the detailed architecture of this NN,
as well as the parameters of each layer.

In this paper, all of the data used for training and validation
of the NN was generated using Monte Carlo simulations.
This dataset is independent from the data utilized for the
find testing simulations. Therefore, we used a training and a
validation dataset (Nseq) of 19200 sequences with a 99%/1%
proportion using a length of Ns = 20 bits per frame. Given
the large quantity of data, the dataset was divided into batches
of 32 sequences to reduce overfitting and also to increase
the performance and the accuracy of the network itself. Each
sequence in the dataset is generated by first modulating a
random sequence of 20 bits using binary CSK as described
in section III-B, which represents the information that was
transmitted. Afterwards, this information sequence passes
through a time-invariant molecular channel modelled as (6),
and onto which additive stationary noise is added. Therefore,
each training pair that will feed the Neural Network will
comprise this generated received sequence as well as the
corresponding original information sequence in order to be
used in the mean squared error loss function (17). The
sequences used in the testing simulations are generated using
a similar approach in order to be used in the loss function
adopted for the NN.

Furthermore, we adopted the mean squared error loss
function (LMSE (θ )), which is described as

LMSE (θ ) =
1

Nseq

Nseq∑
i=1

(fθ (yi) − xi)2 (17)

considering the NN as a function fθ , where θ represents the
learnable parameters. Additionally, yi and xi represent the
i-th block of received molecules and information symbols,
respectively. Moreover, the Adaptive Moment Estimation
(Adam) method [22] is used as the optimisation algorithm,
with an initial learning rate of 0.001. A maximum of
80 epochswere considered, where the training data is shuffled
before each epoch to prevent overfitting. At last, the NN has a
validation patience of 5, meaning that if after five attempts the
loss function has not decreased its value, the training progress
is stopped.

2) GATED RECURRENT UNIT BASED RECURRENT NEURAL
NETWORK
As an alternative approach to the previous 1-D CNN,
we propose a low complexity GRU-RNN to also perform
non-coherent detection of the information sent through a
molecular channel. Specifically, we adopt a three-layer GRU-
RNN with a sequence input layer, two gated recurrent unit
(GRU) layers and a fully-connected layer as the output
layer.

GRU layers were proposed in [23] as a low complexity
alternative to long short-term memory (LSTM) layers firstly
introduced in 1997 by Hochreiter and Schmidhuber in [24].
Both these types of layers have the ability to learn long-
term dependencies between data sequences. However, GRU
layers have fewer parameters and a simpler architecture,
making them more efficient. Figure 6 illustrates the structure
of a GRU unit as adopted in this work. This unit relies in
two different gate units that depend on the previous hidden
state [23]: a reset gate (0r ) and an update gate (0z). As the
name suggests, the reset gate enables the unit to forget its
previous state and the update gate determines how much the
unit will be updated [25]. Both these two gates are computed
with a sigmoid function (σ ), which is applied to the current
input (at ) and to the previous value of the memory cell (bt−1).
Moreover, b̃t is the candidate activation, which is updated at
every timestep, and bt is the output of the GRU unit at time t .

FIGURE 6. Structure of a GRU unit.

In the adopted GRU-RNN, the two GRU layers are
implemented with 4 hidden units each. This was found
to result in a good compromise between complexity and
performance. The detailed architecture of this GRU-RNN is
presented, in table 2.

Regarding the training parameters, this NN was trained
with the same settings as the 1-D CNN described previously.
Hence, a training and validation dataset was used, comprising
19200 sequences, each one with Ns = 20 bits per frame,
divided into batches of 32 sequences to prevent overfitting.
Adam was also used as the optimisation algorithm, with
an initial learning rate of 0.001, and the mean squared
error loss function, already described in (17). Finally,
a validation patience of 5 and a maximum of 80 epochs was
considered, where the training data is shuffled before each
epoch.

It is important to highlight that the previously described
NNs architectures were initially aimed at non-coherent
molecular detection. However, as explained in the next
section, they were also extended for scenarios where there
is no prior synchronisation between the transmitter and the
receiver. Hence, the proposed NN-based approaches are
able to accomplish both synchronisation and non-coherent
detection.
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TABLE 1. 3 layer CNN architecture.

TABLE 2. GRU-RNN architecture.

C. FRAME SYNCHRONISATION
For the scenario where there is no prior synchronisation
between the transmitter and the receiver, we propose three
distinct methods for performing the synchronisation as well
as the detection of the information sent from the transmitter
to the receiver:

• Method 1 - In this first method, a NN-based detection is
implemented after a conventional synchronisation with
the considered modified Barker Codes.

• Method 2 - The second method relies on the implemen-
tation of a NN over the entire observation window of
the receiver. Hence, in this case, we accomplish joint
synchronisation and detection using a single NN.

• Method 3 - With this method we propose the implemen-
tation of two different NNs, one for the synchronisation
and another for the detection process.

In method 1, the NNs proposed in section III-B are only
implemented for the detection process. Therefore, we apply
conventional synchronisation, which relies on correlations
between the received signal and the modified Barker Code
along the whole observation window. The location of the
maximum value for all the performed correlations is assumed
to be the position of the synchronisation code in the
observation window. Therefore, the position of the beginning
of the information frame (k̂0) can be computed as

k̂0 = argmax(cT y[k : k + NBC − 1]),

0 ≤ k ≤ W − NBC − Ns . (18)

In this case, the bit sequence and the length of the modified
Barker Code are represented by c = [c0, . . . , cNBC−1]T and
NBC , respectively. Moreover, Ns defines the total number
of information symbols and W represents the size of the
observation window. After obtaining the position of the
synchronisation code, a NN is applied to the following
20 symbol positions in order to estimate the information that
was received.

As for method 2, we follow an approach where a NN
similar to the ones proposed in section III-B is applied
to the entire observation window for accomplishing joint
synchronisation and detection. As it can be observed in
figure 7, we start by applying a NN to the whole observation
window as is done in the case of the NN-based detection,
thus obtaining soft bit estimates. Then, we perform a hard
bit decision to the result in order to map the soft estimates
onto bits ’0’ or ’1’, i.e., using (15). Afterwards, to find
the beginning of the information frame, we apply a simple
correlation between the estimated sequence and the Barker
Code, similarly to (18). Finally, knowing the position of the
synchronisation code in the observation window, we segment
the frame by extracting the following Ns bits, which are
considered to be the information that was sent by the
transmitter.

Finally, for method 3, we propose the implementation
of two different NNs also similar to the ones presented in
section III-B: one for the synchronisation and another one
for the detection process, as can be observed in figure 8.
For this to be possible, we start by following an approach
similar to method 2. However, after the correlation process
to detect the beginning of the information frame, we segment
the bit sequence yi. Then, we apply a NN-based detection to
the resulting Ns samples in order to obtain soft bit estimates.
Finally, using (15), we apply a hard decision to the soft
estimates to map them into bits ’0’ or ’1’ to detect the
information that was sent through the molecular channel.

IV. RESULTS
A. SIMULATION PARAMETERS
In this section, we present the results of the simulations
conducted in this investigation, in order to evaluate the
proposed NN-based approaches for MC.

Table 3 presents the main parameters considered for the
simulations performed in this work. For this investigation,
we consider the transmission of blocks of Ns = 20 bits using
OOK as a modulation scheme with A0 = 0, A1 = 1 and
Nmolec = 500. Moreover, we consider a deterministic model
of a point transmitter (tx), a spherical absorbing receiver
(rx) and a Poisson distribution as a stochastic model for the
channel. Furthermore, all simulations considered in this paper
assume the transmission of uncoded unipolar non-return to
zero (NRZ) signals where each sample corresponds to a
symbol.
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FIGURE 7. Demodulation process for method 2.

FIGURE 8. Demodulation process for method 3.

TABLE 3. Main parameters considered for the Monte Carlo simulations.

Moreover, for the symbol duration (Ts), which has a
significant impact on the transmission process, we used

Ts = α ·
d2tx−rx
6D

. (19)

It is important to note that, for all simulations presented in
this paper, we have defined the scaling factor (α) as 1.
From (19), we can conclude that the diffusion coefficient

(D) and the distance between the transmitter and the receiver
(dtx−rx) have a direct effect on the assumed symbol duration,
which has a major influence on the ISI effect in the
communication. Depending on the applications in which
molecular communications are envisioned to be deployed,
it is possible that the surrounding environment will be
constantly changing. This implies that the transmitter and
the receiver may move closer or further apart from each
other, resulting in variations in the distance between these two
devices. Furthermore, the diffusion coefficient, previously
described in (2), influences the propagation speed of the
information molecules through the molecular channel [17]
and directly depends on the temperature and the viscosity of
the environment. Thus, a variation in these parameters may
change the value of the diffusion coefficient, which also has
a significant impact on the transmission process. Since it is
assumed that the transmitter and receiver have no knowledge
of these variations, Ts is set with the expected distance and
diffusion values.

In this investigation, we start always by evaluating the
performance of the proposed NNs in a scenario where
there are no variations in the distance and in the diffusion
coefficient. Hence, we consider a distance between the
transmitter and the receiver (dtx−rx) of 10 µm and a value for
the diffusion coefficient (D) of 79.4 µm2/s. Then, bearing
in mind the influence that parameters such as the distance
between the transmitter and the receiver and the diffusion
coefficient have in the transmission process, we also present
the results for a scenario considering variations of these
parameters.

It is important to note that, following some experiments,
it was decided to train both neural networks considering
100 dB in terms of signal to noise ratio (SNR), which is
defined as Nmolec/σn where σ 2

n denotes the noise variance.

B. NEURAL NETWORK BASED DETECTION WITH PERFECT
SYNCHRONISATION
In this section, we simulate a molecular transmission using
the 1-D CNN and the GRU-RNN based detectors, which
were previously described in section III-B, assuming perfect
synchronisation between the transmitter and the receiver. For
the analysis of the results, all simulations are compared with
a direct non-coherent detection, using the approach described
in section III-A.
The presented test results are obtained from simulations

using a set of transmissions with 10000 frames each with
Ns = 20 bits. Given that the quality of the commu-
nication directly depends on the channel conditions, the
main objective is to evaluate the BER of the conventional
molecular communication in comparison against a molecular
communication where a NN-based approach is implemented
for non-coherent detection.

As described in section III-B1 and III-B2, the training and
validation datasets are composed by 19200 sequences, each
withNs bits per frame. In order to help verify the suitability of
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the selected size for the training and validation datasets, the
proposed 1-D CNN was trained with different dataset sizes,
namely with 3840, 19200 and 38400 sequences. The results
obtained for the different sets are illustrated in figure 9.

FIGURE 9. BER comparison between the NNs trained with different
dataset sizes.

As expected, in figure 9 it is possible to observe that
the NNs trained with 19200 and 38400 sequences exhibited
better performance in comparison with the NN trained with
only 3840 sequences. However, there is no apparent improve-
ment in the performance between the NN trained with
19200 sequences and the one trained with 38400 sequences.
Consequently, given the complexity constraints regarding
MC, the training dataset with 19200 sequences revealed to
be the most suitable option.

The decision to implement the specific 1-D CNN con-
figuration, previously described in table 1, is justified by
the superior complexity-performance trade-off exhibited by
this specific NN architecture in comparison with other NNs
with a greater number of layers. In order to help assess
the advantage of the adopted three-layer NN architecture
configuration, we compared it against other 1-D CNNs with
different depths, namely five and seven one-dimensional
convolutional layers. All NNs have a rectified linear unit
(ReLu) activation function and a batch normalization layer
between each one-dimensional convolutional layer. For the
input layer, which inputs sequence data to each 1-D CNN,
a data normalization is applied so that the input is rescaled to
be in a range between 0 and 1. These networks also include a
fully-connected layer as the output layer. In tables 4 and 5,
it is possible to observe the detailed architecture of these
additional 1-D CNNs, as well as the parameters of each layer.
The comparison between the performance of these two NNs
and of the NN from table 1 is illustrated in figure 10. It is
important to note that due to the larger number of learnable
parameters, a larger dataset was used for training these two
deeper NNs.

From figure 10, it is possible to observe that there is
no significant improvement in the performance of the NNs

comprising more convolutional layers in comparison with the
three-layer NN. In addition, the reduced number of layers in
the three-layer 1-D CNN results in a lower complexity NN
when compared with the other considered 1-D CNN, which
have a higher number of learnable parameters. Consequently,
based on the presented results, we concluded that the
three-layer 1-D CNN aligns effectively with the complexity
constraints of MC due to its low-complexity, therefore being
more suitable for the intended application.

FIGURE 10. BER comparison between the NNs with different depths.

FIGURE 11. BER comparison between the NNs and the direct
non-coherent detection.

Figure 11 illustrates a comparison between the BER of the
conventional molecular communication and the NN-based
non-coherent detection. As it can be seen in this figure, for
SNR values above 42 dB, the proposed NNs can achieve
BER values lower than 10−4. This is a difference of three
orders of magnitude when compared with the BER of the
direct non-coherent detection, which has a BER floor value
of 10−1. In addition, it is possible to observe that, for both
NNs, the value of the BER decreases for a SNR value higher
than 30 dB,matching the behaviour of the direct non-coherent
detection. At last, we can observe that both the proposed NN-
based detectors have a similar performance.
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TABLE 4. 5 layer CNN architecture.

TABLE 5. 7 layer CNN architecture.

Taking into account the previous results, in this testbed
we also wanted to evaluate the impact of the variability
of the channel conditions. Therefore, we simulated the
performance of the proposed NNs, trained with a varying
range of distances between the transmitter and the receiver
and diffusion coefficient errors. For both the validation and
the training process, we considered a range of distances
between 5 µm and 15 µm and diffusion coefficient errors
randomly changing between 5% and 15%. In addition,
to cope with the expected variations in the molecular channel,
which are assumed unknown at the receptor, the symbol
duration parameter was modified in order to reduce the ISI
effect. Hence, considering (19), dtx−rx was set with a value of
15µmwhereas amaximumdiffusion coefficient error of 15%
was added to the standard value for the diffusion coefficient,
resulting D = 91.31 µm2/s.
In order to study the behaviour of the NNs in this scenario,

in figure 12 we present the results for the original NNs trained
both with and without the variations in the molecular channel.
Comparing these results with the ones obtained in figure 11,
we observe an increase in the BER for bothNNs, regardless of
the training method employed. This can be attributed to the
more challenging nature of this scenario, as the considered
variations in the distance between the transmitter and the
receiver and in the diffusion coefficient, which are unknown
at the receiver, lead to a significant deterioration of the

molecular transmission, thus increasing the BER. However,
training both NNs under the effect of these variations
improves the robustness, leading to a reduction in the overall
BER of the molecular transmission for this scenario. We can
observe a difference of approximately one order of magnitude
when compared with a scenario where no NN is adopted
or where a NN trained without considering variations in
these parameters is used. Moreover, it is also noticeable that,
independently of the training method, the BER for the GRU-
RNN is slightly lower when compared with the BER achieved
by the 1-D CNN.

C. NEURAL NETWORKS FOR THE DETECTION AND
SYNCHRONISATION PROCESS
In this, section we study the performance of the proposed
NNs for a scenario where there is no previous synchronisation
between the transmitter and the receiver. As already men-
tioned in section II-A, for this scenario we chose to employ
a modified Barker Code for the synchronisation process.
Hence, we consider a Barker Code of length 7, appending
three additional ’0’ bits. Therefore, we consider the following
synchronisation binary code: c = [1110010000]. It is
important to note that this specific synchronisation code was
chosen after several simulations considering Barker Codes
with different lengths. The considered synchronisation code
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FIGURE 12. BER comparison between the NNs and the direct
non-coherent detection, considering variations in the distance and in the
diffusion coefficient.

is a trade-off between the complexity of the synchronisation
process and the correct synchronism rate achieved.

Regarding the observation window, since it is assumed that
initially the considered molecular receiver only detects an
increase in the concentration of the information molecules,
it will not be able to determine whether it detected the
end or the beginning of the information frame. Hence,
in this work, we consider that the receiver works with an
observation window three times larger than the transmitted
frame. Therefore, for a frame of Ns = 20 bits and a modified
Barker Code with a total of NBC = 10 bits, the receiver has
an observation window of W = 90 bits, plus the maximum
channel memory length which is considered to be of L =

7 symbols.
Finally, it is important to mention that all the simulations

presented in this section are compared with a direct non-
coherent detection, where no NN is applied.

To evaluate the performance of the NNs for each of the
proposed methods, we consider the same parameters and
values described in section IV-A. Moreover, we present the
results of the BER and the synchronisation rate as a function
ofNmolec/σn, in order to observe the evolution of the accuracy
of each method. Additionally, it must be noted that the BER
results only consider the cases where the synchronism was
correct.

From the analysis of figure 13.a) we can conclude that,
for each method, both of the proposed NNs have a similar
behaviour. Finally, it is important to mention that, since the
detection process is the same for method 1 and method 3,
the results for these methods are illustrated in the same plot
line.

As it can be seen in figure 13.b), since both method
1 and the direct non-coherent detection apply a conventional
correlation for the synchronisation process, the results for
these two scenarios are illustrated in the same plot line.
Moreover, we can observe that, in this case, there is
an increase in the rate of correct synchronisms for SNR

values between 10 dB and 40 dB, achieving a successful
synchronisation rate above 90% for values over 40 dB.
Although method 1 shows better synchronisation rates for
SNRs below 35 dB, it corresponds to a scenario in which
the BER is very high, approaching 50%, therefore making
it less relevant. In contrast, for method 2 we can observe
synchronisation rates of 100% for values of 40 dB and above
for both NNs. However, it is important to note that, for this
case, the synchronisation rate only starts to increase at SNRs
around 35 dB but it quickly reaches its maximum value.
Finally, for method 3, we can observe that the synchronisation
rate is identical for both of the proposed NNs. In addition,
this method has a similar performance to method 2. However,
since this method relies in the implementation of two NNs,
the synchronisation and detection process incurs in a higher
complexity when compared with method 2.

Bearing in mind the previous results, in the following
testbed we evaluate the performance of the proposed NNs for
each of the previously mentioned methods of synchronism,
considering a scenario with variations in the distance between
the transmitter and the receiver as well as the diffusion
coefficient. For this to be possible, we consider a range of
distances between 5 µm and 15 µm and diffusion coefficient
errors randomly varying between 5% and 15% for both the
training and the validation process.

As it can be seen in figure 14.a), for each of the considered
methods, the NNs that were trained considering variations
in the distance and in the diffusion coefficient have a better
performance, achieving lower BER values when compared
with the other scenarios. In addition, we observe that, for all
methods, the proposed GRU-RNN has a lower BER floor
value when compared with the 1-D CNN. Moreover, it is
noticeable that, for method 1 and 3, the BER value of the
1-D CNN trained with variations decreases for a SNR value
higher than 20 dB, surpassing the behaviour of the direct non-
coherent detection.

Regarding the synchronisation rate, illustrated in
figure 14.b), we can observe a significant reduction in the
synchronisation rate for the direct non-coherent detection
(and for method 1 since this also implements a conventional
synchronisation). Unlike the 90% synchronisation rate
achieved previously in figure 13.b), in this case it is only
possible to achieve a maximum synchronisation rate around
84%. As for method 2, unlike what was observed in
figure 13.b), for both NNs trained considering variations in
the distance and in the diffusion coefficient, it is only possible
to achieve a synchronisation rate of 100% for Nmolec/σn
values of approximately 45 dB and above. For method 3,
it is possible to observe that the synchronisation rate for the
1-D CNN trained with variations starts to increase from SNR
values of 20 dB and above. At last, it is noticeable that, for
the GRU-RNN, it is possible to achieve a synchronisation
rate of 100% for Nmolec/σn values of approximately 45 dB
and above. However, for the 1-D CNN, it is only possible to
achieve a maximum synchronisation rate of approximately
96%. In contrast, the same does not occur when the proposed
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FIGURE 13. NNs applied to each synchronisation and detection method.

FIGURE 14. NNs applied to each synchronisation and detection method, considering variations in the distance and in the diffusion coefficient.

NNs are trained without considering variations in the distance
and in the diffusion coefficient.

To provide further analysis regarding the behaviour of
the proposed NNs under noisy conditions, in the following
results we evaluate the impact of the type of data used for
training, namely how the level of noise present on the training
sequences influences the performance of the proposed NN
based synchronisation and detection schemes. Therefore,
figure 15 presents the results of the proposed 1-D CNN
trained with datasets covering different ranges of SNR values.
For this evaluation, and considering the previous results we
selected method 2 since, while it exhibits slightly worse
performance in terms of BER, it presents a higher correct

synchronisation rate when compared to method 3. Moreover,
method 2 relies on a single NN for joint synchronisation
and detection, making it less computationally complex than
method 3, which relies on two separate NNs. In figure 15.a),
we can observe that the NN trained with a SNR value of
100 dB exhibits better performance, achieving lower BER
values than the other considered NNs. In comparison, the
NNs trained with a large interval of SNR values achieve
lower BER values for lower Nmolec/σn values. However,
for higher Nmolec/σn values, the BER floor value for these
NNs becomes higher in comparison with the NN trained
with a single SNR value of 100 dB. Moreover, as it can be
observed in figure 15.b), the NN trained with a SNR value

192550 VOLUME 12, 2024



D. Casaleiro et al.: Synchronization and Detection in MC Using a Deep-Learning-Based Approach

FIGURE 15. 1-D CNN trained with different SNR values applied to method 2, considering variations in the distance and in the diffusion
coefficient.

FIGURE 16. 1-D CNN applied to method 2, considering variations in the distance and in the diffusion coefficient in a time-variant channel.

of 100 dB achieves a correct synchronisation rate of 100%
for Nmolec/σn values of 45 dB and above. In comparison,
the NNs trained with an interval of SNR values achieve
higher synchronization rates for lower Nmolec/σn values.
However, for higher Nmolec/σn values, these NNs achieve
lower synchronization rates than that achieved by the NN
trained with a SNR value of 100 dB. These results seem to
suggest that while training the NN using some sequences
corrupted by higher levels of noise may provide some
additional robustness when operating in worse conditions,
it can severely limit the performance that can be achieved in
more favourable scenarios.

All the results presented previously consider a time-
invariant molecular channel. However, to assess the

robustness of the proposed approach, we extend this
investigation for a scenario considering a time-variant
molecular channel with unknown variations in the distance
between the transmitter and the receiver and in the diffusion
coefficient. In this case, for the time-variant channel it is
assumed that the expected number of molecules absorbed
at each time t by the receiver, as given by (3) and (4),
will change for each release time τ , due to random
variations on the diffusion coefficient. This provides a
further analysis of the impact of stochastic variations in
the channel on the performance of the proposed NN-
based non-coherent detection and synchronisation schemes.
As already mentioned, given that method 2 is less complex
than method 3, we simulate the results for the considered
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1-D CNN applied to method 2, properly trained considering
a time-variant molecular channel with unknown variations
in the distance and in the diffusion coefficient. As can be
seen in figure 16.a), the considered NN still exhibits lower
BER values when compared with the direct non-coherent
detection. Moreover, as illustrated in figure 16.b), we can
observe that the proposed 1-D CNN applied to method
2 achieves a synchronisation rate of 100% for Nmolec/σn
values of approximately 40 dB and above, therefore providing
more robustness than the conventional direct approach.

V. CONCLUSION
Molecular Communication has the potential to be at the
heart of IoBNT due to its revolutionary capabilities that
transcend traditional communication systems. However, the
unpredictable nature of the molecular channel induces
environment noise and causes high ISI interference, making
these two of the main challenges to overcome regarding this
type of communication. To help address these problems,
in this paper we propose a low complexity 1-D CNN
comprising dilated causal convolutional layers and a GRU-
RNN based approach, both aimed at achieving non-coherent
detection and synchronisation in MC receivers, in order to
increase the robustness of the molecular transmission.

Initially, we described these data-aided NNs-based
approaches for accomplishing detection, assuming that the
transmitter and the receiver were previously synchronised.
For this scenario, it was observed that both of the proposed
NNs perform significantly better when compared with a
direct non-coherent detection, with the GRU-RNN having
lower complexity and a slightly better performance when
compared with the 1-D CNN.

Subsequently, we have extended the two NN architectures
for scenarios where there is no prior synchronisation between
the transmitter and the receiver, proposing two different
synchronisation methods. In this part of our study, we have
concluded that the implementation of the NNs for the
synchronisation process increases the correct synchronisa-
tion rate, thus adding greater robustness to the molecular
transmission. Moreover, comparing the use of a single NN
for joint synchronisation and detection against the use of
two separate NNs for synchronisation and detection, it was
observed that the later achieves a better performance in terms
of BER. However, this is not the case when considering the
synchronisation rate, which is very similar for both methods.

Finally, in this work, we also investigated the behaviour
of the proposed NNs for scenarios where there are unknown
variations in the distance and in the diffusion coefficient.
Given this more challenging setting, it was observed that
the proposed NN-based non-coherent detection and syn-
chronisation schemes can provide more robustness than a
conventional non-data aided approach.
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