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Abstract: In a world increasingly dependent on technology and in an era where connectivity
is omnipresent, Web applications have become an essential part of our everyday life. The
evolution of these applications, combined with the exponential increase in the number of
users, has brought with it not only convenience but also significant challenges in terms of
security. Ensuring the security of Web applications and their data is increasingly a priority
for companies, although many companies lack the know-how, time, and money to do
so. This research project studied and developed a system with the aim of automating the
process of detecting vulnerabilities in Web applications by exploiting the benefits of the
interoperability of the two forms of automation of the tool selected to carry out this analysis.
The developed solution is low-cost and requires very little user intervention. In order to
validate and evaluate the developed platform, experiments were carried out on applications
with different types of vulnerabilities known in advance and on real applications. It is
essential to guarantee the security of Web applications, and the developed system proved
capable of automating the detection of vulnerability risks and returning the results in a
relatively simple way for the user.

Keywords: Web application; vulnerability; security; scanner; automation; detection

1. Introduction
The dependence on technology in an increasingly interconnected global landscape

has fundamentally transformed daily life, particularly with the exponential rise in Inter-
net use, now encompassing around 4.7 billion users worldwide [1]. Concurrently, Web
applications have proliferated, reaching approximately 1.8 billion globally [1]. This rapid
growth has been accompanied by a transformation of Web applications [2], evolving from
simple static pages into sophisticated, dynamic information systems. Initially, such ap-
plications were built using elementary models and languages that posed relatively low
security risks, simplifying protection and analysis efforts [3]. However, contemporary
applications have become highly interactive and user-centric, accessible across multiple
devices and browsers, thereby allowing numerous domains of applications, including
banking, healthcare, commerce, and education [1].

This diversity, coupled with our dependence on these systems, has introduced sig-
nificant security concerns, complicating update management and defense against newly
emerging threats [3]. According to a study by Statista [4], 30% of cybersecurity incidents re-
ported by organizations occurred due to hacking, 16% due to misuse, 13% due to malware,
and the remainder divided between other actions (social and errors).
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The expanded attack surface has fostered a proliferation of vulnerabilities, with studies
indicating that the average Web application contains 33 vulnerabilities, 19% of which may
permit attackers to take control of the application or underlying operating system [5].
Furthermore, the incidence of Web application attacks has surged by approximately 88%,
surpassing projected annual growth rates [3]. Given the accessibility of Web applications
through networks, they are susceptible to a multitude of attacks; any vulnerability, once
detected, can result in severe financial, reputational, or even physical consequences. In the
event of a data breach, an attacker could compromise an application’s database, facilitating
data sharing or creating additional entry points for future attacks [6].

To systematically address and mitigate these vulnerabilities, many security practition-
ers refer to the Open Worldwide Application Security Project (OWASP), which provides
a structured “OWASP Top 10” list that highlights the most critical risks for Web applica-
tions [7]. Additionally, many organizations deploy vulnerability scanners to aid in software
security, enabling continuous code monitoring throughout development and deployment.
These tools are indispensable for secure software development, as they automate vulnerabil-
ity detection processes [6]. Security analysis methods have similarly advanced, integrating
more refined protection and detection techniques, as traditional manual testing approaches
are neither scalable nor adequate [8].

This study is motivated by the need for the automation of Web vulnerability detec-
tion, thereby reducing the necessity for extensive user intervention. The main goal is to
design an efficient, scalable, and free solution that facilitates the detection and reporting
of security flaws in a structured, user-friendly format. Existing vulnerability scanners
typically support various types of analyses, such as crawling, active scanning, and authen-
tication testing. However, these tools often require additional configurations or manual
adjustments from users to tailor the scans to specific needs. In contrast, the proposed
platform provides a comprehensive analysis of Web applications without requiring any
additional configurations from the user. Users only need to complete two straightforward
steps: populate a target file with basic application details and execute a single command
to initiate the process. This streamlined approach ensures that even complex analyses,
encompassing multiple scanning techniques, are conducted automatically. Additionally,
the platform delivers results in a clear and organized format, making them accessible to
users with limited technical expertise, thereby addressing the common barriers associated
with existing tools. By incorporating two distinct automation strategies from an existing
vulnerability analysis tool, this platform optimizes vulnerability identification and report-
ing, addressing critical challenges in Web application security. This approach ensures a
more automated, cost-effective, and accessible method for security analysis. In doing so,
this research contributes to the advancement of application security by simplifying and
enhancing the automation of vulnerability detection in Web applications.

This work focuses specifically on the security of Web applications based on the method-
ology developed Seara and Serrao [9,10], who designed a distributed system for detecting
vulnerabilities in general systems. The Intelligent System for Automation of Security Au-
dits (SIAAS) tool was designed as an accessible vulnerability scanning system that does
not require specialized knowledge to operate, employing a server–agent architecture to
enhance system scalability. This architecture comprises multiple agents connected to a
central server through secure HTTPS communication. The agents analyze the local network,
identify hosts, and conduct vulnerability scans using the “Nmap” tool. The collected data
are subsequently transmitted to the central server, allowing for centralized management of
the results. Additionally, a command-line interface (CLI) was developed to facilitate human
interaction with the server API, enabling configuration management and data visualiza-
tion. The solution in this study further evolves the concept by specifically targeting Web
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application security while preserving the low resource usage and zero-cost accessibility that
characterize the original framework. This advancement ensures the solution’s scalability
and practicality, particularly for small organizations or individuals seeking robust security
measures without incurring additional costs.

The article is organized as follows: An introduction to the topic, outlining the mo-
tivation and objectives of the research is provided in the next section. Section 2 reviews
related work, examining methods and findings from previous studies to underscore the
relevance of the current approach. Following this, Section 3 provides a detailed account of
the system architecture and implementation process. Section 4 then presents the findings
from validation tests conducted solely within internal environments. Finally, Section 5
summarizes the achievements of this work and suggests directions for future research.

2. Related Work
Over recent years, the frequency of attacks targeting Web applications has escalated

significantly, making these applications prime targets for cyber attacks. For instance, in
2017, a study reported an average of 44 daily attacks on a small business website, with
projections indicating an increase of over 50% by 2019 [11]. A study by Statista shows
that the sectors most attacked between 2022 and 2023 were the finance and information
sectors, followed by the professional sector and public administration [12]. Ensuring
Web application security is critical for safeguarding the sensitive data such apps contain,
yet the rapid growth in Web applications limits the capacity of security professionals to
manually inspect each one. This reality highlights the need for automated tools to detect
and remediate vulnerabilities effectively [13]. Additionally, the lack of security emphasis
during the development phase further contributes to vulnerabilities, as current platforms
for Web development and analysis offer limited support for security, often leading to errors.
This lack of support places additional demands on developers already constrained by
market pressures, time limitations, and insufficient security knowledge [14]. According
to [15], Web applications are often developed without adequate attention to secure coding
practices, and less than 50% are tested for security before deployment.

To understand Web application security, it is essential to first define a Web application,
including its architecture and operational framework. A Web application is essentially soft-
ware accessed through a Web browser [5], relying on various components and technologies
that constitute the Web platform. This ecosystem includes HTTP protocols, Web servers,
server-side technologies (e.g., CGI, PHP, and ASP), browsers, and client-side technologies
like JavaScript and Flash [14]. The architecture of Web applications typically includes both
server-side and client-side code, enabling dynamic information delivery and interaction.
Server-side code generates HTML pages, often interacting with databases to store and
retrieve data, while client-side code embedded in HTML pages (such as AJAX) allows
users to engage dynamically with the content. Different applications serve diverse business
objectives, and thus, architectural choices must align with the specific business functions
they support. For example, recent trends indicate a shift towards Web APIs, which enable
local applications to interact with the server, enhancing efficiency [6].

Within this complex architecture, Web application vulnerabilities arise from various
sources. A vulnerability represents a flaw or weakness that an attacker can exploit to
compromise the integrity of a system [16]. Web application vulnerabilities often stem from
not only bugs within the application itself but also from malware present in the user’s
system, potentially leading to data theft or unauthorized access. Weak security practices,
such as using simple passwords, also contribute to vulnerabilities by creating exploitable
entry points [16]. As vulnerabilities have grown, standardized categorization methods
have emerged to help security teams prioritize risks. Key among these is the OWASP Top
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10, a widely recognized consensus on critical security risks for Web applications [7]. This
categorization, maintained by the Open Worldwide Application Security Project (OWASP),
serves as a reference for identifying and mitigating the most prevalent vulnerabilities in
Web applications. The OWASP Top 10 highlights the most critical Web application secu-
rity risks, categorized as follows: broken access control, where flawed permissions allow
unauthorized actions or privilege escalation; cryptographic failures, involving inadequate
encryption of sensitive data, risking confidentiality and integrity; injection, such as SQL
injection, exploiting unvalidated inputs to execute malicious commands; insecure design,
arising from applications built without robust security considerations; security misconfigu-
ration, where incomplete or improper system setups create vulnerabilities; vulnerable and
outdated components, i.e., using unsupported or unpatched software, which increases the
attack surface; identification and authentication failures, exposing flaws in session man-
agement or authentication processes; software and data integrity failures, where a lack of
integrity checks can lead to code tampering or data corruption; securing, logging, and mon-
itoring failures, with insufficient logging making attacks harder to detect and respond to;
and Server-Side Request Forgery (SSRF), enabling attackers to manipulate server requests
to access unauthorized resources. Each category represents a specific set of weaknesses that,
if exploited, can compromise the security of applications and sensitive data. Additionally,
the Common Weakness Enumeration (CWE) complements OWASP by listing the top 25
software risks, focusing on design elements that may lead to vulnerabilities [17].

For effective vulnerability analysis, two primary approaches are commonly used:
black-box and white-box testing. In black-box testing, which does not require knowledge
of the internal code, testers analyze application functionality based on inputs and outputs.
White-box testing, on the other hand, requires full access to the application’s code, enabling
a more comprehensive analysis of the code structure, cycles, and conditions [18]. Another
critical aspect of vulnerability analysis is penetration testing, a method to identify security
weaknesses [19]. Penetration tests can be manual, involving skilled individuals who use
specific tools and experience to identify vulnerabilities, or automated, using scripts and
vulnerability scanners that facilitate rapid assessment. While automated testing offers
speed and consistency, it is prone to false positives and may miss complex vulnerabilities
detectable only through manual testing [20].

Another emerging solution is the concept of cyber ranges, which offer virtualized
environments for testing and training in cybersecurity scenarios. Cyber ranges provide a
practical, hands-on approach to training security professionals by simulating real-world
attack and defense scenarios [21]. However, traditional cyber ranges often suffer from
scalability and flexibility limitations. Many rely on manual setups or preconfigured “in-a-
box” solutions that are expensive and lack agility. To address these limitations, frameworks
integrating Infrastructure as Code (IaC) practices, such as Ansible, are gaining traction. For
example, Ansible has been used to automate cyber-range workflows, enabling the rapid
development and deployment of both network- and application-specific attack scenarios in
cloud environments. This approach ensures scalability, efficiency, and reduced error rates
while lowering costs [21].

Vulnerability scanners are essential tools for automated Web application security test-
ing. These tools fall into two categories: Static Application Security Testing (SAST) and
Dynamic Application Security Testing (DAST). SAST tools follow a white-box approach, ex-
amining the application’s source code for vulnerabilities through data flow analysis [22,23].
However, SAST requires compatibility with the application’s language and framework, lim-
iting its scope [20]. DAST tools, which use a black-box approach, simulate user interactions
with the application via the Web interface, typically progressing through several phases:
configuration, crawling (mapping the application structure), attack (testing for vulnera-
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bilities), and analysis (evaluating responses for security risks) [24–26]. Studies assessing
scanners’ performance indicate that static scanners generally outperform dynamic ones
in identifying vulnerabilities and locating their exact positions within the code, though
dynamic scanners excel in detecting injection vulnerabilities [6]. However, as Web security
threats evolve, such as the rise of broken access control risks, dynamic scanners are less
effective in detecting these critical issues compared to static tools. For the purposes of
this research, we focus exclusively on non-commercial dynamic scanners, considering the
following: Arachni, Dirb, Nikto, Nmap, ZAP, Skipfish, Vega, W3af, Wapiti, and Whatweb.

The rapid advancement of Web application security tools has led to the emergence
of various penetration testing and vulnerability assessment solutions. However, studies
consistently demonstrate that no single tool can comprehensively detect all potential vul-
nerabilities, emphasizing the importance of utilizing multiple scanners in combination.
To address this limitation, platforms integrating multiple tools have been developed to
capitalize on the unique strengths of each scanner during different stages of vulnerabil-
ity detection. For example, a Python-based vulnerability detection platform integrates
tools like Nmap, Nikto, Whatweb, and Dirb, with each focusing on specific aspects of the
scanning process. This multi-tool approach significantly enhances both the efficiency and
thoroughness of vulnerability detection [27]. Similarly, ref. [28] proposed a framework
combining OWASP ZAP and Arachni, achieving superior accuracy in identifying vulnera-
bilities compared to using standalone tools. These integrations highlight the potential of
interoperability in creating comprehensive and effective security assessment frameworks.

Despite the advancements in vulnerability scanners, several gaps remain. Many
existing tools require significant expertise to operate, limiting their accessibility to non-
experts. Furthermore, the results provided by these tools are often complex and difficult
to interpret for users with limited technical knowledge. Additionally, most tools focus
on a narrow set of vulnerabilities, leaving critical gaps in the detection of more complex
or emerging threats. This literature review identified the need for a more automated and
user-friendly solution that can detect a broader range of vulnerabilities with minimal
user intervention. The platform proposed in this article addresses this gap by integrating
multiple automation techniques of a scanner to enhance the coverage and usability of
vulnerability detection tools.

ZAP was ultimately chosen after being tested alongside these other scanners based
on several key factors that set it apart. First, scientific studies and benchmarking articles
consistently highlight ZAP’s superior performance in detecting vulnerabilities in Web
applications compared to other scanners [3,6,29,30]. Additionally, ZAP offers advanced
automation solutions. While it features a user-friendly graphical interface, this aspect had
no bearing on its selection, as the interface was not intended to be used in this research.
Instead, the decision was based on its robust API and automation frameworks, which
provide full control over the scanner without requiring interaction through the interface.
This flexibility was essential for enabling comprehensive automation and integrating the
scanner seamlessly into the proposed platform. Another critical factor was ZAP’s active and
supportive community, which proved invaluable in addressing challenges, such as defining
and implementing a complete and accurate automation plan. This community-driven
support facilitated rapid problem solving and knowledge sharing during the development
process. Finally, ZAP allows for granular control over scan results, enabling the customiza-
tion of outputs. This capability was crucial for tailoring the system to provide clear and
organized reports that meet the specific needs of the users.
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3. Design and Development
This section details the design and development of the proposed system for automat-

ing vulnerability detection in Web applications. The system was developed in Python and
integrates with the ZAP vulnerability analysis tool via a REST API also implemented in
Python to enable automated vulnerability detection across multiple Web applications. The
choice of ZAP over other well-known scanners was informed by its strong track record in
detecting Web application vulnerabilities, as highlighted in the related work. The primary
goal of this research is to create a fully automated system that identifies and reports poten-
tial vulnerabilities in Web applications with minimal (ideally zero) operator intervention or
specialized cybersecurity knowledge while remaining cost-effective for organizations. This
cost-effectiveness is further enhanced by the system’s ability to run on resource-constrained
hardware, such as a Raspberry Pi or virtual machine. Additional objectives include inte-
grating the new system with previously developed tools, influencing the selection of the
technologies and software used. Key characteristics guiding the system’s implementation
include the use of open-source tools, a plug-and-play characteristic, scalability, and secure
communication via HTTPS with authenticated data storage and access. The code of the
developed system is hosted on GitHub and can be found at the following URLs:

• https://github.com/DiogoMoreira4/siaas-zap.git (accessed on 22 December 2024).
• https://github.com/DiogoMoreira4/siaas-server.git (accessed on 22 December 2024).
• https://github.com/DiogoMoreira4/siaas-cli.git (accessed on 22 December 2024) .

3.1. Technologies Used

The system leverages a carefully selected stack of open-source technologies, each
chosen to meet the objectives of cost-efficiency, flexibility, and performance:

• Python: Selected for its simplicity and vast library support, especially for integrating
with ZAP via its API. Python 3.8.10 was used for development.

• ZAP: The core scanning tool used to detect vulnerabilities in Web applications. ZAP
2.15.0 was integrated into the system using its REST API.

• Linux: The system was deployed on Ubuntu 20.04 LTS to ensure stability, security,
and cost-effectiveness, as Ubuntu is a free and open-source operating system, unlike
Windows, which requires paid licenses. While optimized for Ubuntu, the system can
also run on other Debian-based distributions, offering flexibility in deployment.

• MongoDB: A NoSQL database used to store the results of vulnerability scans. Mon-
goDB was chosen for its compatibility with JSON documents, which align well with
the data generated by ZAP scans.

These tools collectively create a robust foundation for the automated vulnerability
detection system, supporting all core functionality while meeting the objectives of scalability
and user accessibility.

3.2. System Architecture

The system architecture for automated vulnerability detection in Web applications
comprises three core modules: SIAAS-server, SIAAS-CLI, and siaas-zap. These modules
interact seamlessly to enable automated scanning, with a centralized API facilitating
communication across the system:

1. SIAAS-server: The central server module manages communication between the
system components and the user. It is responsible for processing user requests,
managing configuration files, and storing the results of vulnerability scans.

https://github.com/DiogoMoreira4/siaas-zap.git
https://github.com/DiogoMoreira4/siaas-server.git
https://github.com/DiogoMoreira4/siaas-cli.git
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2. SIAAS-CLI: A command-line interface that allows users to interact with the system
without needing to access a graphical user interface. It simplifies the process of setting
up scans and retrieving results.

3. SIAAS-ZAP: This module handles the integration with ZAP, automating the scanning
of Web applications for vulnerabilities. It ensures that multiple targets can be analyzed
concurrently by creating separate instances of ZAP for each target.

The interaction between these components is illustrated in the system’s architecture
diagram (Figure 1). The first step is to configure the target.ini file with the correct infor-
mation about the Web applications to be scanned (1). For applications that require login,
the user must provide details such as the application name, URL, username, password,
and login URL. If no login is required, the user only needs to specify the application name
and URL. Once the configuration file is set, the user initiates the scan (2) by running the
following command: sudo systemctl start zap_manager.

Figure 1. Overall architecture and flow of the developed system.

This command starts the zap_manager process, which retrieves automation plan con-
figurations from the SIAAS-server through an API call (3) and reads the target.ini file (4).
The zap_manager creates an instance of ZAP for each target (5). Each ZAP instance runs in
a separate directory and port, analyzing targets sequentially to ensure performance and
prevent system overload. This ensures the system remains cost-efficient and can run on
limited hardware resources. The automation plan is then created for each target, and neces-
sary fields are filled based on the ZAP configuration and target details (6). When a scan
is complete, the Python API of ZAP generates a report summarizing vulnerabilities and
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outputs a JSON file with the URLs discovered during crawling, vulnerability alerts, and a
summary of the automation plan’s execution (7). These reports are stored in a reports folder
within the SIAAS-ZAP module (8). The JSON object is then sent to the server via an HTTPS
request (9), ensuring data security before being stored in the MongoDB database (10).

3.3. Functionality and Automation

SIAAS-ZAP is the module responsible for automating the detection and analysis of
vulnerabilities in Web applications. The system was designed to be used by operators
without requiring deep expertise. To achieve this, understanding how ZAP works and its
available automation options was crucial. The goal was not only to ensure quality results
but also to achieve a high degree of automation in the detection process. After evaluating
various automation options provided by ZAP, it was determined that the automation
framework combined with the ZAP Python API was the best approach. While more
complex to implement, this combination offers the greatest flexibility and access to all of
ZAP’s functionalities [31].

3.3.1. Automation Framework

The automation framework enables control of ZAP using a YAML file, supporting
three important domains:

• Environment: Specifies the application on which the jobs (scans) operate;
• Authentication: Crucial for analyzing applications requiring login, allowing for the

use of all authentication mechanisms supported by ZAP;
• Jobs: Represent the different ZAP functionalities, such as spider, spiderAjax, and activeScan.

The Framework’s flexibility ensures the automation plan is fully adjustable to the
user’s needs, supporting complex, authentication-based tests that extend ZAP’s scanning
capabilities across diverse scenarios.

3.3.2. ZAP Python API

The ZAP Python API provides near-complete control over ZAP’s scanning functionali-
ties, akin to those available in ZAP’s desktop interface. The API is central to the system’s
automation capabilities, allowing for the implementation of key functionalities, such as
initiating scans, monitoring progress, and retrieving results.

The following API endpoints are utilized in the solution:

• Executing the automation plan: “GET /JSON/automation/action/runPlan/” is used
to trigger the predefined automation plan, enabling the system to start a comprehen-
sive vulnerability analysis automatically.

• Monitoring analysis progress: To track the progress of the ongoing scans, the
“GET /JSON/automation/view/planProgress/” and “GET /JSON/ascan/
view/scanProgress/” endpoints are employed. These endpoints provide real-time
updates on the execution of the automation plan and the active scanning phase,
respectively.

• Building the results: Once the scan is completed, the “GET /JSON/core/
view/urls/” and “GET /JSON/core/view alerts/” endpoints are used to retrieve
discovered URLs and detected vulnerabilities. These data form the basis of the com-
prehensive and user-friendly reports generated by the system.

The use of these endpoints allow the system to achieve a high level of automation,
seamlessly integrating ZAP’s capabilities into the proposed platform. The API’s flexibility
ensures that all scanning tasks can be orchestrated programmatically, without requiring
manual intervention, aligning with the research goal of creating a fully automated solution
for vulnerability detection.
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3.3.3. Workflow and Key Functionalities

The following demonstrates some of the main flows and key functionalities of the solution.

• Target File Reading: When the zap_manager service is started, it first reads the tar-
gets.ini file. This file contains the necessary details to scan the Web applications or
sites the user wishes to analyze as shown in Figure 2. The user must edit the targets.ini
file before starting the service. The function creates a list of target objects, each with
a boolean attribute has_auth. If the user provides credentials for authentication, the
has_auth value is set to true; otherwise, it remains false.

Figure 2. Example of the file to fill in with target information.

For example, in the targets.ini file, if the “SecurityTweets” target does not require
authentication, the has_auth attribute is set to false. Conversely, for the “Acuart”
target, which includes login credentials, has_auth is true, and the corresponding
automation plan includes authentication.

• Automation Plan Modification: Once the targets are read, the system modifies the
necessary fields in the corresponding automation plan. For targets without authentica-
tion (e.g., “SecurityTweets”), the system uses a basic automation plan, while targets
with authentication use a plan adapted to the provided login credentials. These plans
are YAML files, as illustrated in Figure 3, that control ZAP’s behavior, such as the
maximum time allowed for each Spider and ActiveScan job. These configurations are
stored server-side and can be modified by the user via command-line instructions.
These automation plans are divided into two parts: the env part, corresponding to the
environment and context in which we want to analyze the application, and the jobs
part, which identifies which functionalities and analyses we want to carry out during
the execution of the automation plan. In the following, we explain in more detail the
three main jobs used, spider, ajax spider, and active scan.

• Authentication: Authentication is a key feature of the system, as it allows for a more
thorough and accurate vulnerability analysis. ZAP supports various authentication
methods:

– Manual Authentication: The user logs in manually via a browser while using
ZAP as a proxy (not used in this project);

– Form-based Authentication: Handles login forms where credentials are submitted
(username and password);

– JSON-based Authentication: Similar to form-based but submits credentials as a
JSON object;

– HTTP/NTLM Authentication: Used for environments requiring authentication
through HTTP headers (common in corporate settings);
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– Script-based Authentication: For more complex scenarios, allowing users to
define custom scripts to manage the login process.

Additionally, browser-based authentication was implemented through the automa-
tion framework. The browser-based authentication in ZAP leverages Selenium, a
browser automation tool, to handle login processes that require interaction with a
graphical user interface. Through this method, ZAP launches a browser instance
(either visible or headless) to simulate user actions such as filling in login credentials,
clicking buttons, and interacting with dynamic elements like JavaScript-based forms
or CAPTCHA solutions. Once the authentication is successful, ZAP captures session
cookies or tokens from the browser, enabling automated authenticated scans of pro-
tected resources. This approach is particularly effective for complex login flows, such
as Single Sign-On (SSO) or applications with heavy JavaScript frontends, although
it has limitations, such as the inability to manage logins triggered exclusively by the
“Enter” key or scenarios involving non-graphical APIs. By using this type of authenti-
cation, the system handles authentication intelligently, making it possible to automate
this process.

• Spider: The Spider process involves discovering URLs by sending HTTP requests
through a pool of threads managed by the SpiderController. Responses are analyzed
by parsers to extract new URLs and resources, which are added to the thread pool
for further crawling. The process continues until all URLs are visited or manually
stopped, ensuring thorough coverage of the site.

• Ajax Spider: The Ajax Spider operates similarly to the traditional spider but uses
a WebDriver (such as Selenium) to automate a browser, allowing ZAP to interact
with dynamic elements and run JavaScript within the target application. This enables
ZAP to discover and analyze URLs that require AJAX requests and other dynamic
interactions.

• Active Scan: The active scan component performs active attacks on the Web appli-
cation to detect vulnerabilities. It sends various HTTP/HTTPS requests, including
malicious payloads, to test for weaknesses such as SQL injection and Cross-Site Script-
ing (XSS). The scan policy defines the strength of the attacks and the alert thresholds
for vulnerabilities. For example, during an attack on the “JuiceShop” application, the
system sends a POST request with an injection payload in the email parameter. If the
server responds with an SQL error, ZAP generates a high-confidence alert indicating a
successful SQL injection attack.

• Results: Once the analysis is complete, the SIAAS-ZAP module generates two types
of reports: a detailed ZAP report and a JSON file with four main components (tar-
get, URLs, alerts, and plan). The target component identifies the application being
analyzed, while the URL component lists all discovered URLs from the Spider and
Ajax Spider processes. The alerts component contains all the vulnerability alerts
triggered during both passive and active scans. The plan component summarizes
the automation process, showing whether the scan was executed as expected and
providing details about the duration and execution of each job. These results are
accessible through the API and command-line interface, allowing users to view scan
progress and outcomes.
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Figure 3. Example of a part of the automation plan file after it has been filled in with target information.

The results in the JSON file can be consulted in the server’s API and in the command
line. Figure 4 shows the structure of how the results are made available to the user via the
server API.

As previously mentioned, the results are divided into four components: a target
component that identifies the name associated with the application to be analyzed; the URL
component, which shows the user all the URLs found during the crawling process, i.e., the
results of the Spider and Ajax Spider jobs; the alerts component, where the user can find all
the alerts discovered during the analysis of the application; and, finally, the plan component,
which presents a summary of what happened to the respective target during the execution
of the automation plan. As shown in Figure 5, in the plan component of each result from
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the analysis of a target, there is information that helps the user understand whether the
automation plan went as expected or whether errors or warnings were observed. We also
receive information such as the start and end time of the scan, the jobs that were run during
that automation plan, and some information about those jobs.

Figure 4. Visualization of results via the server API.

The URL component (Figure 6), shows all the URLs related to the target that were
found by ZAP in the crawling process. The number of URLs we see in the plan component
in Figure 5 is sometimes higher because it takes into account some URLs that do not belong
to the target, i.e., they are found but are not related to the target.

The alerts component shown in Figure 7 is where the alerts that ZAP identified during
the entire application analysis process are stored, from passive scans looking for URLs, as
well as during the actual attack on the application in the active scanning process. Figure 7
shows the structure of the generated alert.

The developed system identifies potential vulnerabilities in targets and generates
alerts, which are presented to the user. These alerts include key attributes such as risk, alert,
description, tags, confidence, and solution, as shown in Figure 7. The alert field specifies the
category or class of vulnerability associated with the alert. The confidence field indicates
the scanner’s level of certainty about the triggered alert, with levels categorized as high,
medium, and low. The description provides the rationale behind the alert, while risk assigns
a severity level to the vulnerability, ranging from high, medium, and low to informational.
The solution field offers potential remediation to address the identified vulnerability. Lastly,
the tags field maps the detected vulnerability to OWASP and CWE taxonomies, providing
links for detailed information. It is essential to clarify that the system does not validate
the existence of the vulnerabilities; its primary function is automating their detection. The
confidence field plays a crucial role by guiding the user on the likelihood of the identified
vulnerabilities. Specifically, a high level suggests that ZAP has clear evidence of a successful
attack or a lack of security mechanisms, indicating a strong probability of vulnerability.
A medium level indicates the presence of signs of a vulnerability without confirmation
of exploitation. Finally, a low level implies suspicious behavior or configuration errors
detected by ZAP but with no definitive proof of exploitability.
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Figure 5. Visualization of the “plan” component via the server API.

Figure 6. Visualization of the “URL” component via the server API.
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Figure 7. Visualization of the “alerts” component via the server API.

4. Tests and Discussion of Results
This section describes the testing conditions, the analyzed targets, and the outcomes of

tests conducted with our developed automated vulnerability detection system. The system,
designed to streamline vulnerability identification for websites and Web applications, uses
ZAP as the primary tool for conducting analyses and generating reports. The results outline
the specific risks for which the tested applications are vulnerable, categorized according to
the OWASP Top 10 standard. The tests were executed on a single computer equipped with
an AMD Ryzen 7 5800H processor with Radeon Graphics running at 3.20 GHz, with 16 GB
of RAM and a 960 GB SSD. This machine hosted a virtual machine (VM) via VirtualBox,
allocated with 6 GB of RAM, four processors, and 25 GB of storage, running Ubuntu 20.04
LTS (Focal Fossa).

To assess the system’s viability, suitability, and versatility, several tests were per-
formed on various websites and Web applications. In compliance with the Portuguese
cybercrime law [32], which prohibits vulnerability scanning without owner consent, testing
was restricted to three specific groups of applications:

• Applications with Known Vulnerabilities: These targets were selected to evaluate vul-
nerability scanning tools, each with prior authorization for testing. Most applications
were Web-hosted, with DVWA running locally in a separate VM. The applications
tested included:

– Acuart (http://testphp.vulnweb.com) (accessed on 22 December 2024);
– Acuforum (http://testasp.vulnweb.com) (accessed on 22 December 2024);
– Altoro Mutual (http://demo.testfire.net/index.jsp) (accessed on 22 December 2024);
– bWAPP (https://demo.weblock.ru) (accessed on 22 December 2024);
– DVWA (http://10.0.2.4/DVWA) (accessed on 22 December 2024);
– JuiceShop (https://juice-shop.herokuapp.com) (accessed on 22 December 2024);
– Rest API (http://rest.vulnweb.com) (accessed on 22 December 2024);
– SecurityTweets (http://testhtml5.vulnweb.com) (accessed on 22 December 2024).

http://testphp.vulnweb.com
http://testasp.vulnweb.com
http://demo.testfire.net/index.jsp
https://demo.weblock.ru
http://10.0.2.4/DVWA
https://juice-shop.herokuapp.com
http://rest.vulnweb.com
http://testhtml5.vulnweb.com
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• CMS Applications: The system was further tested on real content management systems
running locally in containers, ensuring compliance with ethical standards by avoiding
live user interaction. This setup enabled the system to perform vulnerability detection
and validation under realistic conditions.

– WordPress (http://localhost:8070) (accessed on 22 December 2024);
– Drupal (http://localhost:8071) (accessed on 22 December 2024);
– Joomla (http://localhost:8072) (accessed on 22 December 2024).

• Real Site: The system was also tested on a real site in a quality environment, which
included authentication. The analyzed site was ISCTE’s Fenix, at the following URL:
https://fenix-qua.iscte-iul.pt) (accessed on 22 December 2024).

These tests aimed to assess the system’s ability to detect a wide range of vulnerabilities
in both controlled and real-world environments and applications.

4.1. Deliberately Vulnerable Applications

In this subsection, we analyze the alerts generated in tests on purposefully vulnerable
applications. The alerts are grouped according to the OWASP Top 10 categorization. These
are the alerts that were generated with the high and medium risk-level property.

Table 1 provides a comprehensive overview of high- and medium-risk vulnerabilities
identified across various intentionally vulnerable Web applications, analyzed using the
OWASP 2021 Top 10. The applications included in this analysis—Acuart, Acuforum,
Altoro, bWAPP, DVWA, JuiceShop, RestAPI, and SecurityTweets (ST)—are purposefully
designed to contain a range of vulnerabilities, making them ideal for testing the detection
capabilities of the developed system. This table highlights the vulnerabilities detected by
the scanner, focusing on critical areas within access control, injection vulnerabilities, and
security misconfiguration.

The primary classes of detected vulnerabilities fall within OWASP_2021_A01 (broken ac-
cess control), OWASP_2021_A03 (injection), and OWASP_2021_A05 (security misconfiguration).
Under broken access control (OWASP_2021_A01), the analysis revealed several vulnerabili-
ties related to insufficient enforcement of access restrictions, including issues such as CORS
misconfiguration, cross-domain misconfigurations, bypassing of HTTP 403 errors, and the
absence of anti-CSRF tokens. These weaknesses, present across applications like Acuart,
Acuforum, and bWAPP, indicate a consistent pattern of poor access control configurations,
which could allow for unauthorized access to sensitive application functions or data.

Injection vulnerabilities (OWASP_2021_A03) were also prevalent, particularly across
applications such as DVWA, Altoro, and Acuart. The system identified multiple types of
injection attacks, including SQL injection, advanced SQL injection, and cross-site scripting
(XSS), which expose applications to the risk of unauthorized data access and potential
data corruption. Additionally, vulnerabilities such as NoSQL injection and remote file
inclusion were noted, reflecting the diverse range of injection risks that can compromise
application integrity. These findings underscore the need for rigorous input validation and
secure coding practices to prevent attackers from injecting malicious code or commands
into vulnerable applications.

Security Misconfiguration (OWASP_2021_A05) emerged as another major category of
detected vulnerabilities, with recurring issues like missing CSP headers, backup file dis-
closure, insecure HTTP methods, and the lack of anti-clickjacking headers across several
applications, including JuiceShop and bWAPP. Security misconfigurations make applica-
tions vulnerable to a variety of attacks, often due to incomplete or improperly implemented
security controls. The presence of these vulnerabilities across multiple applications sug-
gests a lack of consistency in configuration practices, exposing systems to risks that could
otherwise be mitigated through careful configuration management.

http://localhost:8070
http://localhost:8071
http://localhost:8072
https://fenix-qua.iscte-iul.pt
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Table 1. Overview of vulnerability alerts generated by the system in tests carried out on intentionally
Vulnerable Web Applications.

Acuart Acuforum Altoro bWAPP DVWA JuiceShop RestAPI ST

OWASP-2021-A01
CORS Misconfiguration X X X
Cross-Domain Misconfiguration X X X
Bypassing 403 X X
Absence of Anti-CSRF Tokens X X X X X X
Path Traversal X X
Directory Browsing X
Session ID in URL Rewrite X

OWASP-2021-A03
Cross-Site Scripting X X X X
Advanced SQL Injection X X X X
SQL Injection X X X X
External Redirect X
Integer Overflow Error X
Cookie Slack Detector X
NoSQL Injection X X
Remote File Inclusion X
XSLT Injection X
Open Redirect X

OWASP-2021-A04
Exponential Entity Expansion X
Parameter Tampering X

OWASP-2021-A05
CSP Header Not Set X X X X X X X X
Anti-CSRF Token Check X X X X X X
Backup File Disclosure X
HTTP Only Site X X X X X
Missing Anti-clickjacking Header X X X X X X X X
Source Code Disclosure X X X X X
Sub-Resource Integrity Missing X X X X
Insecure HTTP Method X
Relative Path Confusion X X
Web Cache Deception X X X
Proxy Disclosure X
Application Error Disclosure X

OWASP-2021-A09
Vulnerable JS Library X X

OWASP-2021-A10
Server-Side Request Forgery X

Beyond the primary categories where the system generated the most alerts, it was also
able to detect and report vulnerabilities in additional categories. Although these detections
were less frequent, it is significant to note that the system demonstrated the capability
to identify vulnerabilities across other areas beyond those mentioned previously. This
includes alerts within OWASP_2021_A04 (insecure design), where issues such as parameter
tampering and exponential entity expansion were identified. Additionally, some vulnera-
bilities were detected in OWASP_2021_A09 (security logging and monitoring failures) and
OWASP_2021_A10 (server-side request forgery). While these alerts were generated in smaller
numbers, they emphasize the system’s broader detection range, capable of identifying a
diverse array of vulnerability types.

However, there were categories in which the system did not generate any alerts,
specifically OWASP_2021_A02 (cryptographic failures), OWASP_2021_A06 (vulnerable and
outdated components), OWASP_2021_A07 (identification and authentication failures), and
OWASP_2021_A08 (software and data integrity failures). This absence of alerts could imply
that the tested applications were adequately protected against these categories of vulner-
abilities, or it may indicate that the system lacks the ability to detect issues within these
specific classes.

4.2. Content Management Systems (CMSs)

As in the previous section, here, we analyze the alerts generated in the content manage-
ment system tests. The alerts are grouped according to the OWASP Top 10 categorization,
and the alerts to be analyzed were generated with the high and medium risk-level property.
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Table 2 summarizes the results of the vulnerability assessments conducted on three
content management systems (CMSs): WordPress, Drupal, and Joomla. The detected vulner-
abilities are categorized according to the OWASP 2021 Top 10 framework, specifically under
categories OWASP_2021_A01, OWASP_2021_A03, and OWASP_2021_A05, each representing a
common class of Web security risks.

Table 2. Overview of vulnerability alerts generated by the system in tests carried out on content
management systems.

Wordpress Drupal Joomla

OWASP-2021-A01
CORS Misconfiguration X
Bypassing 403 X X

OWASP-2021-A03
SQL Injection X X X
Buffer Overflow X
Integer Overflow Error X
SQL Injection - SQLite X
Server-Side Template Injection X
Advanced SQL Injection X

OWASP-2021-A05
Content Security Policy (CSP) Header Not Set X X X
Source Code Disclosure - SQL X
Missing Anti-clickjacking Header X
Backup File Disclosure X

Under OWASP_2021_A01, which addresses broken access control, WordPress was found
to have vulnerabilities related to CORS misconfiguration and bypassing 403 errors. Addi-
tionally, an SQL injection vulnerability was identified, highlighting potential risk points for
unauthorized access within the WordPress setup.

In OWASP_2021_A03, focused on injection vulnerabilities, a broader range of security
issues was detected. WordPress was found to be vulnerable to buffer overflow, SQL
injection (specifically SQLLite-based), and integer overflow errors. Moreover, an advanced
SQL injection was identified, indicating a severe security risk. For Joomla, a server-side
template injection vulnerability was detected, which could allow attackers to execute
server-side code within the application.

Finally, OWASP_2021_A05 pertains to security misconfigurations. For WordPress, several
issues were noted, including the absence of a Content Security Policy (CSP) header, source
code disclosure, and a missing anti-clickjacking header. Additionally, a backup file disclosure
vulnerability was observed, which could expose sensitive configuration files. For Joomla, the
system also lacked a CSP header, indicating similar risks in header security configurations.

These results underscore the critical vulnerabilities present in common CMS platforms
and highlight the importance of implementing robust security configurations, especially
regarding access control and injection prevention measures. The findings suggest that
WordPress may require significant improvements in handling CORS configurations, SQL
injections, and security header implementations, while Joomla shows specific risks in
template injections and security headers. These results emphasize the need for continuous
security monitoring and updates within CMS environments to protect against common
Web application vulnerabilities.

4.3. Fenix ISCTE Site

During the analysis of the ISCTE website, vulnerabilities were identified across five
categories of the OWASP Top 10: broken access control (A01), injection (A03), insecure
design (A04), security misconfiguration (A05), and software and data integrity failures
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(A08). As we were dealing with a real site, extra validation was carried out to see if
the generated alerts really did point to security flaws in the site that could be exploited.
High-confidence alerts included issues such as “Content Security Policy (CSP) Header
Not Set”, “Sub Resource Integrity Attribute Missing”, “Server Leaks Version Information
via ’Server’ HTTP Response Header Field”, and “Strict-Transport-Security Header Not
Set”. While these indicate potential areas for improvement, none was deemed to pose an
immediate threat due to the presence of alternative protective mechanisms. A critical risk
alert, “Path Traversal”, was also triggered but with a low confidence level, meaning the
system flagged suspicious behavior but could not gather sufficient evidence to confirm or
exploit the vulnerability. This suggests a potential false positive. A deeper investigation
confirmed that despite the identified alerts, the application maintains a secure posture. For
example, while the “Content Security Policy (CSP) Header Not Set” alert was accurate, the
application employed other robust measures to restrict resource loading effectively. Overall,
the analysis concluded that the ISCTE website implements adequate security controls,
mitigating the highlighted risks.

4.4. Comparison of Analysis Duration

The time taken to run each analysis was recorded and is interesting to observe. The
duration of the analyses was only set for demonstration and study purposes, and this
variable always depends on the capacity of the hardware on which the SIAAS system runs.

Looking at the graph in Figure 8, we can conclude that the duration of the analyses
carried out on the purposely vulnerable applications were all relatively quick (less than
an hour), with the “bWAPP” target having the longest analysis of around 58.38 min. The
majority of the scans took less than 20 min to complete, with the average duration of scans
on purposefully vulnerable applications being approximately 25.7 min.
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Figure 8. Graph of the duration of analysis of intentionally vulnerable applications by target.

With regard to the duration of the analyses carried out on the Fenix Iscte target and
the CMSs, these results were much longer than the times for the first group of applications
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tested. As we can see in Figure 9, the longest duration was that of the real site, Fenix Iscte, at
303.1 min, about six times longer than the average of the purposely vulnerable applications.
This difference can be explained by the fact that these applications are larger and have
complex authentication and permissions logic, which naturally requires more processing
time for an exhaustive analysis. Purposely vulnerable applications, on the other hand, are
simpler and designed to facilitate fault detection, resulting in shorter analysis times.
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Figure 9. Graph of the duration of analysis of CMS applications and the ISCTE site by target.

5. Conclusions
The complexity of Web application security is underscored by the wide range of vul-

nerabilities that attackers can exploit. The literature review highlighted the evolution of
Web applications, from basic static models to complex, interactive systems. This technologi-
cal advancement has led to a substantial increase in the number of identified vulnerabilities
per application. Through this research, not only were the primary risks and vulnerabilities
in Web applications identified, but a system was developed to automate the detection of
these vulnerabilities.

Our research findings confirm that developing a platform using a single open-source
tool to automate vulnerability detection in Web applications, without requiring high levels
of technical expertise, is feasible. The system implements an automated workflow, with
sequential steps that allow for comprehensive vulnerability detection and present results
to the user in an organized and intuitive manner.

The automated vulnerability detection system demonstrated to be a valuable and
effective tool, particularly in meeting its goal of simplifying vulnerability detection for users
with limited cybersecurity knowledge. The system successfully identified and categorized
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critical vulnerabilities according to the OWASP Top 10 framework, producing results that
can be understood by non-specialized users.

Additionally, tests on real-world applications, such as Fenix ISCTE, WordPress, Dru-
pal, and Joomla, running in a controlled environment, validated the system’s efficacy in
handling authentication processes and detecting security flaws in complex applications.
However, limitations were observed in performing authenticated scans on certain types of
applications, which represents an area for future improvement.

This research aims to improve application security by providing a straightforward,
cost-free solution that informs users—individuals or businesses—about vulnerabilities in
their Web applications. By utilizing a single open-source tool, this system enables a more
accessible vulnerability detection process, even for users with limited technical experience.
This approach allows users to test their applications, identify potential security issues,
and take corrective action without relying on complex or costly commercial solutions,
thereby promoting safer development and deployment of Web applications. In scenarios
where authentication does not work as expected, one potential solution is to test the
application in a secure environment with the authentication process temporarily disabled.
This approach ensures that the system can perform a thorough analysis of the application’s
security without being hindered by authentication barriers, providing valuable insights
while maintaining the integrity of the testing process.

Considering the limitations identified in this study, future research efforts could
aim to advance the system’s capabilities in two key areas. First, integrating additional
vulnerability analysis tools, such as Nikto or Arachni, would enable a more comprehensive
and precise analysis, broadening the range of vulnerabilities the system can detect. Due to
the system’s design, which prioritizes low computational resource usage, analyses targeting
the same application would need to be conducted sequentially. This approach ensures that
the system remains lightweight while still allowing the combined strengths of multiple
tools to be utilized. Moreover, integrating the results from different tools would require
normalization of their outputs to ensure consistency and coherence. This normalization
is achievable thanks to the granular control over the analysis process provided by the
developed system, which guarantees that results from diverse tools can be aligned and
consolidated effectively.

Secondly, developing a management interface to customize results could enhance
targeted vulnerability management. This interface would allow users to generate custom
reports or structure the output to meet specific needs, further improving usability. Consoli-
dating results from multiple tools within this interface would also facilitate meaningful
insights, leveraging the normalized outputs to provide a unified view of detected vulnera-
bilities.

By addressing these areas, the system could evolve into a more robust and flexible tool
for vulnerability detection, capable of accommodating a wider variety of security contexts
and user requirements. Such developments would ensure the system’s continued relevance
and effectiveness, even as security challenges grow increasingly complex.
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