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Resumo 

 

Os depósitos de cálcio na válvula aórtica são um fator crucial no diagnóstico da estenose aórtica, 

uma condição cardiovascular crítica. Nesta dissertação, propõe-se uma abordagem híbrida que 

combina técnicas de deep learning com processamento de imagem para melhorar a identificação 

e quantificação das calcificações na válvula aórtica. Foram estabelecidos dois objetivos 

principais: (1) detetar e extrair a região da imagem correspondente à válvula aórtica, e (2) 

quantificar os depósitos de cálcio na válvula segmentada, correlacionando os resultados com os 

scores de Agatston obtidos em TACs. O modelo YOLOv8n foi adaptado para a deteção da 

válvula, atingindo 99,94% de precisão, 81,82% de recall e mAP de 92,88%. A extração da 

região de interesse foi bem-sucedida, utilizando segmentação manual e automática. Para 

quantificação de cálcio, foram exploradas duas abordagens: uma heurística e CNNs, com a 

ResNet50 ajustada mostrando erro absoluto médio de 1356,56. A precisão do método heurístico 

foi validada, especialmente em pacientes com scores de cálcio mais elevados, através de uma 

correlação de Pearson de 0,75 com os scores de Agatston derivados das TACs. Além disso, 

uma análise com base no género revelou que os pacientes do sexo masculino apresentavam 

níveis mais elevados de depósitos de cálcio, em linha com estudos anteriores na área 

cardiovascular. Este trabalho demonstra como a integração de deep learning e técnicas 

convencionais pode otimizar o diagnóstico da estenose aórtica, contribuindo para diagnósticos 

mais rápidos e precisos. 

 

Palavras-chave: ecocardiografia; estenose aórtica; quantificação de cálcio; deep learning; 

processamento de imagem.  
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Abstract 

 

Aortic stenosis is a critical cardiovascular condition that can be assessed through 

echocardiography, with calcium deposits on the aortic valve playing a key role in diagnosis. 

This dissertation presents a hybrid approach combining deep learning and image processing 

methods to improve the detection and quantification of aortic valve calcifications. Two main 

objectives were addressed: (1) detecting and extracting the image region corresponding to the 

aortic valve, and (2) quantifying calcium deposits within the segmented valve, correlating these 

results with Agatston scores derived from CT scans. An adapted YOLOv8n model was 

employed for valve detection, achieving 99.94% precision, 81.82% recall, and a mean Average 

Precision (mAP) of 92.88%. The region of interest was successfully extracted in all cases using 

a combination of manual annotations and automated segmentation techniques. For calcium 

scoring, two approaches were explored: a heuristic method and convolutional neural network 

(CNN) models. The CNN models captured complex patterns in the echocardiographic images, 

with the fine-tuned ResNet50 model demonstrating superior performance, achieving a mean 

absolute error of 1356.56. The heuristic method showed a Pearson correlation of 0.75 with the 

CT-derived Agatston score, validating its accuracy, especially in patients with higher calcium 

scores. Additionally, a gender-based analysis revealed that male patients exhibited higher 

calcium deposits, consistent with existing cardiovascular research. This work shows that 

combining deep learning with traditional methods can improve the diagnostic process for aortic 

stenosis, offering potential for timely, precise diagnoses and advancing healthcare system 

efficiency. 

 

Keywords: echocardiography; aortic stenosis; calcium scoring; deep learning; image 

processing. 
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CHAPTER 1 

Introduction 

Over the last few years, the application of artificial intelligence (AI) to areas such as medical 

imaging, diagnostic decision support, and predictive analytics in healthcare has transformed 

various aspects of medical practice. This has contributed to enhanced diagnostic efficiency, 

more accurate treatment planning, and improved patient care outcomes [1]. AI systems have 

shown great potential in interpreting large volumes of medical information, assisting doctors in 

diagnosing diseases at an early stage, and enhancing patients’ health [2]. Specifically, the 

application of AI in medical imaging has been transformative, enabling machines to interpret 

images in a way that is comparable to human experts or even exceeds in certain domains. In 

cardiovascular medicine, for instance, AI has enhanced the interpretation of imaging 

modalities, such as echocardiography, thereby enabling more precise and personalized care for 

patients [3], [4]. 

Cardiovascular diseases, and more specifically aortic valve pathologies, are a major global 

health concern due to their high prevalence and associated morbidity and mortality [5]. Aortic 

stenosis, characterized by the calcification and narrowing of the aortic valve, requires precise 

evaluation to guide clinical management. Proper assessment of the severity of aortic valve 

conditions is critical for effective treatment planning and ongoing monitoring of patients. In a 

hospital setting, it is especially important to accurately identify patients suffering from aortic 

valve calcification, as early detection can significantly influence the course of treatment. 

Automated systems for calcium scoring could streamline this process, helping clinicians 

prioritize high-risk patients and ensure timely intervention, particularly in cases requiring 

surgical or interventional procedures. A commonly used method for this assessment is the 

calcium score of the aortic valve, which quantifies the extent of calcification to reflect disease 

severity and predict progression [6], [7], [8]. Typically, calcium scores are calculated through 

computed tomography (CT) scans, which quantify calcium deposits within the aortic valve. 
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Despite the accuracy of CT-based calcium scoring, this method has several limitations. The 

most notable drawback is the exposure to ionizing radiation, which poses long-term health risks, 

especially for patients requiring frequent monitoring [6], [7]. The need to balance diagnostic 

accuracy and patient safety is particularly pressing in cases where repeated scans are necessary 

for ongoing assessment. Further complicating the widespread use of CT-based scoring are 

issues of cost and accessibility, particularly in resource-limited settings where advanced 

imaging modalities like CT are not always available [9], [10]. These factors underscore the 

need for alternative methods that can provide accurate and safe assessments without the 

associated risks of CT imaging. 

An alternative to CT is echocardiography, a widely used imaging modality for 

cardiovascular assessments due to its non-invasive nature, affordability, and diagnostic 

accuracy [11]. However, the accuracy of echocardiographic assessments can be influenced by 

the patient's acoustic window, the area through which ultrasound waves pass. Factors such as 

obesity or lung disease may limit image quality in certain cases [12]. Transesophageal 

echocardiography (TEE), and more specifically, three-dimensional transesophageal 

echocardiography (3D TEE), has emerged as a promising tool for visualizing the aortic valve 

and surrounding structures. 3D TEE offers high-quality, multi-dimensional imaging, making it 

a suitable candidate for calcium quantification [9], [10], [11]. Unlike CT, 3D TEE is radiation-

free, making it an ideal modality for routine follow-ups without exposing patients to ionizing 

radiation. The detailed anatomical images provided by TEE offer a deeper understanding of 

valve morphology and function, therefore enhancing clinical decision-making. However, it is 

important to note that TEE is considered a semi-invasive procedure due to the insertion of an 

internal probe through the esophagus, which may cause discomfort and requires sedation [13].  

TEE circumvents some of these limitations by placing the ultrasound probe closer to the 

heart, resulting in clearer images and improving diagnostic accuracy, especially in patients with 

suboptimal transthoracic echocardiographic windows [14]. 

Recent advancements in deep learning have revolutionized the field of medical imaging, 

enabling more accurate and efficient analysis of complex medical datasets. Deep learning 

techniques, particularly convolutional neural networks (CNNs), have been successfully applied 

to a wide range of medical imaging tasks, including the automatic detection and segmentation 

of anatomical structures [15]. In cardiovascular imaging, deep learning has shown promise in 

automating the analysis of echocardiographic data for tasks such as left ventricle segmentation, 

mitral valve analysis, and disease detection [16], [17].  



 

 
3 

Building on these advancements, this dissertation proposes the application of deep learning 

to a new task: automated detection and calcium quantification of the aortic valve using 3D TEE 

data, with the goal of improving diagnostic accuracy and assisting in the early identification 

and treatment planning of aortic valve stenosis. Previous research has demonstrated the 

feasibility of using AI to detect various cardiac conditions based on echocardiographic images, 

such as mitral regurgitation and pericardial effusion [16], [17]. Extending this technology to the 

quantification of aortic valve calcification could provide a radiation-free, efficient, and highly 

accurate solution for the management of aortic stenosis [18]. 

Moreover, this approach could serve as an effective tool for patient screening, identifying 

individuals with significant aortic valve calcification. Automating this screening process would 

assist clinicians in prioritizing patients for further diagnostic evaluation and treatment planning, 

thus enhancing patient care and reducing reliance on more invasive or resource-intensive 

procedures such as CT scans [19]. Currently, the manual analysis of each echocardiographic 

study takes approximately 8 minutes. Given that the hospital handles around 5000 cases 

annually, this amounts to 666.67 hours or about 28 full working days of physician time. If a 

physician dedicated three hours daily to this task, it would take approximately 222 days to 

complete the annual workload. By automating this process, the time could be reduced 

dramatically, allowing faster patient screening and improving overall clinical workflow 

efficiency. 

This dissertation builds upon recent successes in AI for echocardiographic analysis and 

addresses the limitations of conventional imaging techniques. By leveraging the high-quality, 

multi-dimensional data provided by 3D TEE, the deep learning model will automatically detect 

the aortic valve and quantify calcium deposits, offering a radiation-free alternative to CT-based 

calcium scoring. Our approach aims to support early patient screening for aortic valve 

calcification, allowing clinicians to prioritize patients for further diagnostic evaluation and 

treatment planning. 

 

1.1. Research Objectives and Questions 

The primary objective of this dissertation is to automate the assessment of aortic valve stenosis 

through echocardiographic image. To achieve this objective, this dissertation focuses on two 

main goals: (1) detecting and extracting the image region corresponding to the aortic valve and 

(2) quantifying calcium deposits within the segmented valve. By correlating these results with 

Agatston scores derived from CT scans, this approach aims to streamline the diagnostic process, 
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reduce reliance on radiation-based methods, and offer clinicians a reliable tool for timely 

intervention. With the end goal of enhancing patient care, this dissertation also explores how 

the calcium quantification models could assist in patient screening by identifying individuals 

with severe calcification, thus aiding in the prioritization of those requiring urgent medical 

evaluation. 

To guide this research, two main research questions were formulated: 

RQ1: How accurately can deep learning models, such as YOLOv8, detect the aortic valve 

in 3D transesophageal echocardiography images? 

RQ2: How reliable are the proposed methods for calcium quantification within the 

segmented aortic valve? 

RQ3: How well do the automatically quantified calcium scores correlate with clinically 

validated scores, such as the Agatston score from CT scans, and aid in patient screening for 

severe calcification? 

 

1.2. Methodology 

This section explains the methodological approach adopted for this dissertation following the 

CRISP-DM model [20]. The methodology is divided into six phases (Figure 1), each crucial to 

developing a reliable deep learning model for automated aortic valve calcium quantification. 

Each phase ensures that data is collected, processed, and analyzed to support the dissertation’s 

objectives. Specific techniques, tools, and processes employed in each phase will be elaborated 

on in subsequent chapters. 

  

Figure 1 - CRISP-DM Methodology 
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Business Understanding 

Meetings were held with two cardiologists at Hospital Garcia da Orta to gain a deeper 

understanding of the clinical problem. This collaboration ensured the clinical relevance of the 

project, with extensive human validation throughout its development. 

 

Data Understanding 

Chapter 3 provides an assessment of the dataset collected from Hospital Garcia da Orta, which 

includes 3D TEE scans focused on the aortic valve. The dataset features key anatomical views 

that were annotated by cardiologists to assist in the detection and analysis of the aortic valve. 

 

Data Preparation 

Data preparation involved applying various data augmentation techniques, such as rotation and 

zoom, to enhance the training dataset. Additionally, the region of interest was extracted based 

on expert annotations, ensuring that the dataset remained focused on the aortic valve for optimal 

machine learning performance. All data preparation steps are described in Chapter 3. 

 

Modeling 

Chapter 4 covers the development of various models to detect and quantify calcium deposits. 

A deep learning model will be used for detection of the aortic valve. For calcium quantification, 

2 approaches will be explored, a heuristic method and CNNs. 

 

Evaluation 

In Chapter 5, the model’s performance will be evaluated, focusing on its ability to detect and 

quantify calcium deposits in the aortic valve. The results will be compared to clinical Agatston 

scores to assess the model's potential clinical relevance and areas for improvement. 

 

Deployment 

In the final phase, the research findings will be compiled and presented in this thesis, with a 

focus on sharing insights with the medical team at Hospital Garcia da Orta. This phase includes 

documenting the entire process, from data collection and model development to evaluation and 

conclusions. 
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CHAPTER 2 

State-of-the-art 

2.1. Research Methodology 

To systematically explore advancements in deep learning applied to aortic valve segmentation 

and calcium quantification using 3D transesophageal echocardiography, a thorough literature 

review was conducted following the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines [21]. PRISMA provides a structured framework that 

enhances the transparency and rigor of systematic reviews, allowing for an accurate evaluation 

and communication of research findings. 

The primary research question guiding this review was: “What are the latest advancements 

in analyzing echocardiography images for determining the calcium score of the aortic valve 

using deep learning models?” 

To ensure comprehensive coverage of the topic, a systematic search strategy was employed. 

The search process specifically targeted studies addressing key aspects of deep learning, 

echocardiography, and aortic valve disease. Following the PRISMA framework, the review 

process included structured planning for the identification of studies, application of inclusion 

and exclusion criteria, and the critical evaluation of selected papers. 

In January 2024, an extensive search was conducted on databases. To optimize the search 

process, three distinct categories were defined to categorize the search terms: 

Methodology: This category focused on techniques used to analyze or process the data. 

Image Type: This category centered on the type of data and imaging modality used in the 

studies. 

Context: This category reflected the specific objectives and applications of the research. 

The research expression was created by combining components from each category 

(Methodology, Image Type, Context and Limitations). The query and components for each 

category are shown in the Table 1 below: 

 

Table 1 - PRISMA Query Elements 

Category Query Elements 

Methodology Computer Vision, Image Classification, Deep Learning  

Image Type Echocardiography, 3D TEE 

Context Aortic Valve Stenosis, Aortic Calcification, Calcium Score 

Limitations Last 5 years. Only articles, reviews and written in English 
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The search was applied only to the title fields of publications to specifically target studies 

closely aligned with the research focus. Only reviews and articles written in English were 

considered for inclusion, and publications within the last five years (2019-2024) were filtered 

to ensure relevance. 

The final search query used was “("Computer Vision" OR "Image Classification" OR 

"Deep Learning ") AND ("Echocardiography" OR "3D TEE") AND ("Aortic Valve Stenosis" 

OR "Aortic Calcification" OR "Calcium Score")”. 

This query was created to capture the most relevant advancements in the analysis of 

echocardiography images for determining the calcium score of the aortic valve, with a focus on 

deep learning, image analysis, and aortic valve disease. In addition to the query results, further 

literature searches were conducted to explore related fields and techniques that could provide 

valuable insights and complement the findings, ensuring a comprehensive understanding of the 

topic. 

 

2.2. Research Results 

The search process described earlier yielded 58 results, using Rayyan to assist with screening 

and duplicate detection [22]. This included 46 papers from Scopus and 12 papers from the Web 

of Science Core Collection. After removing duplicates, 53 unique papers remained for further 

evaluation, as shown in Figure 2. 

 Each of these papers was reviewed by examining their titles and abstracts to assess 

relevance to the research question and objectives. Studies were excluded if they focused on 

unrelated populations, imaging modalities, or topics that did not address aortic valve disease, 

deep learning, or calcium quantification. 

Out of the 53 papers, 33 were excluded for not aligning with the study’s scope. Many of 

these exclusions were due to a focus on cardiac structures other than the aortic valve or the use 

of traditional image analysis methods without deep learning. After this filtering process, a total 

of 20 articles were included for detailed analysis in the literature review. 
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Figure 2 - PRISMA Flow Diagram 

 

The included studies provide a comprehensive view of the ongoing advancements in 

applying deep learning and AI to echocardiography and other imaging modalities for 

diagnosing and managing valvular heart diseases (VHDs) and related cardiovascular 

conditions. 

 

2.3. Review of Retrieved Articles 

A key theme in several papers is the automation of critical tasks in echocardiography, 

particularly for the detection and quantification of valvular anomalies. Nizar et al. [23] and Dai 

et al. [24] focus on automating the real-time detection of aortic valves and identifying aortic 

stenosis from parasternal long-axis videos, respectively. These studies highlight the ability of 

AI models, particularly CNNs, to improve the speed and accuracy of diagnosis during live 

echocardiographic exams, which could reduce the reliance on human expertise, especially in 

resource-limited settings. Building on this, Holste et al. [25] developed a deep learning model 

capable of detecting severe aortic stenosis using 2D echocardiography videos, demonstrating 

strong generalizability across multiple datasets with high diagnostic performance, thus 

expanding the applicability of AI to different clinical environments. 



 

 
10 

Several studies explored AI’s role in enhancing the quantification of cardiovascular 

conditions. Wifstad et al. [26] and Elvas et al. [27] made significant contributions by improving 

the quantification of valve regurgitation and calcification, respectively, using CNN-based 

models. Wifstad’s approach to measuring regurgitant volume (RVol) from 3D Doppler 

ultrasound images significantly reduced error rates in orifice and flow volume estimations 

compared to traditional methods. Elvas and his coauthors work, meanwhile, applied computer 

vision techniques to semi-automatically quantify calcium in the aortic valve, reducing the need 

for radiation-heavy CT scans. Similarly, Tang et al. [28] introduced DLFFNet, a model for 

recognizing aortic valve calcification automatically from echocardiographic images using U-

Net for segmentation. This method improved the accuracy of calcification identification, 

offering an alternative to time-intensive manual assessments. 

A key advantage of AI-driven quantification is its ability to minimize variability between 

observers. Studies like Yang et al. [14], Kim et al. [29] ] and Steffner et al. [30] underscore this 

benefit by demonstrating how AI can automate and improve the efficiency of detecting and 

quantifying valvular diseases across multiple datasets, even outperforming human experts in 

some cases. Steffner’ work [30] showcases how AI can standardize intraoperative imaging 

analysis, ensuring consistency across healthcare providers. 

AI has also proven valuable in integrating imaging and clinical data. Yuan et al. [31] 

developed a model for predicting coronary artery calcification using echocardiogram data, 

demonstrating that AI models can stratify patients' risk comparably to CT-based assessments. 

Additionally, Karužas et al. [32] explored AI for fully automated aortic measurement in 2D 

echocardiography, showing that this AI-driven approach not only aligns closely with expert 

cardiologist measurements but also improves reproducibility. This has important clinical 

implications for automating routine aortic root assessments, streamlining workflow, and 

reducing human error. 

Beyond echocardiography, AI has been applied to advanced imaging techniques such as 

4D flow MRI. Nath et al. [33] developed a deep learning-based network, 4Dflow-VP-Net, for 

estimating transvalvular pressure gradients noninvasively. This work presents a approach to 

estimating pressure gradients in stenotic flows, demonstrating high correlation with both 

catheter-based and Doppler echocardiography measurements. This innovation in MRI-based 

diagnostics highlights the versatility of AI across different imaging modalities. 
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Moreover, AI’s ability to handle vast amounts of echocardiographic data, particularly 

multi-view, is another critical advancement. Ahmadi et al. [34] leveraged transformer-based 

spatio-temporal analysis for classifying aortic stenosis severity. Their deep learning models 

effectively identified the most informative frames within cine series, avoiding the need for 

Doppler measurements and expanding the usability of AI tools in clinical practice. This 

approach reduces the training burden on operators while providing precise, real-time 

assessments, making AI-based diagnostic tools more accessible to a broader range of clinicians. 

Despite these advancements, several studies highlighted challenges that need to be 

addressed to fully integrate AI into routine clinical practice. Lei et al. [35] and Liu et al. [36] 

emphasized the importance of training models on large, diverse datasets to ensure their 

generalizability across different populations and clinical settings. Coulter and Campos [37] 

further explored real-world applications of AI in echocardiography, acknowledging the 

efficiency and workflow improvements AI brings but emphasizing that it will complement, 

rather than replace, the role of physicians in clinical practice. 

In summary, the included papers illustrate that AI holds tremendous potential in 

revolutionizing the field of echocardiography and valvular heart disease management. From 

improving diagnostic accuracy to automating complex assessments and reducing interobserver 

variability, AI has shown that it can significantly improve the diagnostic workflow. However, 

to fully realize these benefits, challenges related to data variability, model generalizability, and 

clinical integration must be addressed.  

 

2.4. Research Findings 

This chapter synthesizes key findings from the systematic review of the selected papers, 

highlighting advancements in model performance, dataset size, and their contributions to the 

field.  

Table 2 presents a summary of the key findings, model types, and dataset sizes from the 

included studies. Each paper highlights the application of deep learning and AI for diagnosing 

VHDs and improving workflow automation. 
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Table 2 - Key Findings Across AI Models for Valvular Disease and Echocardiography 

Paper Model Type Dataset Size Key Findings 

[23] CNN 33 patients 
High accuracy in detecting aortic valves using 
real-time CNN models 

[24] CNN 
10 videos, 33 
patients 

Deep learning for aortic stenosis detection 
from echocardiograms with high diagnostic 
performance 

[25] 3D CNN 5,257 studies 
Strong generalizability of the model for severe 
aortic stenosis detection across multiple 
datasets 

[26] CNN 
30,000 image 
pairs 

Improved accuracy of regurgitation 
quantification from Doppler ultrasound 

[27] 
CV-based calcium 
quantification 

Anonymized 
patient images 

Semi-automatic quantification of calcium 
deposits, reducing the need for CT scans 

[28] DLFFNet (U-Net) 231 patients 
Improved accuracy in AVC identification using 
local feature fusion approach 

[14] 
DL framework with 
CNN-based 
architecture 

1,335 training, 
434 test 

Automated analysis of valvular heart diseases 
in Doppler echocardiography with high 
accuracy 

[29] Contrastive learning 250 video series 
Enhanced efficiency in AR diagnosis with 
multi-view video integration 

[30] CNN 
Multi-center 
dataset 

Standardization of TEE view classification, 
improving intraoperative consistency 

[34] Transformer-based 
Public & private 
datasets 

Transformer-based spatio-temporal analysis 
for AS severity classification 

[31] Video-based CNN 2,881 TTE videos 
AI-based CAC prediction comparable to CT 
scans 

[32] 
U-Net-based model 
for automated aortic 
measurement 

58 subjects 
Fully automated 2D TTE aortic measurement 
with close correlation to expert assessment 

[33] 4Dflow-VP-Net (DL) 16 patients 
High-fidelity pressure gradient estimation 
from 4D flow MRI 

 

This table summarizes the scope of AI's impact, showcasing improvements in both 

diagnostic accuracy and workflow automation across a variety of imaging modalities. The 

studies demonstrate the wide applicability of AI in real-time diagnosis, standardization of 

processes, and quantitative assessments such as coronary artery calcification (CAC) and 

pressure gradient estimations. 
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The AI models presented in the studies utilized various imaging modalities, including 2D 

and 3D echocardiography, Doppler echocardiography, transesophageal echocardiography 

(TEE), and 4D flow MRI. While echocardiography (including Doppler and TEE) typically 

results in 2D or 3D images depending on the acquisition method, modalities such as 4D flow 

MRI provide more complex datasets, such as 3D point clouds or velocity fields. 

Figure 3 above shows the distribution of these imaging modalities across the reviewed 

studies, highlighting the dominant role of 2D echocardiography and the emerging use of 

advanced imaging techniques such as 4D flow MRI. 

 

 

Figure 3 - Number of Studies by Image Modality 

 

Figure 3 indicates that 2D echocardiography is the most widely used imaging modality in 

the AI-based echocardiography research identified in this review, accounting for 6 studies, 

followed by TEE and other imaging methods. It reflects the accessibility and established role 

of 2D echocardiography in routine clinical practice. However, within the broader field of 

cardiovascular research, other advanced modalities, such as 4D flow MRI and 3D 

echocardiography, are increasingly being explored, although they remain less represented in 

the specific studies covered by this review. 
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In addition to image modality, a key area of comparison is the model performance in 

specific tasks, particularly in terms of accuracy and AUC (Area Under the Curve). These 

metrics were used to evaluate tasks such as classifying aortic stenosis severity, detecting aortic 

valve calcification, and estimating calcium scores. The models analyzed in the selected papers 

achieve strong performance, with accuracy values close to or exceeding 90% and AUC values 

nearing 1.0, highlighting the effectiveness of AI models in enhancing diagnostic accuracy for 

valvular heart diseases. 

For example, the models developed by Holste et al. [25] and Tang et al. [28] demonstrates 

particularly high accuracy, highlighting the value of deep learning techniques like 3D CNNs 

and U-Nets in automating the detection and quantification of complex conditions like aortic 

stenosis and valve calcification. 

Nevertheless, some models exhibit variation in performance depending on the imaging 

modality and dataset size. For instance, Steffner et al. [30] reported lower AUC for some TEE 

view classifications, likely due to the inherent variability in TEE images across different 

centers. This emphasizes the importance of dataset diversity and the challenges in achieving 

consistent model performance across diverse clinical environments. 

The findings presented in both the table and the figures provide a clear picture of how AI 

is being effectively integrated into the field of echocardiography. CNNs dominate in terms of 

model application, showing great success in automating the detection and classification of 

valvular heart diseases. Transformer-based models and contrastive learning approaches, such 

as those used by Ahmadi et al. [34] and Kim et al. [29], are gaining traction in improving spatio-

temporal analysis and multi-view integration, respectively. 

Another important takeaway is the move toward fully automated diagnostic tools that 

minimize the need for expert intervention while providing highly accurate results. For instance, 

the automated aortic measurement tool developed by Karužas et al. [32] highlights AI's ability 

to replace manual measurements with more reproducible, automated assessments. 

The use of AI in echocardiography and cardiovascular imaging is expanding, offering 

significant benefits in terms of diagnostic accuracy, efficiency, and automation. However, while 

these models have shown excellent performance across controlled datasets, the challenge of 

generalizability remains. Moving forward, collaboration across medical centers to gather more 

diverse datasets will be essential for the broader adoption of AI in routine clinical practice. The 

key studies summarized in Table 2 reflect both the progress made and the future potential of 

AI-driven echocardiography and cardiovascular care. 
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2.5. Limitations 

Despite the promising advancements highlighted in the reviewed studies, several limitations 

were consistently noted across the papers and will be outlined in the subsequent subsections. 

These limitations must be considered carefully, as they affect the real-world applicability and 

scalability of AI models in clinical settings. Four key challenges were identified from these 

studies. 

 

Dataset Size 

Many of the reviewed papers used small or specialized datasets, limiting the models’ 

generalizability. For example, the study by Nizar et al. [23] utilized a dataset of only 33 patients, 

which, while sufficient to demonstrate initial model feasibility, is far too limited for broad 

clinical application. Similarly, studies like Tang et al. [28] and Karužas et al. [32] employed 

datasets of 231 and 58 patients, respectively, limiting the robustness of the models in handling 

diverse populations and imaging conditions.  

Smaller datasets make it difficult for deep learning models to capture all the inherent 

variabilities present in real-world clinical data. Variability in patient demographics, imaging 

quality, and pathological complexity can result in model overfitting to the specific 

characteristics of the training data. This reduces the model’s ability to generalize to new patients 

or clinical environments. Several papers, including the study by Holste et al. [25], emphasize 

the need for larger, more diverse multi-center datasets to ensure the generalizability of AI 

models across different healthcare settings. 

 

Interpretability of AI Models 

Another critical limitation frequently raised is the "black box" nature of many AI models, 

especially deep learning models like CNNs. While models such as those developed by Nizar et 

al. [23] and Dai et al. [24] show excellent performance in diagnostic tasks, they offer little 

interpretability for clinicians. This lack of transparency poses a significant barrier to the broader 

adoption of AI in clinical practice, as physicians must be able to trust and understand the 

rationale behind a model's predictions.  
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The need for transparency is particularly crucial in high-stakes environments like 

cardiology, where treatment decisions directly impact patient outcomes. Tools such as saliency 

maps, as used by Holste et al. [25], provide some insight into which areas of an image the model 

is focusing on, but more work is required to bridge the gap between AI predictions and clinical 

decision-making. 

 

Generalizability Across Different Modalities and Clinical Settings 

Several models demonstrated high performance within controlled experimental settings but 

faced challenges when applied across different imaging modalities or clinical environments. 

For instance, Steffner et al. [30] highlighted the potential variability in TEE imaging across 

different centers, which can impact the performance of deep learning models trained in a single 

institution. The paper by Wifstad et al. [26] also pointed out the limitations of Doppler 

ultrasound data, which can vary significantly depending on operator skill and equipment 

quality.  

Achieving generalizability across multiple modalities, such as 2D echocardiography, 

Doppler, and 4D flow MRI, is a key challenge for AI-based models. Models developed and 

validated using a single modality, such as the video-based CNN for coronary artery calcification 

prediction in Yuan et al. [31], may not necessarily transfer well to other imaging modalities or 

clinical workflows. 

 

Clinical Integration and Workflow Impact 

While AI offers tremendous potential to improve diagnostic accuracy, the clinical integration 

of AI tools remains a significant challenge. Studies such as the one by Coulter and Campos [37] 

discussed the potential for AI to enhance physician workflow rather than replace human 

expertise. However, the real-world adoption of these tools is often impeded by the need for 

regulatory approvals, clinician training, and workflow integration. 

Besides, the reliance on computational resources and specialized hardware, as noted in Nath 

et al. [33], presents an additional obstacle in deploying AI models in resource-limited settings. 

The complexity of training and maintaining deep learning models requires institutional 

commitment and infrastructure that may not be available in all healthcare systems. 
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2.6. Research Gaps 

While the reviewed studies demonstrate significant advancements in AI applications for 

echocardiography and VHD management, several critical gaps remain that delay the broader 

clinical adoption and effectiveness of these technologies. 

One of the research gaps in the literature appears to be the relatively limited application of 

AI models to 3D TEE for calcium quantification in the aortic valve. Although various studies 

focus on using deep learning for automating the segmentation of cardiac structures and 

diagnosing valvular diseases [23], [24]. Current methods such as the work by Elvas et al. [27] 

focus on semi-automated calcium scoring using computer vision techniques with 2D images, 

often relying on CT for validation. However, the potential of 3D TEE as a non-invasive and 

radiation-free alternative for calcium scoring is largely unaddressed, leaving a significant gap 

in the literature. 

Despite the promising accuracy rates shown in many studies, there is a notable lack of AI 

model validation against clinical gold standards like CT-based calcium scoring. For example, 

while Nath et al. [33] present a deep learning approach to estimate transvalvular pressure 

gradients from 4D flow MRI, these methods often lack rigorous validation in large-scale, real-

world clinical environments. Also, Tang et al. [28] introduced DLFFNet for automatic AVC 

recognition, but this method lacks comparison with established calcium scoring metrics like the 

Agatston score from CT imaging. 

AI’s integration across multiple imaging modalities remains a promising area. Most current 

research, such as Holste et al. [25] and Steffner et al. [30], focuses on a single modality like 2D 

or Doppler echocardiography, without exploring how multi-modal approaches could improve 

diagnostic accuracy. Only a few papers, such as Nath et al. [33], explore multi-modal data 

integration (4D flow MRI and Doppler). A more comprehensive approach involving multiple 

modalities (e.g., 3D TEE, 4D flow MRI, and Doppler) would offer a more accurate and holistic 

assessment of valvular heart disease. 

A recurring theme in the limitations is the challenge of ensuring AI model generalizability 

across diverse clinical environments and patient populations. The small or homogeneous 

datasets used in many of the reviewed studies (e.g., [23], [32]) limit the broader application of 

these models in real-world settings. While some authors, attempt to validate their models across 

multiple datasets [25], issues related to dataset size, diversity, and cross-institutional validation 

remain underexplored. 
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While small dataset size remains a challenge in this field, this dissertation focuses on 

addressing other critical gaps. Specifically, it develops and tests deep learning models for 

calcium scoring using 3D TEE, offering a radiation-free alternative to CT-based methods. 

Additionally, it compares these models against clinical standards such as the Agatston score, 

contributing to the improvement of non-invasive diagnostic tools. However, it is important to 

acknowledge that the dataset used in this work is also limited in size, and future research with 

larger datasets will be needed to fully assess the generalizability of these models. 
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CHAPTER 3 

Data Preparation 

3.1. Data Understanding 

The data used for this dissertation was collected under strict confidentiality agreements to 

comply with legal and ethical guidelines for protecting personal information. A non-disclosure 

agreement (NDA) with Hospital Garcia da Orta was also established to ensure the security and 

confidentiality of patient data. The data collection process was supported by a cardiologist from 

the hospital, who performed the exams in patients who provided informed consent for the use 

of their clinical data in this study. These exams were saved in DICOM format, which is the 

standard format for storing medical imaging data. Each DICOM file contains both the captured 

images and relevant metadata, such as patient age and sex [38].  

To comply with General Data Protection Regulation (GDPR), all personal identifiers were 

removed through an anonymization process, where filenames were coded (e.g., "case1") to 

protect patient identities. This ensures that the dataset can be securely used for research while 

safeguarding patient privacy. 

 

3.2. Dataset 

The dataset used in this study includes 154 DICOM images, captured during 3D TEE exams at 

Hospital Garcia da Orta. These 154 images correspond to 14 individual scans (cases), with each 

scan consisting of 11 images. Each scan focuses on the aortic valve region and is stored in 

DICOM format for post-processing. An additional case, consisting of 11 images, was requested 

to the cardiologist specifically for model validation of the object detection, without a calcium 

score from CT scans. This brings the total number of images to 165. 

In terms of patient demographics, the dataset consists of 14 patients (6 males and 8 

females), with an age range from 41 to 88 years. The male patients have a median age of 74.0 

years, while the female patients have a median age of 83.5 years. The exams were conducted 

by the same cardiologist at the hospital, in the context of a pilot study. 
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During each TEE exam, 3 mm contiguous slices of the aortic valve were obtained, and the 

region of interest (ROI) was manually traced in all 154 images by the cardiologist using a green 

line to outline the aortic valve. This ROI includes the valve leaflets and annular calcifications, 

while non-valvular calcifications in areas such as the left ventricular outflow tract, aortic sinus, 

coronary arteries, and mitral annulus were excluded from the analysis. CT scans were also 

conducted within a three-month window before or after the TEE exams, allowing for 

comparison and validation of the calcium quantification. 

All patient data has been anonymized to protect privacy, and a research log has been 

maintained, linking the anonymized data to a unique case number for future reference and 

comparison.  

 

3.3. Pre-processing 

To prepare the echocardiographic images for analysis, several pre-processing steps were 

conducted using a combination of OpenCV [39], NumPy [40], Matplotlib [41], and PyDicom 

libraries [42]. The primary objective of this pre-processing was to utilize the green contour, 

manually drawn by the medical professional on the echocardiographic images (as shown in 

Figure 5), which delineates the location of the aortic valve. This contour was crucial for 

accurately extracting the ROI that contains the aortic valve. By isolating this region, the 

subsequent analysis focused specifically on the valve, enhancing the accuracy and efficiency 

of the image processing and machine learning tasks. 

 

 

Figure 4 - DICOM with Annotation 
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3.4. ROI Extraction 

The process of extracting the ROI for the aortic valve from echocardiographic images is a 

critical step in data preparation. This method leverages the green line manually drawn by the 

medical professional, which demarcates the location of the aortic valve.  

The extraction begins by converting the images to the HSV (Hue, Saturation, Value) color 

space, which is effective for isolating specific colors. A specific range of HSV values 

corresponding to the green color of the line marking the valve is defined. 

Once the HSV values are defined, a binary mask is created that highlights the green areas 

within the echocardiographic image. This binary mask isolates the green line, allowing the 

relevant color features to be more effectively identified for the subsequent steps. Morphological 

operations, such as closing, are then applied to the binary mask to remove small holes and 

discontinuities, ensuring the detection of continuous and coherent shapes that represent the 

green line. 

Following this, contour detection algorithms are applied to the binary mask to identify the 

edges of the green line and any enclosed geometric shapes within it. The contours provide 

valuable information about the structure and shape of the aortic valve. The contour closest in 

proximity to the green line is identified as the ROI, which corresponds to the aortic valve, as 

intended by the medical professional. 

To finalize the extraction, the green line is removed by drawing a black contour around the 

identified shape that corresponds to the aortic valve. This step effectively erases the green line, 

providing a clearer visualization of the valve structure. The final mask is then applied to the 

original echocardiographic image, isolating the segmented aortic valve without the obstructive 

green line. This allows for a more accurate analysis and quantification of calcium deposits and 

other relevant pathological features within the region. 

The effectiveness of this segmentation is demonstrated by comparing the original image 

with the extracted ROI, as demonstrated in Figure 6 below. This segmentation successfully 

isolated the aortic valve in all cases, demonstrating the precision and reliability of the method, 

which is essential for subsequent calcium scoring. 
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Figure 5 - Comparison of Original Echocardiographic Images and Extracted ROI 
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3.5. Image Cropping for ROI  

As part of the data preparation, it was essential to enhance the quality of the images by cropping 

them to focus on the ROI. The primary goal of this step was to remove irrelevant areas, such as 

black regions, while retaining only the essential diagnostic regions that contain calcifications. 

This process involved identifying the non-black regions in each image and creating a 

bounding box around them. The resulting cropped images contained only the relevant portions, 

ensuring that the dataset was optimized for further analysis. Figure 7 illustrates this process, 

showing the ROI image on the left and the cropped image on the right. 

 

 

Figure 6 - Comparison of the ROI Image and the Cropped Image 

 

The benefit of this approach is that it reduces noise in the dataset, allowing models to focus 

on the critical areas for calcium score prediction. Additionally, the cropped images are smaller 

in size, which helps to improve computational efficiency during the model training process. 

This focused and clean data improves the overall performance and reliability of the models 

trained later in the process, including CNNs, by ensuring they work with more relevant input 

data. 

This cropping step is crucial in preparing the dataset for deep learning and machine learning 

tasks, ensuring that the models can better learn from the key areas of the images and produce 

more accurate predictions. 
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3.6. Data Augmentation 

Given the limited dataset of 154 echocardiographic images available for training, data 

augmentation was employed to artificially expand the dataset [43]. This approach is critical for 

deep learning models, which typically require a large number of diverse training samples to 

generalize well to unseen data. Data augmentation involves applying a range of transformations 

to the original images, creating modified versions that expose the model to a broader variety of 

visual features without the need for additional data collection [44]. 

The augmentation strategies were implemented as part of the custom configuration used 

for training the YOLOv8 model and were applied to the original images, not the cropped 

images. These augmentations were designed to improve the model’s ability to detect the aortic 

valve in various imaging scenarios and were based on guidelines provided by a cardiologist to 

ensure clinical relevance and realism. The transformations included: 

• Translation: The images were shifted horizontally and vertically by up to ±20%, 

simulating slight movements in the imaging procedure. 

• Zoom: Each image was zoomed in or out by up to 25%, allowing the model to focus on 

different scales of calcification within the aortic region. 

• Rotation: The images were rotated by up to ±10 degrees, representing slight variations 

in patient positioning during image acquisition. 

• Contrast Adjustments: The brightness and contrast of the images were altered within 

a range of 0.5 to 1.2, simulating differences in imaging settings or equipment. 

Each of these four transformations was applied to each of the 154 original images, resulting 

in a total of 616 augmented images, ensuring a more diverse and varied set for model training. 

These augmentations provided the model with a variety of perspectives on each image, 

improving its robustness by helping it learn to generalize across different scenarios and imaging 

conditions. 
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CHAPTER 4 

Modeling 

The modeling phase of this dissertation is centered on achieving two key objectives as 

illustrated in Figure 8: (1) the detection and segmentation of the aortic valve in 

echocardiographic images, and (2) the quantification of calcium deposits within the segmented 

valve. To accomplish these objectives, a deep learning-based approach is employed, leveraging 

the YOLOv8 model for object detection. The model is specifically configured to automate the 

identification and isolation of the aortic valve in echocardiographic images. Once the aortic 

valve is detected, a post-processing step isolates the valve from the surrounding tissues by 

applying a circular mask based on the detected bounding box.  

Following the detection, the next step involves quantifying the calcium deposits within the 

valve. Two algorithms are employed for this purpose. One method involves a deep learning-

based approach to analyze the ROI and estimate the calcium score. The other is a heuristic 

approach, where pixel intensity is used as the predictor, and the total count of white pixels 

within the ROI is used as the calcium score estimate. 

 

 

Figure 7 - Framework for Aortic Valve Detection and Calcium Scoring 
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4.1 Aortic Valve Detection using YOLOv8  

The detection of the aortic valve in echocardiographic images is crucial for diagnosing 

cardiovascular diseases such as aortic stenosis. Accurately identifying the aortic valve is the 

first step in assessing the valve's condition, including calcification and structural abnormalities. 

Recently, deep learning models have emerged as a powerful tool to automate this task with high 

accuracy as seen in the state-of-the-art [45]. 

This chapter describes the application of YOLOv8n, an object detection model, to detect 

the aortic valve in echocardiographic images. YOLOv8n, is recognized for its lightweight 

architecture and rapid inference capabilities, particularly suited for clinical applications that 

require real-time analysis [46].  

By incorporating data augmentation techniques recommended and discussed with a 

cardiologist, as detailed in Chapter 3, the model was improved to generalize better across 

various echocardiographic images. 

Due to the limited size of the dataset, both the training and validation sets were relatively 

small. The training set consisted of 154 original images, supplemented by 616 augmented 

images. For validation, an additional case of 11 images was used, specifically requested to the 

the cardiologist, as outlined in Chapter 3. Care was taken to ensure that none of the artificially 

produced data from the training augmentation process overlapped or replicated within the 

validation set. This ensured the model was truly evaluated on unseen data, maintaining the 

integrity of the performance assessment. Additionally, none of the validation images included 

the manually drawn green lines, which were used during the training process for annotation 

purposes.  

A configuration file was also created to specify the dataset paths for images and labels, the 

number of classes as one, and the class name as aortic valve.  

The bounding box annotations for model training were generated by detecting the green 

circles representing the aortic valve using color-based features. A mask was applied to isolate 

the green hues, followed by morphological operations to refine the mask. The position and size 

of the circles were then used to create the bounding boxes. 
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The model was trained using this dataset for 50 epochs, with a batch size of 16 and an 

image size of 640x640 pixels. This specific image size was chosen due to the requirements of 

the YOLOv8 framework, which performs optimally with input dimensions of 640x640. The 

Adam optimizer was employed, using a learning rate of 0.001. Various augmentation 

techniques were dynamically applied during training, exposing the model to different 

transformations in each epoch. The loss function used combined object classification and 

bounding box regression losses.  

To evaluate the model’s performance, we used standard object detection metrics, including 

precision, recall, mean Average Precision (mAP@50), and mAP@50-95. Precision measures 

the proportion of true positive detections among all positive predictions, while recall measures 

the proportion of true positives detected out of all actual positives. The mAP@50 score 

averaged the precision across various recall thresholds at an Intersection over Union (IoU) 

threshold of 0.5, while mAP@50-95 averaged precision across a range of IoU thresholds (0.5 

to 0.95). IoU measures the area of overlap divided by the area of union between the predicted 

and true bounding boxes, providing a direct measure of how well the model localized the aortic 

valve. 

The YOLOv8n model, selected from the YOLOv8 family due to its lightweight architecture 

and efficiency, achieved strong performance on the validation dataset, with a mAP@50 of 

92.88%, a precision of 99.94%, and a recall of 81.82%. These results highlight the model's 

capability to detect the aortic valve across different imaging scenarios. However, the model's 

mAP@50-95 score of 43.55% suggests there is room for improvement when dealing with more 

stringent IoU thresholds. This metric evaluates the model’s performance over a range of IoU 

thresholds from 0.5 to 0.95, making it a stricter measure of localization accuracy. 

Since the inference was performed during model training, the validation dataset results 

were analyzed to assess the model's performance. The model was able to identify the aortic 

valve accurately in most of the validation images, with predictions saved as bounding boxes in 

both image and text formats. Figure 9 provides an example of the model's inference on a 

validation image, showing the detected aortic valve with the bounding box and confidence 

score.  
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Figure 8 - Inference result showing the detected aortic valve in a validation image 

 

For further analysis, a post-processing step was employed, which segmented the detected 

aortic valve from the background by creating a circular mask based on the bounding box and 

applying it to the original image. This post-processing step was particularly useful for isolating 

the aortic valve, allowing for more detailed examination and potentially aiding in further 

clinical assessments. Figure 10 demonstrates the segmented result, where the aortic valve is 

clearly isolated, providing a more focused view for clinical analysis. 

 

 

Figure 9 - Segmented result of the aortic valve using the circular mask applied to the bounding box  
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The inference speed of YOLOv8n was a critical factor for its clinical applicability. On 

average, the model required 3.72 ms for preprocessing, 191.63 ms for inference, and 3.81 ms 

for postprocessing per image, with a resolution of (1, 3, 640, 640). Although the inference time 

could be slightly improved, this processing speed is acceptable for most clinical environments, 

where accurate detection takes precedence over real-time speed. 

Of the 11 validation images, the model successfully detected the aortic valve in 8, with a 

few images showing no detections or low-confidence predictions. A more in-depth analysis 

revealed several factors that may have contributed to these missed detections. In some cases, 

the images had low contrast or excessive noise, which hindered the model's ability to distinguish 

the boundaries of the aortic valve clearly. Additionally, the presence of large areas of black 

space in some images likely confused the model, as it relies heavily on visible features to make 

accurate detections.  

The variability in confidence levels among detected valves also highlighted challenges in 

cases where the valve's visibility was less clear. In images where the valve was more distinct, 

the model returned high confidence scores (0.7 to 0.9), while in less clear cases, the confidence 

scores were as low as 0.3 or 0.4. This variation suggests that the model could potentially benefit 

from additional preprocessing steps, such as enhancing contrast or reducing noise, to improve 

performance in challenging cases. 

Overall, the model's precision, recall, and inference times demonstrate that YOLOv8n 

holds great promise for automating aortic valve detection in echocardiographic images. 

However, as seen in the batch of validation results, there are clear areas where performance 

could be improved, particularly in cases with low contrast or excessive noise. Further 

refinement of the model, including potential improvements in preprocessing or training with 

more diverse data, may help to mitigate these challenges and provide even more reliable support 

for diagnosis and treatment planning. 

 

4.2 Calcium Scoring Approaches 

As depicted in Figure 11, we explore two distinct approaches for calculating the calcium score. 

The first approach is a heuristic method, which involves binarizing the image using a predefined 

intensity threshold to highlight calcified regions as white pixels. The calcium score is then 

estimated by summing these white pixels. Afterward, a machine learning model is applied to 

correlate the estimated calcium score with the CT scores, improving the accuracy of the 

predictions. 
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The second approach utilizes CNNs, which are capable of automatically learning complex 

patterns in medical images and can provide an alternative method for calcium scoring. 

However, due to the limited number of available images for training, we primarily employed 

the heuristic method for practical use in the hospital. By leveraging both approaches, we were 

able to compare and validate the results with the available data.  

 

 

 

4.2.1. Heuristic Method 

The heuristic method is a straightforward and computationally efficient approach used in 

medical imaging for quantifying calcifications, particularly due to its simplicity and 

computational efficiency [27]. This method works by binarizing the image, converting it into a 

black-and-white format where the white pixels represent areas of high intensity, which are 

likely to correspond to calcified regions. The sum of these white pixels provides an estimate of 

the calcium score, a technique that has been utilized in various cardiovascular imaging studies 

[47]. 

Figure 10 - Calcium Scoring Approaches 
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The implementation of this method involves several key steps: first, the input image is 

binarized using an intensity threshold. Pixels with intensity values above this threshold are 

converted to white, representing potential calcifications, while those below are turned black. 

The total number of white pixels is then counted, providing a raw estimate of the calcium score. 

This technique has been widely used in cardiovascular studies to quantify calcification levels 

[48]. 

One of the primary advantages of the heuristic method is its simplicity and ease of 

implementation, making it accessible for various clinical applications, particularly in settings 

with limited computational resources [27]. However, this threshold is critical in distinguishing 

true calcifications from other high-intensity artifacts, such as noise or anatomical structures, as 

noted in threshold-based segmentation studies [49]. Improper threshold selection can lead to 

underestimation or overestimation of calcifications, affecting the reliability of the calcium 

score. 

Given these potential limitations, the threshold choice could be informed by empirical data 

and adjusted according to the specific imaging modality and patient population [47]. 

Furthermore, while the heuristic method may be effective for quick assessments, it can be 

replaced by more sophisticated techniques, such as machine learning models, to enhance 

accuracy in complex cases [48]. This leads us to the next subchapter, where alternative methods 

are explored to address these challenges. 

 

4.2.1.1 Intensity Threshold Selection and Correlation Analysis 

A range of intensity thresholds was evaluated to identify the one that most effectively correlates 

with the actual calcium scores obtained from clinical CT measurements. Different thresholds 

were systematically tested, and the corresponding calcium scores were calculated. Figure 12 

illustrates the correlation coefficients plotted against various intensity thresholds, showing how 

threshold choice affects the correlation between computed and actual calcium scores.  

In this study, three correlation coefficients were employed to assess the relationship 

between the computed calcium scores and the clinical CT measurements: 

• Pearson correlation measures the linear relationship between computed and actual 

calcium scores. A high Pearson correlation indicates a strong linear relationship, 

meaning that as the computed score increases, the actual calcium score obtained from 

CT scans increases proportionally [50]. 
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• Spearman’s rank correlation evaluates the strength and direction of a monotonic 

relationship. Unlike Pearson, Spearman does not assume linearity, making it useful for  

relationships that are not strictly linear but maintain a consistent ranking [51]. 

• Kendall’s tau assesses the ordinal association between the computed and actual calcium 

scores, focusing on how well the rankings of the scores match. Kendall's tau is robust 

in small datasets and noisy data, providing additional reliability [52].  

Using these three metrics ensures a comprehensive evaluation of the relationship between 

the computed calcium scores and clinical measures. Pearson focuses on linear relationships, 

while Spearman and Kendall offer insight into non-linear and ordinal associations, respectively. 

 

 

 

 

 

The results in Figure 12 show that the correlation with clinical calcium scores peaks at a 

threshold range between 100 and 120 for all metrics. Pearson’s correlation coefficient reaches 

its highest value in this range, indicating a strong linear relationship at these thresholds. Outside 

of this range, both lower and higher thresholds result in decreased correlations, as lower 

thresholds introduce more noise by including non-calcified regions, while higher thresholds 

tend to exclude some relevant calcified areas. Spearman and Kendall correlations exhibit 

similar trends, showing that the threshold range of 100 to 120 provides the best balance between 

sensitivity to calcifications and exclusion of irrelevant areas. 

Figure 11 - Correlation Analysis of Intensity Thresholds. Pearson, Spearman, and Kendall 
correlation coefficients are plotted against varying intensity thresholds. 
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Thresholds below 70 resulted in excessive noise, capturing irrelevant high-intensity areas 

that do not correspond to calcifications. In contrast, thresholds above 130 excluded smaller 

calcified regions, leading to an underestimation of the calcium score. e threshold range of 70 to 

130 provided the best balance between sensitivity to calcifications and exclusion of noise, as 

demonstrated by the higher correlation values across all metrics. 

After identifying the optimal threshold range through correlation analysis, it was important 

to assess whether these results align with clinical perspectives. This was done by generating 

binarized images based on the identified thresholds and seeking the opinion of cardiologists for 

human validation, as discussed in the next section. 

 

4.2.1.2 Expert Validation with Binarized Images 

To validate the effectiveness of the selected thresholds, binarized images were generated using 

the identified threshold range. These images, shown in Figure 13, were reviewed by two 

cardiologists. The experts provided qualitative feedback on the clarity and accuracy of the 

binarized images in representing calcified regions. 

The cardiologists confirmed that the binarized images provided clear visual representations 

of potential calcifications, particularly in areas corresponding to known calcified regions on 

clinical CT scans. Specifically, the threshold of 100 was highlighted as providing the best 

balance between sensitivity to calcifications and the exclusion of noise, making it clinically 

relevant for calcification detection.  

 

 

Figure 12 - Binarized Images for Intensity Thresholds (70-130) 
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This expert validation was crucial in refining the threshold selection process. While the 

correlation analysis provided a solid foundation based on statistical metrics, expert feedback 

ensured that the selected thresholds were practically useful in a clinical context. By combining 

quantitative analysis with expert review, we ensured that the image processing techniques were 

both technically sound and clinically applicable. 

 

4.2.1.3 CT Calcium Score vs. Predicted Calcium Score 

After validating the binarization technique, the analysis progressed comparing the predicted 

calcium scores obtained through the heuristic method with the actual scores derived from 

clinical CT scans. The heuristic prediction was calculated as the sum of white pixels across the 

11 images corresponding to each case. The scatter plot in Figure 14 illustrates this relationship, 

where the x-axis represents the CT calcium score, and the y-axis shows the normalized 

predicted calcium score. Each of the 14 points in the plot corresponds to a case within the 

dataset, highlighting the comparison between predicted and actual values. 

 

 

Figure 13 - CT Calcium Score vs Heuristic Calcium Score 

 

The scatter plot reveals a clear positive correlation between the predicted and actual 

calcium scores. As the sum of white pixels increases, there is a corresponding increase in the 

CT score, indicating that the heuristic method provides a reasonably accurate estimate of 

calcification levels.  
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The Pearson correlation coefficient of 0.75 reinforces this observation, highlighting a 

strong linear relationship between the predicted and actual scores. While the heuristic method 

effectively captures the extent of calcification in most cases, there is some variability, likely 

due to noise in the imaging data or the method’s limitations. Despite this, the heuristic approach 

proves to be a viable tool for estimating calcification, particularly in patients with higher 

calcium scores in CT scans. 

 

4.2.1.4 Gender-Based Analysis of Calcium Scores 

Following the validation of the heuristic method, we conducted further analysis to investigate 

potential gender-based differences in calcium scores. Figure 15 presents a scatter plot that 

distinguishes between male and female patients. The x-axis represents the actual calcium score 

obtained from CT scans, while the y-axis shows the predicted calcium score using the heuristic 

method. Male patients are represented by blue dots, and female patients by pink dots. 

 

 

Figure 14 - Calcium Scores by Gender 

 

Despite the small and non-random sample, the plot suggests that male patients tend to have 

higher calcium scores compared to female patients, both in the predicted and actual scores. This 

observation aligns with existing cardiovascular research, which indicates that men typically 

present higher levels of vascular calcification, particularly in conditions like aortic stenosis and 

other cardiovascular diseases [53], [54].  
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In the upper-right corner of the plot, several male patients display both high predicted and 

actual calcium scores, with values exceeding 3000, reinforcing the understanding that men are 

more prone to severe calcification. This clustering of male patients with severe calcification 

supports the notion that men are more prone to developing calcific aortic valve disease (CAVD) 

at a faster rate [55], [56].  

Conversely, female patients tend to cluster in the lower and mid-range calcium scores. 

Although some women show moderately high calcium scores (between 1500 and 2000), most 

female patients exhibit lower levels of calcification. This pattern is consistent with research 

suggesting that women tend to develop more diffuse, less localized calcifications, often leading 

to lower overall calcium scores [57]. 

The observed gender-based differences have important clinical implications. Men with 

higher calcium scores are at greater risk of complications related to aortic stenosis and coronary 

artery disease, supporting the need for earlier and more aggressive interventions in male 

patients, as they are more likely to experience severe calcification and its associated risks [55]. 

In contrast, the clustering of lower calcium scores in female patients may indicate a need 

for gender-specific approaches to risk assessment and treatment. Given the more diffuse nature 

of calcification in women, alternative imaging methods or more sensitive techniques may be 

required to fully capture the extent of calcification in female patients [56]. 

 

4.2.1.5 Machine Learning Models 

Building upon the results obtained with the heuristic method, we evaluated a set of machine 

learning models to further refine the calcium score predictions. The goal was to improve 

prediction accuracy by incorporating additional demographic features, such as gender and age, 

along with the sum of white pixels. The target variable for these models was the CT calcium 

score, which varied between 0 and 5000 within the dataset. Predictor variables included the 

sum of white pixels and demographic factors like age and gender. 

Given the small dataset of only 14 patients (14 data points) , simple models were chosen to 

avoid overfitting and ensure that the models remained interpretable. Linear Regression, Lasso 

Regression, and Ridge Regression were selected as strong baseline, while also being less prone 

to overfitting in small datasets [58]. More complex models, such as Random Forest and 

Gradient Boosting, were included to explore potential non-linear relationships. However, due 

to the limited data, these more complex models did not perform well [59]. 
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The models were evaluated using two primary metrics. Root Mean Squared Error (RMSE) 

was used to measure prediction error, where lower values indicated better accuracy [60]. R² 

Score was employed to assess how well the model explains the variance in the target variable, 

with higher values indicating stronger predictive performance [61]. The dataset was split into 

80% training and 20% test sets to assess model performance on unseen data. 

 

Table 3 - Performance Metrics of Regression Models for Calcium Score Prediction 

 

Model RMSE R² 

Linear Regression 634.6 0.27 

Ridge Regression 634.6 0.27 

Lasso Regression 635.2 0.27 

Random Forest 1081.7 -1.13 

Gradient Boosting 1421.0 -2.68 

 

  

 

The results summarized in Table 3 provide some level of reliability when compared with 

the Agatston scores, commonly used as a clinical benchmark for quantifying coronary artery 

calcification. Although an R² of 0.27 indicates that only 27% of the variability in the data is 

explained by the model, the RMSE value of 634.6 suggests the model’s predictions are 

moderately accurate within this specific dataset. 

The RMSE should be interpreted in the context of calcium scores, which in clinical practice 

can vary from 0 up to several thousand. In this dataset, scores ranged from approximately 0 to 

5000, making an RMSE of 634.6 relatively acceptable in cases of high calcification. For higher 

Agatston scores (e.g., above 3000), an error of this magnitude is proportionally smaller, 

implying that the model's predictions align reasonably well with true values in severe cases. 

This means that, despite the model explaining only a fraction of the data variability (as reflected 

by the R²), the magnitude of error in higher calcium scores becomes more tolerable, suggesting 

the model's utility in cases where calcification is significant. 
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The Lasso and Ridge Regression models showed minimal improvement over Linear 

Regression, indicating that regularization techniques offered limited benefits due to the dataset's 

size and the absence of multicollinearity among predictors. The poorer performance of Random 

Forest and Gradient Boosting models, with RMSEs exceeding 1000 and negative R² values, 

highlights that these more complex models could not effectively generalize due to the limited 

sample size, reaffirming the reliability of the simpler linear approaches within the context of 

this analysis. 

Interestingly, a further experiment was conducted by including gender and age as features 

in the models. This led to a deterioration in performance across all metrics, with results notably 

worse than those observed in the primary models without these features. This could be due to 

the small dataset, where the inclusion of additional variables might introduce more noise than 

insight, a phenomenon previously observed in small-sample regression models [6]. It appears 

that the sum of white pixels alone is the most reliable predictor of calcification in this sample, 

without the need for demographic adjustments. 

The scatter plot in Figure 16 compares the predicted calcium scores with the actual CT-

derived scores for the best-performing model (Linear Regression), demonstrating a reasonably 

linear trend. The red dashed line marks the ideal situation where predicted scores would 

perfectly align with actual CT scores. While deviations can be observed across the range, errors 

tend to be more pronounced for higher calcium scores. This indicates that, despite some 

alignment at the upper end, prediction errors increase as the actual scores rise, challenging the 

model's consistency and reliability in cases of more severe calcification. 

 

 

Figure 15 - Scatter Plot of Predicted vs. Actual Calcium Scores (Linear Regression) 
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4.2.2 CNNs for Calcium Score Prediction 

The section on CNNs for calcium score prediction provides an expansion on the prior heuristic 

and machine learning approaches. 

The experiments used a dataset of 154 cropped echocardiographic images, as outlined in 

Chapter 3, which were specifically prepared to highlight regions of interest where calcifications 

were most likely. This approach aimed to enhance the model's ability to focus on clinically 

relevant areas. 

The images were uniformly resized to 128x128 pixels and normalized by scaling the pixel 

values between 0 and 1. The decision to use 128x128 dimensions was based on a balance 

between computational efficiency and maintaining sufficient resolution for the model to 

quantify calcifications. This size was chosen after preliminary testing, which indicated that 

increasing the resolution to 256x256 from the original images did not lead to improved 

performance. 

In subsequent experiments, higher-resolution resizing (such as 256x256 or 224x224) was 

always performed using the original cropped images, not the already resized 128x128 versions. 

These larger dimensions were tested to explore whether a finer resolution could improve the 

model's ability to capture intricate calcification patterns. However, results with 256x256 yielded 

slightly worse performance, likely due to overfitting and increased model complexity. 

 The dataset was split into training and validation sets, with 80% of the images used for 

training and 20% for validation. 

 

Initial CNN Model 

The first CNN model consisted of multiple convolutional layers, followed by max-pooling 

layers to progressively extract features at different levels of granularity. This model aimed to 

capture patterns related to calcification in echocardiographic images. To improve prediction 

accuracy, the architecture was specifically designed to handle 11 images per case, providing 

the model with multiple perspectives of each patient's heart.  

Each of the 11 images has an input shape of (128, 128, 3), which corresponds to the image 

dimensions and color channels. The model processes these 11 separate input layers, where each 

layer corresponds to a different image from the same patient. This allowed the CNN to learn 

and extract features from multiple angles of the same anatomical region.  
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The architecture featured four convolutional layers, each followed by ReLU activations and 

max-pooling layers. The convolutional layers used 3x3 filters to capture localized features such 

as edges and textures within the images. After feature extraction, the extracted features from 

the 11 images were concatenated to aggregate the information across all views of the patient’s 

heart. 

Once the features were aggregated, the model applied a fully connected layer with 200 

units, followed by an output layer with one unit representing the predicted calcium score. The 

model was trained using the Adam optimizer with Mean Squared Error (MSE) as the loss 

function to minimize the prediction error [62]. 

In terms of results, the model achieved a test loss of 1021.416 and a mean absolute error 

(MAE) of 726.71 after 10 training epochs. While the MAE of 726 indicated reasonable 

performance on the validation set, there were signs of overfitting. This suggests that while the 

model learned well from the training data, it struggled to generalize unseen data, which 

highlights the need for additional techniques such as regularization or transfer learning to 

improve its performance and robustness. 

 

CNN Model with Dropout and Regularization 

To enhance generalization and reduce overfitting, adjustments were made in the next 

experimentation. Dropout layers and L2 regularization were introduced to prevent overfitting, 

which was observed in the initial model [63], [64]. Additionally, the input was reshaped to 

better capture patterns across all 11 images per case, ensuring that the model learned from the 

full dataset. 

The model was refined by adding dropout layers after each convolutional layer with a 

dropout rate of 25%, forcing the network to rely on a broader range of features. L2 

regularization was applied to the final dense layer to penalize large weights and reduce 

overfitting. The complexity of the model was increased by adding more convolutional layers 

and increasing the number of filters, enabling the model to capture finer image details. 

During training, two callbacks were implemented to optimize model performance. Early 

stopping was used to halt training when validation loss no longer improved after 10 epochs, 

preventing overfitting [65]. ReduceLROnPlateau callback was employed to reduce the learning 

rate by a factor of 0.2 when validation loss plateaued for five epochs, promoting efficient 

convergence [66]. 
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The improved model demonstrated better generalization, with a test loss of 750.287 and a 

MAE of 846.43. Although the model performed better in terms of overall loss, the MAE slightly 

increased compared to the initial model, possibly due to the added complexity. The training 

process ran for 23 epochs before early stopping was triggered. 

Further experimentation was conducted by increasing the image dimensions to 256x256 

pixels to determine if higher resolution would improve the model's predictive ability. This led 

to a slight change in performance, with the test loss recorded at 757.837 and the MAE at 840.66. 

While the model showed slight improvements in some areas, balancing complexity and 

performance remains a key challenge. 

In the next subchapter, we will explore fine-tuning and transfer learning techniques, which 

offer the potential to further improve both predictive accuracy and generalization by leveraging 

pre-trained models on large datasets and adjusting them for our specific task. 

 

Transfer Learning  

To further improve performance, transfer learning was applied using pre-trained models, 

specifically MobileNetV2 and ResNet50. Both architectures have demonstrated strong 

performance across various medical imaging tasks, making them suitable candidates for this 

study [67], [68]. The primary goal was to leverage the general feature extraction capabilities of 

these models, which were pre-trained on the large ImageNet dataset, and adapt them for the 

task of predicting calcium scores from echocardiographic images [69]. 

To align with the input requirements of MobileNetV2 and ResNet50, the images were 

resized to 224x224 pixels. This step was necessary because both models were originally trained 

on the ImageNet dataset with images of this size. In the transfer learning process, the pre-trained 

layers were frozen to retain the generic features learned during initial training. Only the top 

layers were modified for the specific task of regression, predicting the calcium score from the 

echocardiographic images. 

In the experiments, both models were evaluated with and without Global Average Pooling 

(GAP). The inclusion of GAP reduces spatial dimensions by averaging the feature maps, 

providing a condensed representation before the fully connected layers [70]. 

MobileNetV2 with GAP yielded a test loss of 1145.031 and an MAE of 1033.22. Without 

GAP, the test loss slightly increased to 1176.978, but the MAE improved to 926.57, suggesting 

that preserving spatial information led to better predictions. 
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For ResNet50, the model with GAP produced a test loss of 1027.619 and an MAE of 

942.50. Without GAP, the test loss increased to 1780.088, though the MAE improved to 875.06. 

This suggests that while GAP improved the overall error metrics, the model without GAP may 

have been more effective at predicting the calcium score for individual cases. 

In both models, transfer learning demonstrated the ability to efficiently extract useful 

features from the images, leveraging pre-trained knowledge while reducing training times. The 

results indicate that the version of ResNet50 with GAP was most effective in minimizing the 

overall loss, while the MobileNetV2 model without GAP performed better in terms of MAE, 

meaning it was more accurate on individual predictions. Further improvement can be achieved 

by fine-tuning the pre-trained layers, which will be explored in the next section. This would 

allow the models to adapt more closely to the specific patterns present in the echocardiographic 

data, likely enhancing their predictive accuracy. 

 

Fine-tuning 

Following the transfer learning experiments conducted with MobileNetV2 and ResNet50, we 

explored fine-tuning these models to further improve the performance of our calcium score 

prediction. Fine-tuning involves unfreezing certain layers of the pre-trained model and 

retraining them along with the new task-specific layers [71]. By allowing the previously frozen 

layers to adjust to the specific characteristics of echocardiographic images, we aimed to enhance 

the model's ability to capture the subtle patterns of calcification present in the dataset. 

 

Fine-Tuning MobileNetV2 

The first step was to fine-tune MobileNetV2, which had shown promising results in the transfer 

learning phase but still exhibited a relatively high-test MAE. In this process, we unfroze the last 

few convolutional layers of the pre-trained MobileNetV2 and trained them alongside the top 

layers specific to our calcium score prediction task. We set the learning rate to a lower value 

(1e-5) to avoid disrupting the pre-trained weights significantly while allowing the model to 

fine-tune itself to the specific features in the echocardiographic images. 

The results after fine-tuning showed a marked improvement. The test loss decreased to 

4293629.5, and the MAE was reduced to 1833.48, a substantial improvement from the initial 

transfer learning results. This suggests that fine-tuning enabled the model to better capture 

calcium-related features in the images, improving predictive performance. 
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The following plot (Figure 17) shows the training and validation loss for MobileNetV2 

during fine-tuning. It can be observed that the validation loss decreases steadily, indicating that 

the model continues to improve in its ability to generalize to unseen data. The mean absolute 

error plot similarly shows a declining trend, which supports the conclusion that fine-tuning 

contributed positively to the model's performance. 

 

 

Figure 16 - MobileNetV2 Fine-Tuned Loss and MAE 

 

Fine-Tuning ResNet50 

We applied a similar fine-tuning process to ResNet50, which had outperformed MobileNetV2 

in the transfer learning stage. As with MobileNetV2, we unfroze the last few layers of ResNet50 

and trained them with the same lower learning rate. Given the more complex architecture of 

ResNet50, we expected the model to benefit even more from fine-tuning, especially considering 

that the echocardiographic images might contain intricate features requiring deeper feature 

extraction capabilities. 

The fine-tuning of ResNet50 resulted in even more significant improvements. The test loss 

dropped to 2596564.75, and the MAE was reduced to 1356.56. This demonstrates that 

ResNet50, with its deeper architecture and enhanced feature extraction capabilities, benefited 

greatly from the fine-tuning process. The results indicate that ResNet50 is better suited for this 

task, particularly when fine-tuned, as it provides superior performance over MobileNetV2 in 

terms of both loss and error metrics. 
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The training and validation loss for ResNet50 (Figure 18) shows a clear downward trend, 

with the validation loss continuing to decrease over time. Similarly, the mean absolute error 

shows a notable reduction, highlighting the benefits of fine-tuning this architecture. The 

comparison between MobileNetV2 and ResNet50 in both plots further emphasizes ResNet50's 

superior performance in fine-tuning. 

 

 

Figure 17 - ResNet50 Fine-Tuned Loss AND MAE 

 

Both MobileNetV2 and ResNet50 showed considerable improvements after fine-tuning. 

However, the results clearly indicate that ResNet50 was able to extract more relevant features 

from the echocardiographic images, leading to better overall performance. This can be 

attributed to ResNet50's deeper architecture, which is better equipped to capture complex 

features that are likely indicative of calcification patterns in the images. 

While both models demonstrated improved performance with fine-tuning, the difference in 

MAE suggests that deeper architectures like ResNet50 are more suitable for the task of calcium 

score prediction. This finding is consistent with the notion that deeper networks are more 

capable of capturing intricate details in medical imaging, especially in cases where subtle image 

features can have a significant impact on the prediction. 
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Fine-tuning the MobileNetV2 and ResNet50 models provided valuable improvements in 

calcium score prediction accuracy. While both models benefited from this process, ResNet50 

emerged as the superior architecture in this context, achieving a lower test loss and MAE. The 

fine-tuning process allowed both models to better adapt to the nuances of echocardiographic 

images, leading to more accurate predictions of calcium scores. 

Table 4 summarizes the performance of all the CNN models evaluated, including both 

initial experiments and those involving transfer learning and fine-tuning. 

 

Table 4 - Summary of CNN Model Performance for Calcium Score Prediction 

 

Model 
Image 

Size 
Test Loss MAE Comments 

Initial CNN Model 128x128 1021.416 726.71 Overfitting observed 

CNN with Dropout  

& Regularization 
128x128 750.287 846.43 

Improved generalization, 

but higher MAE 

CNN with Larger 

Image Size 
256x256 757.837 840.66 

Minimal improvement 

despite larger image size 

MobileNetV2  

(with GAP) 
224x224 1145.031 1033.22 

Standard transfer learning 

performance 

MobileNetV2  

(without GAP) 
224x224 1176.978 926.57 

Better MAE but slightly 

worse overall loss 

ResNet50  

(with GAP) 
 

224x224 1027.619 942.50 
Lower test loss, higher 

MAE 

ResNet50  

(without GAP) 
224x224 1780.088 875.06 

Better MAE, worse overall 

test loss 

Fine-Tuned 

MobileNetV2 
224x224 4293629.5 1833.48 

Marked improvement after 

fine-tuning 

Fine-Tuned  

ResNet50 
224x224 2596564.75 1356.56 

Best performance, lower 

test loss and MAE 
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In comparison with the heuristic and machine learning models, the CNN approach 

represented a significant contribution by leveraging image data for calcium score prediction. 

While the initial CNN model showed signs of overfitting, the experimentation with dropout, 

regularization, and transfer learning ultimately led to improvements in prediction accuracy, 

with fine-tuned models achieving the best results. This approach offered a more direct use of 

echocardiographic images, setting it apart from the simpler models that relied only on pixel 

counts. 

 

Patient Screening for Calcification Severity 

Beyond individual model performance, the CNN models developed in this study hold potential 

for practical clinical application in the screening of patients based on the severity of their aortic 

valve calcification. By automating calcium score predictions, these models could efficiently 

identify patients with significant calcifications who may require further diagnostic evaluation 

or intervention. For instance, patients flagged by the CNN as having higher calcium scores 

could be prioritized for CT scans or other imaging modalities, allowing clinicians to focus 

resources on high-risk cases. This type of model could be particularly beneficial in streamlining 

the clinical workflow, enabling early detection and potentially reducing the overall burden on 

healthcare systems.  
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CHAPTER 5 

Conclusion 

This dissertation aimed to achieve two main objectives: detecting and extracting the image 

region corresponding to the aortic valve and the quantification of calcium deposits within the 

segmented valve. Through a combination of deep learning models, including the YOLOv8 

object detection framework and CNNs, the research demonstrated the feasibility of automating 

the analysis of echocardiographic images for calcification detection and quantification. 

In addressing RQ1, the YOLOv8n model demonstrated strong performance in detecting 

the aortic valve, achieving a mAP@50 of 92.88%, a precision of 99.94%, and a recall of 

81.82%. These results highlight the model’s effectiveness in identifying the aortic valve across 

diverse echocardiographic images. However, the mAP@50-95 score of 43.55% indicates that 

there is still potential for improvement, particularly in handling more stringent intersection-

over-union (IoU) thresholds. 

Regarding RQ2, the heuristic method developed for calcium scoring provided a fast and 

computationally efficient way to estimate the score by summing white pixels in binarized 

images that correspond to calcified regions. This method was particularly effective for quick 

assessments in clinical settings and demonstrated a Pearson correlation of 0.75 with calcium 

scores derived from CT scans. However, the method showed variability for higher calcium 

scores, which can be attributed to noise and limitations in accurately quantifying extensive 

calcifications. 

A gender-based analysis further revealed that male patients tended to exhibit higher 

calcium scores compared to female patients. This is consistent with prior cardiovascular 

research, reinforcing the notion that men are more prone to severe calcific aortic valve disease.  

CNN models were also applied for predicting calcium scores from multiple 

echocardiographic images per patient. While the multi-image input architecture provided 

reasonable results, overfitting was observed, leading to the introduction of regularization 

techniques such as dropout and L2 regularization. The refined models achieved a test loss of 

750.287 and a MAE of 846.43, although additional improvements were possible with more 

sophisticated approaches. 

The use of transfer learning with pre-trained models, such as MobileNetV2 and 

ResNet50, demonstrated the potential of leveraging existing models for feature extraction in 

medical imaging. ResNet50 performed well, achieving a test loss of 2596564.75 and an MAE 

of 1356.56 after fine-tuning. Fine-tuning these models allowed them to adapt more closely to 
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the nuances of echocardiographic data, resulting in improved calcium score predictions. This 

finding underscores the effectiveness of transfer learning for this type of task. 

Additionally, the developed calcium quantification models have the potential to 

contribute to patient screening by identifying individuals with severe calcification, which is an 

indicator of potential aortic stenosis. By reliably flagging patients with significant calcification, 

this screening could assist clinicians in prioritizing those who need urgent evaluation and 

treatment. Early identification of patients with severe calcification could enable timely 

interventions, reducing the risk of complications such as aortic valve dysfunction. This 

approach offers a radiation-free alternative to traditional CT-based imaging, improving patient 

safety, streamlining clinical workflows, and enhancing the ability to monitor at-risk patients 

more efficiently, ultimately leading to better treatment outcomes. 

The methods developed in this thesis offer a foundation for automating calcium score 

predictions, which could assist clinicians in making more informed decisions about treatment, 

especially when combined with established diagnostic tools like CT scans. Furthermore, the 

gender-based differences in calcium scores observed in the study underscore the importance of 

considering these factors in both clinical research and practice. The lower scores observed in 

women suggest that alternative approaches may be necessary to ensure accurate detection and 

risk stratification in female patients. 

 

5.1. Limitations 

While the research achieved its objectives, several limitations must be acknowledged. First, the 

dataset used for both training and validation was relatively small, which may have limited the 

ability of more complex models, such as Random Forest or Gradient Boosting, to generalize 

effectively. Expanding the dataset would likely lead to better performance across all models, 

especially for deep learning architectures. 

Another limitation relates to overfitting observed in some of the initial CNN models. 

Although regularization techniques like dropout and L2 regularization were applied, further 

experimentation with alternative architectures, such as more complex network designs or 

ensemble methods, may be necessary to effectively mitigate overfitting and improve the 

model's generalization capabilities. 

Additionally, the reliance on manually labeled data introduces some variability, as 

errors or biases in the annotations can affect model performance. While the calcium scores 
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derived from CT scans were used as ground truth, differences between CT and 

echocardiography modalities may also affect the reliability of the comparison. 

 

5.2. Future Work 

There are several promising directions for future work. Expanding the dataset to include more 

patients and more diverse calcification patterns will likely improve the generalization of the 

models. Also, incorporating patient screening based on the presence or severity of calcium 

deposits could enhance the clinical application of these models. For example, the models could 

be fine-tuned to prioritize patients with higher calcium scores, providing an automated triaging 

system for clinicians to identify high-risk individuals. 

Moreover, exploring more complex architectures such as U-Net or attention-based 

mechanisms could significantly enhance segmentation accuracy, especially in cases of diffuse 

or subtle calcifications. These models could also be optimized to better handle variations in 

calcification severity, improving their precision and applicability across different patient 

demographics. 

Experimenting with advanced CNN architectures or ensemble methods may help 

improve the precision of calcium score predictions. Experimenting with different image 

resolution settings, augmentation techniques, and deeper network layers could improve the 

model’s ability to capture subtle calcification patterns. 

To maximize the real-world clinical impact, future research should also consider 

integrating these models into existing diagnostic workflows. Developing user-friendly software 

tools or embedding the models into echocardiography imaging systems could facilitate their 

adoption in clinical practice and streamline the diagnostic process. Additionally, implementing 

patient screening as part of this process could assist clinicians in identifying which patients 

require closer monitoring or more frequent follow-ups based on the model’s predictions of 

calcification severity. 

 

5.3. Final Remarks 

In conclusion, this research successfully addressed both research questions, demonstrating the 

potential of deep learning models, particularly YOLOv8 and CNNs, for automating the 

detection and quantification of calcifications in echocardiographic images. While challenges 

such as overfitting and limited dataset size remain, the results offer a promising foundation for 

future improvements in cardiovascular imaging.  
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