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despite the inclusion of quantum effects, and akin to the classical scenario, these attempts
to destroy the black hole are doomed to be unsuccessful. Particles carrying the maximum
angular momentum and still falling into an extremal quantum BTZ black hole can, at most,
leave it extremal. Nevertheless, we found numerical evidence that large backreaction of the
quantum fields tends to disfavor violations of cosmic censorship.
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1 Introduction

Black holes (BHs) in General Relativity, and in many extensions thereof, harbor singularities.
These are regions of spacetime where the Einstein equations break down, signaled by the
divergence of physically meaningful quantities, such as curvature invariants. To prevent such
occurrences from shattering the deterministic picture of classical evolution in gravitational
collapse, for which quantum physics is in principle uncalled for, Penrose put forward the
weak cosmic censorship conjecture (wCCC) [1]. This hypothesis posits that —under mild
assumptions, like physically reasonable matter and genericity of initial conditions— a regular
configuration cannot develop such singularities under gravitational collapse with the classical
equations of motion, unless they are veiled by event horizons.1 The wCCC is, in fact, a
cornerstone of several major mathematical developments in General Relativity, such as Penrose
inequalities [2, 3] and Hawking’s area theorem [4]. Nevertheless, it remains a conjecture to
this date. See [5] for a careful review and discussion on the subject, albeit somewhat outdated
in its references. See also [6–8] for more recent related reviews.

The wCCC has been a subject of intense scrutiny. A violation of this hypothesis, by
demonstrating the formation of naked singularities from generic regular initial data, would
herald the breakdown of predictability within classical physics, since a satisfactory description
of singularities is beyond the regime of applicability of the Einstein equations.2 The literature

1Singularities not hidden behind an event horizon are referred to as naked singularities.
2Singularities developing in modified theories of gravity obviously suffer from the same hindrance, but the

main objective of many such theories is to avoid singularities altogether.
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on the subject is vast. While a proof in favor of the wCCC is still lacking, many attempts
have been made to find explicit violations, but no conclusive, physically reasonable and
generic, counter-example has been found in four spacetime dimensions, so far.

It is natural to wonder what, if any, is the impact that quantum corrections on the
black hole spacetime can have on the status of the wCCC. It seems particularly relevant to
understand whether quantum effects strengthen or instead disfavor the censorship hypothesis.
That is the subject of the present paper. This study is made possible by a recent advancement
in our understanding of quantum-corrected BHs reported in [9], where an exact solution of
a fully quantum backreacted BH was described. For technical reasons, such a solution is
known only in three spacetime dimensions so far. Nevertheless, it offers a unique opportunity
to assess the stability of quantum BHs. Here, we shall do so by testing the wCCC with a
thought experiment originally envisaged by Wald, which we will now review, alongside with
some of the most significant developments in this rich topic since then.

There is a fifty-year long history of tests of the wCCC, starting with initial work by
Penrose [2] and quickly followed by the influential paper by Wald [10]. Wald ventured to
destroy the event horizon of an extremal Kerr-Newman BH spacetime3 by dropping test
particles into it, in an effort to overspin, or overcharge, the BH. It was proven that such
challenges to the wCCC are doomed to fail in the strict test particle limit.

Later attempts to violate the wCCC in the same vein, still adopting test particles falling
into extremal BHs, considered background geometries in spacetime dimensions different from
four [13–16] and/or with the inclusion of a cosmological constant [14, 15, 17, 18]. The subject
took an intriguing turn when counter-examples to the wCCC were proposed by starting with
near-extremal BH configurations on which test particles were made to impinge, suggesting
that small regions in the space of initial data could lead to violations of the conjecture
(see [19–24] and [16]). Some studies also proposed wCCC violation can occur by quantum
tunneling [25, 26]. All these hinted nonobservances of weak cosmic censorship with test
particles seem to be invalidated once backreaction effects are taken into account [27–34].
This possibility was finally confirmed by Sorce and Wald [35], who proved that the wCCC
is satisfied in all attempts to destroy a BH event horizon by allowing physically reasonable
matter to fall in, as long as backreaction effects (of quadratic order in the test particle
parameters) are properly folded in the analysis.

Studies of wCCC violation with test fields —as opposed to test particles— have also been
conducted, with similar outcomes [18, 24, 36–39]. Also in this case, any counter-examples
reported are dismissed if backreaction effects are accordingly incorporated [40–42]. The
gravitational collapse of thin matter shells onto BHs [43–45] has been considered as an
alternative to circumvent the limitations of the test-particle or test-field approximation,
yielding exact dynamical solutions of the field equations, although representing an idealized

3The Kerr-Newman family of geometries [11] is the most general asymptotically flat, stationary eletro-
vacuum solution of Einstein-Maxwell theory in four spacetime dimensions, possessing both angular momentum
and electric charge, in addition to mass [12]. When the (sum of the squares of the) spin and charge are bounded
from above by the (squared) mass, the spacetime features an event horizon which encloses the singularity, and
such solutions are said to be underextremal, or extremal, if the bound is saturated. Otherwise, if the spin or
charge are too large compared to the mass, the geometry is referred to as overextremal and it corresponds to
a naked singularity.
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situation in which matter is compressed on a infinitely thin surface. The direct gravitational
collapse of matter clouds [46–52] or of scalar fields [53, 54] into naked singularities has also
been a recurrent theme in the weak cosmic censorship challenge for the past forty-five years.4
However, all of these proposed violations of the wCCC involve one form or another of unstable
fine-tuning (for instance, spherical symmetry or self-similarity), and some of the matter
models considered in the first class of studies are regarded as physically unreasonable.

Nevertheless, in specific contexts naked singularities can in fact develop generically
from regular initial data. One robust class in which this has been observed with numerical
simulations involves the time evolution of black strings [55], black rings [56], ultraspinning
BHs [57] or glancing BH collisions [58–60]. All these examples of cosmic censorship violation
rely essentially on the Gregory-Laflamme instability [61] and, as such, only arise in spacetime
dimensions larger than four.5 In any case, ref. [8] argued that these few generic examples of
mechanisms producing transient naked singularities from regular initial configurations entail
a fairly mild loss of predictivity within classical physics. The only other standing claims
of wCCC violation with a generic character we are aware of were developed in holographic
models and are specific to asymptotically AdS spacetimes [65, 66], being entirely avoided if
another apparently unrelated conjecture —the weak gravity conjecture [67]— holds.

We now turn our attention to the object of our study, namely the quantum backreacted
BH of ref. [9], on which we perform Wald’s Gedanken experiment [10].6 This spacetime
was derived in the context of a braneworld scenario, taking the rotating AdS4 C-metric as
the exact bulk solution. The resulting braneworld geometry is a 3D BH that generalizes
the well-known rotating BTZ spacetime [69, 70], and for this reason has been refered to
as the qBTZ black hole. When the brane is pushed to the boundary of AdS4, its tension
vanishes and one recovers the BTZ metric. This is a decoupling limit, in the sense that
the quantum fields do not backreact on the spacetime geometry. Otherwise, the geometry
depends on a supplementary parameter, in addition to mass and angular momentum, which
is associated to the backreaction of the quantum conformal fields supporting the solution.
These three parameters must satisfy a certain inequality for the geometry to feature an event
horizon covering the central curvature singularity. When the inequality is saturated, the
corresponding BH has vanishing temperature and, similarly to the Kerr-Newman case, is
said to be extremal. We will test the validity of the wCCC —applied to the qBTZ black
hole— with inspiralling test particles on the braneworld, in an attempt to overextremize the
quantum BH and so destroy its event horizon. Naturally, when the brane tension is taken to
vanish we reproduce the results of [14] derived for the classical BTZ background.

Before moving on to the technical computations, we leave a cautionary remark: this and
similar attempts to destroy BH horizons with test particles do not necessarily imply violation
of the wCCC in case they are successful. Such conclusion rests on the assumption that the
family of spacetimes considered, whose extremal or under-extremal representatives comprise
BHs, but with over-extremal configurations yielding naked singularities, is the unique end

4Refer to the reviews [6, 7] for a more complete list of references on this topic.
5See also refs. [62, 63] and [64] for recent suggestive proposals of wCCC violation.
6Attempts to destroy the event horizon of a quantum corrected black hole were similarly considered in

ref. [68], but with a different black hole geometry which is nonsingular, so it does not pose any danger towards
the wCCC.
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state of the process. This was already stressed in Wald’s original paper [10]. For Einstein-
Maxwell theory, the only stationary vacuum BH solutions belong to the Kerr-Newman family.
However, in our setup there is no evidence supporting the idea that the qBTZ geometry
is the unique stationary fully backreacted BH solution. A process involving the capture
of test particles by a qBTZ black hole and leading to a final configuration whose charges
would correspond to a naked singularity might just as well signal development of an unstable
configuration that might transition (by radiating away more angular momentum than mass)
into a final stable and under-extremal qBTZ black hole. One should also keep in mind that
the analysis we perform here follows along the lines of [10] and therefore neglects self-force
and finite size effects, as well as gravitational radiation. In the event that a parametrically
small violation of the wCCC were observed, these effects should necessarily be considered.

The rest of the paper is organized as follows. In section 2 we present the background
metric we adopt to test the wCCC and discuss the conditions for the geometry to be extremal,
as well as some other restrictions on its parameters. Section 3 is devoted to the actual test of
the wCCC, where we provide both perturbative and numerical analyses. Conclusions and
some further discussion are offered in section 4.

2 The backreacted (quantum) BTZ metric

An exact construction of a BH localized on a brane was initially presented in [71]. By
exploiting the AdS4/CFT3 duality, the authors of [72] later interpreted such solution as
a quantum BTZ black hole that incorporates the backreaction of the conformal fields on
the brane. A deeper analysis of the backreaction effect and the effective three-dimensional
gravitational theory on the brane has been developed in [9], together with the construction
of the rotating generalization. These studies opened up the venue for further exploration
of quantum BHs in different setups [73, 74] and their thermodynamics [75].

In this paper, since we aim to push such a quantum BH beyond extremality, we will
focus on the rotating metric and use the notation introduced in [9] for the rotating qBTZ
solution. Moreover, since we will be working with the backreacted 3D metric, we use G3
to indicate the 3D Newton constant in the effective 3D theory. See [76] for more details
about the induced effective theory on the brane.

2.1 Metric of the rotating qBTZ

The stationary AdS4 C-metric [77] from which the metric of the rotating qBTZ is obtained
reads [9]

ds2 = ℓ2

(ℓ + rx)2

[
− HC(r)

Σ(r, x)
(
dt + ax2dϕ

)2
+ Σ(r, x)

HC(r) dr2

+ r2
(

Σ(r, x)
G(x) dx2 + G(x)

Σ(r, x)

(
dϕ − a

r2 dt

)2
)]

,

(2.1)
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where ℓ−1 is the inverse of the tension of the brane, which is localized at x = 0, while a is
related to the BH spin. The metric functions are

HC(r) = r2
( 1

ℓ2
4
− 1

ℓ2

)
+ κ − µℓ

r
+ a2

r2 , (2.2a)

G(x) = 1 − κx2 − µx3 + a2
( 1

ℓ2
4
− 1

ℓ2

)
x4 , (2.2b)

Σ(r, x) = 1 + a2x2

r2 . (2.2c)

κ is a discrete parameter taking the values κ = −1, 0, 1, while µ is classically related to the
BH mass in four dimensions. Additionally, G(x) being a fourth-order polynomial, we will
consider, as usual, a configuration such that it has at least one positive root, the smallest
of which is defined as x1.

By projecting eq. (2.1) onto the brane at x = 0, one obtains the metric of the rotating
qBTZ (see ref. [9] for details on the subtleties involved in this procedure)

ds2 = gtt dt2 + gϕϕ dϕ2 + 2gtϕ dt dϕ + gr̂r̂ dr̂2 , (2.3)

where t and ϕ correspond to the physical coordinates t̄ and ϕ̄ in [9], while r̂ corresponds to
the original r coordinate in [9]. The metric functions are explicitly given by

gtt = −
(

r2

ℓ2
3
− 8G3M − µℓ∆2

r̂

)
, (2.4a)

gϕϕ = r2 + ℓ2
3

µℓã2∆2

r̂
, (2.4b)

gtϕ = −4G3J

(
1 + ℓ

r̂x1

)
, (2.4c)

gr̂r̂ = 1
H(r) =

[
r2

ℓ2
3
− 8G3M + (4G3J)2

r2 − µℓ(1 − ã2)2 ∆4 r̂

r2

]−1

, (2.4d)

where ℓ3 is the induced AdS3 length on the brane, related to the AdS4 length scale and the
brane tension by the holographic relation ℓ−2

3 = ℓ−2
4 − ℓ−2.7 The physical meaning of the

other parameters is inherited from the four-dimensional solution and will be explained below.
First, we note that, in the three-dimensional metric, ℓ controls the strength of the

backreaction of quantum corrections. Indeed, in the decoupling limit ℓ → 0, we recover the
classical BTZ metric. Such a limit corresponds to pushing the brane to the asymptotic AdS
boundary in the classical four-dimensional bulk. Note, however, that one actually recovers
the rotating BTZ solution only in the case κ = −1.

The line element written above, eq. (2.3), still mixes the physical r and the unphysical r̂

radial coordinates. From now on, we will use exclusively the physical r coordinate (see [9] for
further details about the different coordinates), defined in terms of r̂ as

r2 = (1 − ã2)∆2r̂2 + r2
S , (2.5)

7Consistency of this relation demands that ℓ−2
4 > ℓ−2. If one interprets ℓ−1 as the acceleration parameter

of the AdS C-metric, this is the so-called slow-acceleration limit [78], where the acceleration horizon is absent.
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where ã is the same combination of parameters introduced in [9]

ã2 ≡ a2x4
1

( 1
ℓ2

4
− 1

ℓ2

)
= a2x4

1
ℓ2

3
, (2.6)

while ∆ and rS are functions of x1 and ã, defined as

∆ = 2x1
3 − κx2

1 − ã2 , (2.7a)

rS = ℓ3
2ã
√

2 − κx2
1

3 − κx2
1 − ã2 . (2.7b)

The only other parameter appearing in (2.3) is µ. From the three-dimensional braneworld
perspective it parametrizes the corrections due to the backreaction of quantum conformal
fields. As in ref. [9], µ implicitly defines the smallest positive root x1 of eq. (2.2b):

µ = 1 − κx2
1 + ã2

x3
1

. (2.8)

Finally, the mass M and the angular momentum J of the qBTZ solution read:

M = 1
2G3

−κx2
1 + ã2(4 − κx2

1)
(3 − κx2

1 − ã2)2 , (2.9a)

J = ℓ3
G3

ã(1 − κx2
1 + ã2)

(3 − κx2
1 − ã2)2 . (2.9b)

In the following, we will work with the metric functions, expressed in terms of the
parameters x1 and ã (see appendix A). We will restrict to ã < 1 in order to avoid naked
closed timelike curves (see ref. [9]). We will consider both the κ = ±1 cases (the case κ = 0
is not considered separately, as it is automatically recovered by taking the limit x1 → 0) and,
without loss of generality, we will restrict to J > 0 configurations.

2.2 Horizons and extremality condition

As described in the introduction, our aim is to assess whether a test particle falling into
an extremal rotating qBTZ black hole can destroy its event horizon, thereby exposing
the curvature singularity within. This section, therefore, is dedicated to the study of the
conditions that define extremal solutions.

As usual, the radial location of the horizon is given by the largest root of the metric
component gr̂r̂ = H(r). Inspection of eq. (2.4d) shows that H(r) has a minimum in the
positive r-axis. Additionally, due to the coordinate redefinition (2.5), r̂ = 0 gets mapped to
r = rS and so we have to cut the r-axis at rS . The radius at which H attains its minimum,
rmin, is anyway always in the interval r ∈ [rS ,∞). The presence or absence of horizons
depends, therefore, on the sign of H(rmin):

• If H(rmin) < 0, the metric possesses a non-degenerate horizon;

• If H(rmin) = 0, the horizon is degenerate and the BH is extremal;

– 6 –
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Two horizons

Extremal

Naked Singularity

r

H
(r
)

(a) κ = −1

Two horizons

Extremal

Naked Singularity

r

H
(r
)

(b) κ = 1

Figure 1. Qualitative behavior of the metric function H(r) for κ = ±1. Depending on the values of
the parameters, one obtains a non-degenerate horizon (solid blue lines), an extremal horizon (dashed
orange lines) or a naked-singularity (dotted green lines).

• If H(rmin) > 0, horizons are absent and the spacetime features a naked singularity.
Qualitative plots of the behavior of H(r) are shown in figure 1 for κ = ±1.

The extremality condition is obtained when the horizon coincides with the minimum of
the metric function, namely when the conditions H(rH) = 0 and H ′(rH) = 0 are satisfied
simultaneously (prime will refer to derivatives with respect to r). We will encompass both
the κ = 1 and κ = −1 cases in our analysis, and it is convenient to work with the function
Q(r) ≡ r2H(r):

Q(r) = r4

ℓ2
3
− 8G3Mr2 + (4G3J)2 − µℓ(1 − ã2)3/2∆3

√
r2 − r2

S . (2.10)

The extremality condition, then, corresponds to requiring Q(rH) = Q′(rH) = 0. This yields
the following system of equations:

Q(rH) = r4
H

ℓ2
3
− 8G3Mr2

H + (4G3J)2 − µℓ(1 − ã2)3/2∆3
√

r2
H − r2

S = 0 , (2.11a)

Q′(rH) = 4r2
H

ℓ2
3

− 16G3M − µℓ (1 − ã2)3/2∆3√
r2

H − r2
S

= 0 . (2.11b)

Solving the above for rH and µ, and using eq. (2.9) to express the results as functions
of the parameters ã and x1, yields

r2
H = 2

3ℓ2
3

(1 − ã2)
√

12ã2 + x4
1(

3 − κx2
1 − ã2)2 − x2

1
(
5ã2κ + κ

)
− 12ã2(

3 − κx2
1 − ã2)2

 , (2.12a)

µν = 1
3

√
2
3

(√
12ã2

x4
1

+ 1 + 2κ

)√√√√√12ã2

x4
1

+ 1 − κ , (2.12b)

where we introduced the rescaled backreaction parameter,

ν ≡ ℓ/ℓ3 . (2.13)

Clearly, the zero-backreaction limit ℓ → 0 corresponds to ν → 0.

– 7 –
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κ = -1, ν = 0.01

κ = 1, ν = 0.01

κ = -1, ν = 0.1

κ = 1, ν = 0.1

κ = -1, ν = 0.2

κ = 1, ν = 0.2

κ = -1, ν = 0.3

κ = 1, ν = 0.3

κ = -1, ν = 0.4

κ = 1, ν = 0.4

κ = -1, ν = 0.5

κ = 1, ν = 0.5

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

83J/ℓ3

8
3
M

Figure 2. M vs J diagram. The gray solid line represents the upper bound on the masses of the
qBTZ configurations. The dotted gray diagonal represents the classical BTZ extremality condition
M = J/ℓ3. The solid red line corresponds to the κ = 0 line, separating solutions with κ = 1 (below)
from those with κ = −1 (above). The blue lines denote extremal solutions: solid lines correspond
to extremal configurations with κ = −1, while dashed lines to κ = 1 ones. The dashed line for the
ν = 0.01 case is shown, but not visible, since it is very close to the horizontal axis.

Having the two expressions (2.12a) and (2.12b), we can now plot the corresponding
extremality condition in the (M, J) parameter space (see figure 2). Configurations falling on
the left side of the blue lines are non-degenerate BHs, while those living on the right side
correspond to naked singularities. The diagram M vs J in ref. [9] reported only the classical
BTZ extremality line and the curve corresponding to the upper bound on the mass implied
by the holographic construction of the qBTZ solution (grey dotted and solid lines in figure 2,
respectively). Here, we have complemented this diagram by also adding the curve (red solid
line in figure 2) along which the two families of solutions with κ = −1 and κ = 1 smoothly
join. This curve is obtained by setting κ = 0 in eqs. (2.9a) and (2.9b).

A good check on the above results is to study their vanishing backreaction limit ν → 0, for
which the qBTZ extremality conditions should reduce to the classical BTZ ones, J = Mℓ3 and
r2

H = 4ℓ2
3G3M (see appendix B). These limits are realized very differently for κ = 1 and κ = −1.

For κ = 1, we must require ã = 0, and then eq. (2.12a) reduces to zero. This can be
understood as the fact that M given by eq. (2.12a) can only be positive8 when x1 = 0, so
r2

H = 4ℓ2
3G3M is still satisfied, but with M = 0. We also note that, in the classical case,

M = 0 represents the transition from positive-mass BHs to negative-mass naked singularities.

8If we restrict to positive angular momentum, the classical extremality condition implies that also M must
be positive.
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For κ = −1, we must require x1 =
√

2ã. Indeed, we straightforwardly get r2
H = 4ℓ2

3G3M

from eq. (2.12a), using eq. (2.9a).
The limit of zero backreaction can also be understood visually, with the help of figure 2.

The blue lines (quantum extremal configurations) get closer and closer to the dotted diagonal
line (the classical extremality condition) when ν approaches zero. For κ = 0, the ν → 0
limit is realized by sliding the point on the red curve where the two extremal lines (for
κ = ±1) join, in the direction of decreasing ν. It is then apparent that the no-backreaction
limit is attained when the dashed blue lines (for κ = +1) collapse at J = 0 and M = 0,
which in turn implies ã = 0 and x1 = 0.

2.3 Further constraints on the parameters

An important ingredient before testing wCCC is to understand and analyze in detail the
parameter space related to the configurations of interest. In the following, we will provide
additional constraints on the parameters ã and x1, which supplement those analyzed in [9].

On the κ = −1 branch, eq. (2.8) reduces to µ = x−3
1 (1 + ã2 + x2

1), which is a manifestly
positive quantity. In order for the extremality condition (2.12b) to hold, we must impose

√
12ã2

x4
1

+ 1 − 2 > 0 ⇒ x1 <
√

2ã . (2.14)

Therefore, the parameter intervals of interest are 0 ≤ x1 <
√

2ã and 0 < ã < 1, as already
mentioned below eq. (2.9). In the κ = −1 case, these constraints also cast an upper bound
on the backreaction parameter ν, which can be found by inverting eq. (2.12b):

ν =

1
3

√
2
3

(√
12ã2

x4
1

+ 1 − 2
)√√√√√12ã2

x4
1

+ 1 + 1

 x3
1

1 − κx2
1 + ã2 . (2.15)

This function is monotonically decreasing in x1, so its maximum at fixed ã is attained at x1 = 0,
from which we get ν = 4ã3/2/

[
33/4(1 + ã2)

]
. The latter is, instead, a monotonically increasing

function in ã, whose maximum occurs at ã = 1, from which we get ν < 2/33/4 ≃ 0.8774.
In the κ = 1 case, as long as we restrict to positive values of the angular momen-

tum J (2.9b), we have again an upper bound on x1. Indeed 1 − x2
1 + ã2 ≥ 0 implies

0 ≤ x1 ≤
√

1 + ã2. Then µ > 0 and the extremality condition (2.12b) has automatically the
right sign on both sides. As for ν, it is not upper bounded anymore. For large values of ν,
i.e., ν → ∞, the extremality condition (2.12b) reduces to 1 − x2

1 + ã2 = 0, namely to the line
x1 =

√
1 + ã2.

Finally, while for κ = −1 the mass (2.9a) is always positive, for κ = 1 the mass M can
be either positive or negative. In the classical BTZ geometry, negative mass states (above a
certain minimum to be discussed below) correspond to naked singularities. Here, instead,
the quantum effects are able to generate horizons despite M being negative. From eq. (2.9a),
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negative mass states are obtained when x2
1 > 4ã2/(1 + ã2). Therefore, we have

0 ≤x2
1 <

4ã2

1 + ã2 for positive M ,

4ã2

1 + ã2 < x2
1 ≤ 1 + ã2 for negative M .

(2.16)

If x2
1 = 4ã2/(1 + ã2), M = 0, but J is not zero. This configuration can also have two horizons

and a related extremal configuration. This is due entirely to the quantum corrections, since a
classical BTZ configuration with M = 0 corresponds to a naked singularity.

There is another particular case, represented by the state with the least mass. This is
obtained with x2

1 = 1 + ã2, which gives M = −1/(8G3). At extremality, from eq. (2.12b), we
get ã = 0 (and also J = 0). Therefore, the horizon radius of the extremal configuration (2.12a)
is zero. This is analogous to the M = 0 classical state.

3 Testing Weak Cosmic Censorship

3.1 Particle motion in the qBTZ metric and maximum angular momentum

To test the wCCC, we will consider particles on geodesics falling into the extremal, rotating
qBTZ black hole. However, those with sufficiently large angular momentum will not reach
the BH event horizon due to the high centrifugal barrier. Therefore, it is crucial to determine
the maximum value of the angular momentum allowing for particle capture.

To that end, consider the Lagrangian of a point-like particle

L = 1
2gµν ẋµẋν = 1

2
[
gtt ṫ2 + gϕϕ ϕ̇2 + 2gtϕ ṫϕ̇ + grr ṙ2

]
. (3.1)

Invariance under time translation and rotation of the metric (2.3) implies the existence of
two conserved quantities, associated with the conjugate momenta

pt = ∂ṫL = gttṫ + gtϕϕ̇ = −E , (3.2a)
pϕ = ∂ϕ̇L = gϕϕϕ̇ + gtϕṫ = L . (3.2b)

E can be interpreted as the energy of the particle, while L represents its angular momentum
(per unit mass). Inverting the above relations gives

ṫ = gtϕL + gϕϕE

g2
tϕ − gttgϕϕ

, (3.3a)

ϕ̇ = −gttL + gtϕE

g2
tϕ − gttgϕϕ

. (3.3b)

To compute the maximum value of L allowing particles to be absorbed by the BH,
we follow Wald [10] and simply impose the geodesics to be future directed, namely ṫ > 0,
which implies, from eq. (3.3a),

gtϕL + gϕϕE > 0 ⇒ L < −gϕϕ

gtϕ
E . (3.4)
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If we want the particle to be captured by the BH, this has to hold true everywhere
outside the event horizon, r = rH. Precisely at the event horizon the upper bound on the
particle’s angular momentum becomes

L <

(
−ã2 − κx2

1 + 3
)2r2

H + 8ã2√1−ã2νℓ3
3(1+ã2−κx2

1)
(−ã2−κx2

1+3)2
√

(−ã2−κx2
1+3)2

r2
H+4ã2(κx2

1−2)ℓ2
3


4ãℓ3

(
1 + ã2 − κx2

1
) 2

√
1−ã2νℓ3√

(−ã2−κx2
1+3)2

r2
H+4ã2(−2+κx2

1)ℓ2
3

+ 1

 E . (3.5)

If this condition is not met the particles will fail to be captured by the BH.
The inequality (3.5) depends both on the particle energy E and on background quantities

(ã, x1, ν, ℓ3, κ). Since we are interested in testing whether the BH can be overspun, we will
restrict our considerations to particles infalling in an extremal BH background. Replacing
our expression for the extremal event horizon (2.12a) in eq. (3.5) yields

Lmax =

4ℓ3

√
6ã2ν(ã2−κx2

1+1)√√
12ã2+x4

1−κx2
1

+ 1
6

((
1 − ã2)√12ã2 + x4

1 −
(
5ã2 + 1

)
κx2

1 + 12ã2
)

ã
(
ã2 − κx2

1 + 1
) √

6ν√√
12ã2+x4

1−κx2
1

+ 1

 E. (3.6)

Lmax is positive for both κ = ±1 in the parameter ranges considered.

3.2 The effect of particle capture on extremal qBTZ black holes

In what follows, we allow an extremal BH to absorb a particle with energy E and angular
momentum (3.6). We then study what configuration the system can settle down to, after
the particle is captured. Assuming the end state is also a stationary spacetime described
by the same class of qBTZ geometries,9 there are only three options available: either a
non-degenerate BH, an extremal BH, or a horizonless (naked singularity) configuration.

At extremality, the minimum of the metric function H(r) coincides with the horizon
radius. After the absorption of a particle, the minimum will shift and may not correspond
to an event horizon anymore. A simple way to test the wCCC is to evaluate the sign of
H(r) computed at its minimum rmin after absorption:

• If H(rmin) < 0, one obtains a non-degenerate horizon and the singularity is shielded;

• If H(rmin) = 0, the black hole remains extremal;

• If H(rmin) > 0, the extremal BH transitions to a naked singularity.
9These assumptions require dedicated analyses for validation, but suh a study is beyond the scope of the

present paper. Contrary to the Kerr-Newman case, there is no guarantee of uniqueness for these quantum BHs,
and our only supporting argument at the moment is that the qBTZ spacetime is the only known stationary
BH in 3D that exactly incorporates backreaction from quantum conformal fields.
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3.2.1 Perturbative approach

In this section, we employ a perturbative approach and focus on analyzing the linear response
of the extremal background after the absorption of a test particle with maximum angular
momentum.

At linear order, after a small perturbation the BH parameters change as ã → ã + δã

and x1 → x1 + δx1, implying also a shift on the location of the minimum of function H,
rmin → rmin + δr. This metric function, evaluated at its minimum, changes accordingly,

H(rmin + δr, ã + δã, x1 + δx1) = H(rmin, ã, x1) + δH , (3.7)

where δH reads as

δH = ∂H

∂r

∣∣∣∣
r=rmin

δr + ∂H

∂ã

∣∣∣∣
r=rmin

δã + ∂H

∂x1

∣∣∣∣
r=rmin

δx1 , (3.8)

and all derivatives are also understood to be computed using the values of ã and x1 of the
extremal background. By definition, the first term in δH is zero.

At linear order, it is straightforward to express δã and δx1 in terms of the particle
energy and angular momentum. Indeed, after the absorption of the particle, the BH mass
M and angular momentum J change as

M → M + E ≡ M + δM ,

J → J + Lmax ≡ J + δJ .
(3.9)

The quantities δM and δJ depend on δã and δx1 through the variation of eqs. (2.9a)
and (2.9b),

δM = ∂ãM δã + ∂x1M δx1 , (3.10a)
δJ = ∂ãJ δã + ∂x1J δx1 . (3.10b)

It is straightforward, therefore, to invert the above and write δã and δx1 as functions of
δM and δJ . Then we substitute δJ using eq. (3.6), compute δH and study its sign. Since
we consider the extremal configuration as the (initial) background, we also replace ν by
the expression given in eq. (2.12b).

After some lengthy but straigthforward simplifications, one obtains δH = 0 for any value
of ν (a more detailed explanation of this result is reported in appendix C) and independently
of κ = ±1.10 Therefore, at linear order in perturbations, an extremal BH remains extremal
after absorbing test particles with the largest possible ratio L/E that can be captured.
Particles with L < Lmax impart less angular momentum to the BH and therefore will give
rise to under-extremal configurations. The singularity is therefore shielded and weak cosmic
censorship respected.

10In the classical BTZ spacetime (ν = 0), a linear analysis similar to ours, involving the scattering of scalar
fields and yielding δH = 0 was performed in [38].
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3.2.2 Numerical assessment

We now go beyond the linear approximation and perform a numerical test of the wCCC.
To be specific, we shall still consider the test particle regime, without it backreacting on
the spacetime apart from shifting the mass and angular momentum of the initially extremal
BH. However, and in contrast with the previous subsection, we will now consider particles
of finite, albeit small, mass compared to the BH they fall into.

Contrary to the previous calculation, here we leave ν as a free parameter, in order to
study different backreaction regimes and their impact on the wCCC. The parameter x1 is then
constrained by the extremality condition (2.12b) to be a certain function of ã. This is done
by discretizing the ã-axis and numerically solving eq. (2.12b) for each point on the chosen
ã-interval. This yields two arrays of ã values and their corresponding x1 values at extremality.
One can then use these pairs and eq. (2.9a) and (2.9b) to compute the mass and angular
momentum of the corresponding extremal configurations. For such BH, a particle with energy
δM = M/100 (with M the mass of each extremal configuration) and angular momentum (3.6)
(evaluated on the corresponding extremal configuration) is formally added to the background.
The mass and angular momentum of the new configuration are computed according to
eq. (3.9). Having these values, the code then solves eq. (2.9a) and (2.9b) for the new values of
ã and x1 after absorption. Finally, the minimum of the metric function H , expressed in terms
of the new values of the parameters, is found numerically and then H(rmin) is evaluated.

The results are reported in figure 3, for different values of ν, and they endorse the wCCC:
the metric function at the minimum, after absorption, is negative for all values of ν considered,
so a pair of horizons always form after absorption, the outer one being the event horizon,
while the inner one becomes a Cauchy horizon.

We highlight that, especially for the κ = −1 branch, which corresponds to the larger values
of ã (see figure 2), the stronger the backreaction effects (larger ν) the more negative H(rmin)
becomes, indicating that large backreaction effects typically strengthen cosmic censorship.

The local maximum observed for all curves of H(rmin) in figure 3 is intriguing, given
that it suggests that near-extremality can be preserved for specific combinations of ã and
ν. We do not have an intuitive explanation for this.

4 Conclusions and outlook

In this paper we applied Wald’s well-known Gedanken experiment to the recently described
qBTZ black hole, a three-dimensional spacetime that incorporates the effects of strongly-
coupled quantum fields in an exact manner. Accordingly, we considered dropping test particles
into an extremal BH belonging to that family of solutions, in an attempt to disrupt its event
horizon and therefore expose the singularity contained within. Surprisingly, the inclusion
of the quantum backreaction of the geometry appears to have minimal influence on the
outcome of this test of the wCCC: throwing a test particle at an extremal qBTZ black
hole can, at most, leave it extremal, just like what happens with its classical counterpart.
Nevertheless, we also showed evidence that, when going beyond the test particle limit, it
is harder to violate the wCCC with the quantum corrected BH spacetime, when compared
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Figure 3. Values of H(rmin) in different backreaction regimes, for configurations with κ = +1 (dashed
lines) and κ = −1 (solid lines). Both positive and negative masses are considered. All the curves are
below zero. The curves shown do not extend quite up to ã = 1 for a technical reason. If the value of
ã before the particle is absorbed is extremely close to 1, the final value of ã after absorption will be
greater than 1, while our code is restricted to ã < 1. One can extend the curves further by considering
particles of smaller mass.

with the classical BTZ black hole. One might heuristically summarize this idea by saying
that quantum backreaction strengthens weak cosmic censorship.

In the process of assessing the resilience of the event horizon of quantum black holes,
having the weak cosmic censorship conjecture in mind, we had to perform a detailed analysis
of the parameter space of rotating qBTZ solutions, complementing that of ref. [9]. This
was instrumental in our investigations of the effect of backreaction from strongly-coupled
quantum fields on the wCCC.

The thought experiment conducted in this paper has been described from the 3D point
of view, in which the BH tested incorporates quantum corrections. Nevertheless, it has a
holographic description, and from the 4D perspective, it corresponds to sending test particles
at a classical BH in the bulk, but the particles are restricted to move on a codimension-1
braneworld. A different test of the wCCC involves particles falling more generally in the 4D
bulk into the same 4D black hole, which can then be interpreted holographically from the
3D braneworld perspective. This analysis is currently in progress [79].

Concerning the three-dimensional spacetimes we have considered, expanding our study to
encompass the near-extremal case would be an interesting extension of the present work. This
analysis may either unveil parameter regions where overspinning is feasible or a mitigation
of this behavior due to the quantum backreaction.

Furthermore, it would also be interesting to apply our analysis to the three-dimensional
Kerr-de Sitter BH, recently constructed in [74] in a similar fashion to the qBTZ, using
braneworld holography, as well as to the charged case [80, 81]. Such analyses will shed more
light on the impact of quantum corrections on the wCCC.
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A natural and important question that deserves a dedicated study is whether the qBTZ
spacetime is classically stable in the sense of its quasinormal spectrum only featuring decaying
modes. If so, this would lend support to the idea that, even if perturbed, a qBTZ black hole
should settle down to another geometry within the same qBTZ family.

Finally, another development of obvious interest would be the derivation of the five-
dimensional version of the AdS C-metric. If achievable, that would presumably allow
the derivation, following the rationale of [9, 72], of a four-dimensional quantum corrected
black hole.
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A Explicit expressions of the qBTZ metric functions

The metric components of the qBTZ spacetime (2.3), expressed in terms of the parameters
x1 and ã, and using the radial coordinate r instead of r̂, are the following:

gtt = − 8
√

1 − ã2 ν ℓ3
(
ã2 − κx2

1 + 1
)

(
ã2 + κx2

1 − 3
)3√4ã2ℓ2

3(κx2
1−2)

(ã2+κx2
1−3)2 + r2

+ 16ã2 − 4
(
ã2 + 1

)
κx2

1(
ã2 + κx2

1 − 3
)2 − r2

ℓ2
3

, (A.1)

gϕϕ = r2 − 8ã2√1 − ã2νℓ3
3
(
ã2 − κx2

1 + 1
)

(
ã2 + κx2

1 − 3
)3√4ã2ℓ2

3(κx2
1−2)

(ã2+κx2
1−3)2 + r2

, (A.2)

gtϕ = −4ãℓ3
(
ã2 − κx2

1 + 1
)(

3 − ã2 − κx2
1
)2

1 + 2
√

1 − ã2νℓ3(
3 − ã2 − κx2

1
)√4ã2ℓ2

3(κx2
1−2)

(ã2+κx2
1−3)2 + r2

 , (A.3)

grr = H(r) = r2

ℓ2
3
−

8
(
1 − ã2)3/2

νℓ3
(
ã2 − κx2

1 + 1
)√4ã2ℓ2

3(κx2
1−2)

(ã2+κx2
1−3)2 + r2

r2 (3 − ã2 − κx2
1
)3

+ 16ã2ℓ2
3
(
ã2 − κx2

1 + 1
)2

r2 (ã2 + κx2
1 − 3

)4 + 4
[(

ã2 + 1
)

κx2
1 − 4ã2](

ã2 + κx2
1 − 3

)2 .

(A.4)

B Particular case: classical BTZ black hole

The classical BTZ black hole is described by the line element

ds2 = −N(r)2dt2 + N(r)−2dr2 + r2(Nϕ(r)dt + dϕ)2 , (B.1)
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where the squared lapse function reads

N(r)2 = −8G3M + r2

ℓ2
3

+ (4G3J)2

r2 , (B.2a)

Nϕ(r) = −4G3J

r2 . (B.2b)

This metric is recovered in the ν → 0 limit of the expressions provided in appendix A, after
using also eqs. (2.9a) and (2.9b).11

The extremality condition for the classical BTZ spacetime is obtained by demanding
that a degenerate root of the lapse function occurs at the horizon rH. This yields the
following system:

−8G3M + r2
H

ℓ2
3

+ (4G3J)2

r2
H

= 0 , (B.3a)

rH
ℓ2

3
− (4G3J)2

r3
H

= 0 , (B.3b)

whose solution is |J | = ℓ3M and r2
H = 4ℓ3G3|J | = 4ℓ2

3G3M . It was shown in [14] that this
extremal bound cannot be surpassed with test particles if the initial black hole is extremal.

C Computation of δH

Instead of considering eq. (A.4), which is more complicated, we take a step back and consider
eq. (2.4d) instead. This time, however, we do not specify the form of the last term encoding
backreaction effects, but we simply treat it as a function F of ã, x1 and r. We thus consider
grr in the form

H(r) = r2

ℓ2
3
− 8M + (4J)2

r2 + F (r, ã, x1) , (C.1)

where, of course, M = M(ã, x1) and J = J(ã, x1) (see eqs. (2.9a) and (2.9b)). In this
appendix we shall absorb factors of G3 in M and J to reduce cluttering the equations.

We now evaluate δH according to eq. (3.8) and compute it at the minimum. Again, only
the variations with respect to ã and x1 survive. According to eq. (3.4), we simply express
Lmax = ℓmax(rH, ã, x1) E. The explicit form of ℓmax will not be needed.

The variation of eq. (C.1) reads

δH =
(
−ã2 + x2

1 + 3
)2 [

(1 − ã2)ℓ3
(
3 − ã2 − x2

1

) (
ã2 + x2

1 + 1
)]−1

{
δM

[
ℓ3
(
ã4 +

(
6ã2 + 4

)
x2

1 + 12ã2 + x4
1 + 3

)
− ã

((
ã2 + 9

)
x2

1 + 4
(
ã2 + 3

)
+ x4

1
)

ℓmax
]

x1
X

−
[
δM

(
ã4 +

(
ã2 + 1

)
x2

1 + 6ã2 − 3
)

ℓmax − 2ã δMℓ3
(
3ã2 + x2

1 − 1
) ]

Y
}

,

(C.2)
11Note that the normalization of the mass and angular momentum in these expressions does not match

those of the usual BTZ metric [69, 70], but they are harmonious with the definitions adopted for the qBTZ
metric in [9]. The difference can be attributed to the use of the renormalized Newton constant G3.
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where

X = ∂x1F − 8∂x1M + 32J ∂x1J

r2 and Y = ∂ãF − 8∂ãM + 32J ∂ãJ

r2 . (C.3)

Every function of r is understood to be computed at the minimum r = rmin. If this
minimum coincides with an horizon (namely, in the extremal case), we can invert eq. (C.1)
to get F (rH, ã, x1):

F (rH, ã, x1) = 8M − r2
H

ℓ2
3
− (4J)2

r2
H

. (C.4)

We see that ∂x1F and ∂ãF are such that the combinations X and Y appearing in (C.2)
vanish. Therefore, this confirms that δH = 0 when the background is an extremal state.
This also explains the generality of the result: it does not depend on ν since its information
is completely encoded in F . The result is also independent of κ, since it appears only in
the explicit forms of M , J and F .

Finally, the steps above show that, at linear order in the perturbations, the explicit
form of the angular momentum of the incoming particle is irrelevant when considering the
extremal configuration. In this case, eq. (3.4) is a condition only for the particles to be
absorbed, but it has no consequences on the net result.
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