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A B S T R A C T

We present ab initio global general-relativistic Particle-in-cell (GR-PIC) simulations of compact millisecond
neutron star magnetospheres in the axisymmetric aligned rotator configuration. We investigate the role of
GR and plasma supply on the polar cap particle acceleration efficiency – the precursor of coherent radio
emission – employing a new module for the PIC code OSIRIS, designed to model plasma dynamics around
compact objects with fully self-consistent GR effects. We provide a detailed description of the main sub-
algorithms of the novel PIC algorithm, including a charge-conserving current deposit scheme for curvilinear
coordinates. We demonstrate efficient particle acceleration in the polar caps of compact neutron stars with
denser magnetospheres, numerically validating the spacelike current extension provided by force-free models.
We show that GR relaxes the minimum required poloidal magnetospheric current for the transition of the
polar cap to the accelerator regime, thus justifying the observation of weak pulsars beyond the expected death
line. We denote that spin-down luminosity intermittency and radio pulse nullings for older pulsars might arise
from the interplay between the polar and outer gaps. Also, narrower radio beams are expected for weaker
low-obliquity pulsars.
1. Introduction

Neutron stars are exquisite physics laboratories coupling extreme
magnetic fields with strong gravitational fields. These compact astro-
physical objects were discovered in 1967 as radio pulsars (Hewish
et al., 1968). Since then pulsars have been observed as bright sources
of electromagnetic radiation, from radio to gamma rays. Despite recent
advances in understanding the intricate dynamics of their magne-
tospheres, propelled in part by the available computational power,
we still lack a complete picture that explains the observed radiation
features.

Goldreich and Julian (1969) noted that an isolated neutron star
modelled by a rotating spheric perfect conductor that is threaded by a
dipolar magnetic field would induce an electric field strong enough to
extract charged particles from its surface, populating its magnetosphere
with a dense charge-separated plasma. In an ultra-strong magnetic
field, the electromagnetic force dominates, leading to the force-free
condition, where plasma shorts out the electric field parallel to the
magnetic field. Consequently, particles move along magnetic field lines,
which corotate rigidly with the neutron star. A crucial element in the
magnetosphere is the light cylinder radius, 𝑅LC = 𝑐∕𝛺∗, the distance
from the rotational axis after which corotation is not possible due to
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its tangential speed exceeding the light speed. This boundary separates
the closed corotating field lines from the open bundle originating from
the polar cap of the neutron star. The outflowing particles generate
poloidal currents that sweep back the open field lines, inducing a
toroidal component. Beyond the light cylinder radius, an equatorial
current sheet forms to support the discontinuity of the toroidal mag-
netic field component. In this region, the poloidal electric field and the
toroidal magnetic field result in an outflowing Poynting flux that we
observe as a spin-down luminosity. Contopoulos et al. (1999) confirmed
this model by numerically solving the ‘‘pulsar equation’’ (Scharlemann
and Wagoner, 1973; Michel, 1973), the time-independent version of
force-free electrodynamics. This work established the standard mag-
netospheric picture, providing the complete magnetospheric current
closure with a y-shaped current layer flowing between the open and
closed field lines.

Observations of pulsar wind nebulae (PWNe), i.e. rotation-powered
structures formed from the ejection of plasma advected from the inner
pulsar magnetosphere (Kirk et al., 2009; Mitchell and Gelfand, 2022),
support the force-free solution given that there is a dense plasma
to screen the non-ideal electric field everywhere (Gruzinov, 2005;
Spitkovsky, 2006; Kalapotharakos and Contopoulos, 2009; Timokhin,
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2007; Bai and Spitkovsky, 2010; Pétri, 2012; Philippov and Spitkovsky,
2014). However, these models do not constrain the mechanism that
provides the plasma to drive the required magnetospheric currents.
Without external plasma sources, there must exist dissipative regions
– gaps – within the magnetosphere where particles accelerate and pro-
duce pairs that cancel the accelerating electric field. These gaps would
operate at much shorter time scales (microseconds) than the magne-
tospheric time scales (milliseconds to seconds, thus quasi-stationary),
consistent with the force-free solution. Several studies explored the
observational implications of the polar cap gap (Daugherty and Hard-
ing, 1982; Usov and Melrose, 1995; Daugherty and Harding, 1996;
Ruderman and Sutherland, 1975), slot gap (Arons and Scharlemann,
1979; Arons, 1983; Muslimov and Harding, 2003, 2004), and outer
gap models (Cheng et al., 1986; Romani, 1996; Takata et al., 2004;
Hirotani, 2008), highlighting the importance of these gaps not only to
provide the necessary plasma to the magnetosphere but also to explain
the observed electromagnetic spectrum (e.g., Jun-Tao et al. (2021)).

The radio beam in radio pulsars originates from a region above the
pair formation front of the polar cap gap due to the nonlinear screening
of the accelerating electric field. The misalignment of the magnetic
and rotation axis leads to a pulsed behaviour as the beam crosses our
line of sight periodically, similar to a lighthouse. These radio pulses
contain microstructures, some possessing single (Drake and Craft, 1968;
Deshpande and Rankin, 1999; Vivekanand and Joshi, 1999) or multiple
drifting components (Qiao et al., 2004; Basu et al., 2018). Models to
explain this behaviour assume a limitation in the extracted charged
particles from the stellar surface such that the spark filaments no longer
corotate with it. Hence, the sub-pulses undergo an 𝐸 ×𝐵 drift different
from the field lines due to the parallel electric field at the base of those
field lines. Ruderman and Sutherland (1975) (hereafter RS75) assumed
the case where no particles could be lifted from the stellar surface,
thus forming a vacuum gap above it. The intermediate model of Gil
et al. (2003) allows a thermionic outflow from the surface forming a
partially screened gap (PSG). This model accommodates a necessary
reduction of the drifting speed and provides a better estimate of the
X-ray luminosity from the backflow bombardment of particles. The
space charge limited flow model (SCLF) by Arons and Scharlemann
(1979), where particles can freely escape from the stellar surface, does
not provide a natural explanation for this phenomenon. The binding
energies of either ions or electrons should not be too high, thus motivat-
ing the SCLF model (Medin and Lai, 2010). Alternatively, studies have
highlighted the possibility of strongly bound particles in bare strange
quark stars (Ren-xin and Guo-jun, 1998; Xu et al., 1999; Yu and Xu,
2011), favouring the RS75 or PSG models.

First principle global magnetospheric models that capture the ki-
netic plasma scales are the best way to introduce the effects of these
dissipative regions. Several works have proposed tools to tackle this
very computationally demanding task in one-dimension (Timokhin,
2010; Timokhin and Arons, 2012), two-dimensions (Chen and Be-
loborodov, 2014; Belyaev, 2015b,a; Cerutti et al., 2013, 2015; Philip-
pov et al., 2015a; Cerutti and Philippov, 2017; Cruz et al., 2021; Hu and
Beloborodov, 2022; Bransgrove et al., 2022; Cruz et al., 2023) or three-
dimensions (Philippov et al., 2015b; Cerutti and Beloborodov, 2016;
Philippov and Spitkovsky, 2018; Kalapotharakos et al., 2018; Brambilla
et al., 2018; Cerutti et al., 2020; Hakobyan et al., 2023). The work by
Philippov et al. (2015b) concluded that the polar cap of low obliquity
rotators has weak particle acceleration, suppressing the pair produc-
tion and shutting down the radio pulsar mechanism. Several authors
later introduced the general-relativistic frame-dragging effect (Beskin,
1990; Muslimov and Tsygan, 1992) into Faraday’s induction equation,
demonstrating that this effect could potentiate the ignition of the polar
cap even for the aligned rotator (Philippov et al., 2015a; Chen et al.,
2020; Philippov et al., 2020; Bransgrove et al., 2022) as predicted
by general-relativistic force-free models (Belyaev and Parfrey, 2016;
Gralla et al., 2016; Huang et al., 2018). Although such kinetic mod-
2

els are able to capture the polar cap ignition, qualitative corrections s
from neglecting the lapse function and general-relativistic magnetic
field topology (Torres et al., 2023) are not resolved. One of such
parameters of utmost importance is the spacelike angle 𝜃SL, expected
to limit the poloidal extension of the observed pulsar radio emission
generation volume. This angle was obtained analytically for force-
free models (Belyaev and Parfrey, 2016; Gralla et al., 2016), but was
not yet verified using general-relativistic particle-in-cell simulations.
Thus, ab initio simulations of neutron star magnetospheres with fully
self-consistent general-relativistic effects still lack in the community.

The purpose of this paper is to present the first simulations of
compact millisecond neutron stars including self-consistent general-
relativistic effects, using a charge-conserving GR-PIC code. Also, we
summarize all the necessary techniques required for the implementa-
tion of a GR-PIC code. As far as we know, a systematic description of
the GR-PIC algorithm does not exist in the literature. We detail the
methodology and algorithms used to extend the particle-in-cell code
OSIRIS to include GR effects in Section 2. In Sections 3 and 4, we
perform numerical experiments of such magnetospheres by varying the
plasma injection methods to explore the full range of magnetospheric
solutions, from quasi-force-free to full-charge-separated solutions, ex-
panding on the consequent observational implications. We show that
the correct dimensions of the polar cap and spacelike current region can
only be obtained when considering the lapse function effects. Also, we
demonstrate that charge-separated magnetospheric solutions possess
smaller values of the spacelike angle with respect to force-free (FF)
estimates. Therefore, we conjecture the existence of narrower radio
beams from weak pulsars, some still observable beyond the expected
death line. Conclusions and future prospects are presented in Section 5.

2. GR-PIC method

In this section, we detail the extension module of general relativ-
ity to the OSIRIS particle-in-cell framework (Fonseca et al., 2002).
We describe the main equations and integration algorithms imple-
mented in OSIRIS including the field solver, equations of motion,
charge conservation, and boundary conditions. A general description
of the techniques and methodologies (independent of the internal
specifics/implementation of the PIC code) is provided to facilitate their
implementation in other PIC codes.

Throughout the paper, we use units in which 𝑐 = 𝐺 = 1, the
−,+,+,+) metric signature, and stellar properties are characterized by

an asterisk in subscript (e.g., 𝑅∗ for the stellar radius). In addition, we
adopt the 3+1 formalism of general relativity (Thorne and MacDonald,
1982).

2.1. Metric

The astrophysical objects we are interested in constitute the class
of compact objects where the background metric is no longer a flat
(Minkowski) metric. We focus our study on the dynamics of the magne-
tospheres of black holes and neutron stars. The electromagnetic energy
density in such environments is negligibly small compared to their
corresponding total mass density. Consequently, we can assume a fixed
background metric for these systems. Black holes and neutron stars are
modelled by the Kerr and the Hartle–Thorne metric (Hartle and Thorne,
1968), respectively. However, as neutron stars rotate at significantly
smaller angular velocities, one can invoke the slow-rotation approxi-
mation and simplify the corresponding metric (𝑅∗𝛺∗ ≪ 1) for neutron
tars. In this approximation, and keeping only the linear terms of the
ngular velocity, the exterior metric takes the form (Hartle, 1967):

𝑠2 = − 𝛼2d𝑡2 + 𝛾𝑖𝑗
(

d𝑥𝑖 + 𝛽𝑖d𝑡
) (

d𝑥𝑗 + 𝛽𝑗d𝑡
)

= − 𝛼2d𝑡2 + 𝛼−2d𝑟2 + 𝑟2d𝛺2 − 2𝜔(𝑟)𝑟2 sin2 𝜃d𝜙d𝑡, (1)

here 𝛼 =
√

1 − 𝑅𝑠∕𝑟 and 𝛽𝑖 = (0, 0,−𝜔) are the lapse function and
hift vector, respectively, 𝛾 is the spatial part of the metric, 𝑅 is the
𝑖𝑗 𝑠
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Schwarzschild radius, and d𝛺2 = d𝜃2+sin2 𝜃d𝜙2. Interestingly, this met-
ric is equivalent to the slow-rotation approximation of the Kerr metric,
which leads us to adopt the Boyer–Lindquist coordinate system (𝑡, 𝑟,
𝜃, 𝜙). Currently, OSIRIS has the Minkowski, the Schwarzschild, and
the slow-rotation approximation of the Kerr metric implemented. The
Minkowski metric is recovered in the zero compactness limit (𝑅𝑠 → 0),
nd the Schwarzschild metric by neglecting the frame-dragging effect
𝜔(𝑟) → 0). The latter effect is a correction that captures the differential
otation 𝜔(𝑟) associated with a free-falling inertial frame (Ravenhall and
ethick, 1994):

(𝑟) ≡ d𝜙
d𝑡

≈ 0.21𝛺∗
𝑅𝑠

𝑅∗ − 𝑅𝑠

(

𝑅∗
𝑟

)3
=

𝜔0

𝑟3
. (2)

We define fiducial observers (FIDOs) with world lines normal to
spatial hypersurfaces of constant ‘‘universal’’ time. The lapse function
relates the rate at which the local fiducial observer clock ticks in
relation to the universal time. Hence, the lapse function translates
local time-measured quantities to the universal time. The shift vector
measures the angular velocity at which the coordinate frame shears in
relation to the FIDOs. We select FIDOs corotating with the absolute
space, thus considering zero angular momentum observers (ZAMOs). In
these hypersurfaces, we use the orthonormal basis vectors and vectorial
components, i.e. 𝑒𝑖 ≡ 𝑒𝑖∕

√

𝛾𝑖𝑖 and 𝐴𝑖 ≡
√

𝛾𝑖𝑖𝐴𝑖 such that 𝑨 = 𝐴𝑖𝑒𝑖 = 𝐴𝑖𝑒𝑖.
This basis allows for a trivial extension of three-dimensional vectorial
operations to curved geometries. Also, the definition of line, area, and
volume elements is modified according to Eq. (1) - see Appendix A.

2.2. Grid and coordinates

So far, we have addressed the metric that defines the system dynam-
ics. In this section, we exploit the usage of different coordinate systems
for the same metric (e.g., cartesian or spherical for the Minkowski
metric).

Compact objects are naturally described in spherical coordinates.
Using body-fitted coordinate grids simplifies the inclusion of system
symmetries and boundary conditions. Another degree of freedom is
the usage of linear or non-uniform grid spacings. A common feature
in similar codes is to allow uniform grid spacings in log 𝑟 (logarithmic
coordinate) and −cos 𝜃 (equal area coordinate). The first allows for
higher resolution close to the central object, while the second enforces
constant charge density of each macro-particle in the meridional direc-
tion (Belyaev, 2015a). These two properties have shown a reduction of
numerical noise on the axis and increased code stability. Therefore, the
OSIRIS-GR module has these two options available. Linear grid spacing
options are also available, although these are not explored in the cur-
rent paper. Another possibility available is to adopt logical coordinates,
i.e. (𝑟, 𝜃) = (log 𝑟, −cos 𝜃), which possesses the two properties described
above and retains uniform grid spacings. The background metric in the
new coordinate system takes the form:

d𝑠2 = −𝛼2d𝑡2 + exp (2𝑟)
(

d𝑟2

𝛼2
+ d𝜃2

1 − 𝜃2

)

+ exp (2𝑟)
((

1 − 𝜃2
) (

d𝜙2 − 2𝜔(𝑟)d𝜙d𝑡
))

. (3)

t is important to highlight that vectors and tensors are identical if writ-
en on the orthonormal basis, independently of the chosen coordinates:

̃�̂� =
√

𝛾𝑟𝑟�̃�
𝑟 =

exp (𝑟)
𝛼

exp (−𝑟)𝐴𝑟 = 1
𝛼
𝐴𝑟 = 1

𝑟
𝐴�̂�

𝛼−1
= 𝐴�̂�. (4)

e should also mention that this is only possible for orthogonal metric
ystems, i.e. diagonal spatial metrics.

Also, the OSIRIS-GR module introduces a new possibility towards
odelling compact object magnetospheres via the half-domain setup.
his simulation mode differs from the standard pole-to-pole meridional
xtension (0 ≤ 𝜃 ≤ 𝜋) by reducing the poloidal plane in half, thus
ossessing a pole-to-equator meridional extension (0 ≤ 𝜃 ≤ 𝜋∕2). This
3

ovel numerical setup captures the global magnetospheric current clo-
ure while reducing the computational cost of emulating the complete
oloidal plane. In this way, a higher number of macro-particles can
e employed, increasing the statistical significance and reducing the
ssociated numerical noise. This simulation mode is particularly inter-
sting to study the pulsar polar cap dynamics, where the asymmetric
ode development of the equatorial current sheet may be neglected to

eading order.

.3. Maxwell’s equations

In the 3+1 formalism, Maxwell’s equations take the form (Komis-
arov, 2011):

⋅ 𝑬 = 4𝜋𝜌, (5)

⋅ 𝑩 = 0, (6)

× (𝛼𝑬 + 𝜷 × 𝑩) = − 𝜕𝑩
𝜕𝑡

, (7)

𝛁 × (𝛼𝑩 − 𝜷 × 𝑬) = 𝜕𝑬
𝜕𝑡

+ 4𝜋 (𝛼𝒋 − 𝜌𝜷) , (8)

here 𝑬, 𝑩, 𝒋 and 𝜌 are physical quantities measured by fiducial
bservers in co-rotation with the absolute space (ZAMOs). In spherical
oordinates, Maxwell’s equations are better described in the integral
orm using the Kelvin–Stokes theorem on a Yee-lattice (Belyaev, 2015b;
erutti et al., 2015). The OSIRIS-GR module adopts the spherical cell
hown in Fig. 1. In this way, the curl terms can be written as
(

𝛁 × �̃�
)�̂�
𝑖,𝑗+1∕2 =

𝛼𝑖
𝐴�̂�
𝑖,𝑗+1∕2

(

𝑙�̂�𝑖,𝑗+1𝐸
�̂�
𝑖,𝑗+1 − 𝑙�̂�𝑖,𝑗𝐸

�̂�
𝑖,𝑗

)

, (9)

(

𝛁 × �̃�
)�̂�
𝑖+1∕2,𝑗 =

1
𝐴�̂�
𝑖+1∕2,𝑗

(

𝑙�̂�𝑖,𝑗𝛼𝑖𝐸
�̂�
𝑖,𝑗 − 𝑙�̂�𝑖+1,𝑗𝛼𝑖+1𝐸

�̂�
𝑖+1,𝑗

)

, (10)

(

𝛁 × �̃�
)�̂�
𝑖+1∕2,𝑗+1∕2 =

𝑙�̂�𝑖+1∕2

𝐴�̂�
𝑖+1∕2,𝑗+1∕2

(

𝛼𝑖+1∕2
(

𝐸 �̂�
𝑖+1∕2,𝑗 − 𝐸 �̂�

𝑖+1∕2,𝑗+1

)

+ 𝛽�̂�𝑖+1∕2,𝑗+1𝐵
�̂�
𝑖+1∕2,𝑗+1 − 𝛽�̂�𝑖+1∕2,𝑗𝐵

�̂�
𝑖+1∕2,𝑗

)

+ 1

𝐴�̂�
𝑖+1∕2,𝑗+1∕2

(

𝑙�̂�𝑖+1,𝑗+1∕2𝛼𝑖+1𝐸
�̂�
𝑖+1,𝑗+1∕2 − 𝑙�̂�𝑖,𝑗+1∕2𝛼𝑖𝐸

�̂�
𝑖,𝑗+1∕2

+ 𝑙�̂�𝑖+1,𝑗+1∕2𝛽
�̂�
𝑖+1,𝑗+1∕2𝐵

�̂�
𝑖+1,𝑗+1∕2 − 𝑙�̂�𝑖,𝑗+1∕2𝛽

�̂�
𝑖,𝑗+1∕2𝐵

�̂�
𝑖,𝑗+1∕2

)

, (11)
(

𝛁 × �̃�
)�̂�
𝑖+1∕2,𝑗 =

𝛼𝑖+1∕2
𝐴�̂�
𝑖+1∕2,𝑗

(

𝑙�̂�𝑖+1∕2,𝑗+1∕2𝐵
�̂�
𝑖+1∕2,𝑗+1∕2

− 𝑙�̂�𝑖+1∕2,𝑗−1∕2𝐵
�̂�
𝑖+1∕2,𝑗−1∕2

)

, (12)
(

𝛁 × �̃�
)�̂�
𝑖,𝑗+1∕2 =

1
𝐴�̂�
𝑖,𝑗+1∕2

(

𝑙�̂�𝑖−1∕2,𝑗+1∕2𝛼𝑖−1∕2𝐵
�̂�
𝑖−1∕2,𝑗+1∕2

− 𝑙�̂�𝑖+1∕2,𝑗+1∕2𝛼𝑖+1∕2𝐵
�̂�
𝑖+1∕2,𝑗+1∕2

)

, (13)

(

𝛁 × �̃�
)�̂�
𝑖,𝑗 =

𝑙�̂�𝑖

𝐴�̂�
𝑖,𝑗

(

𝛼𝑖
(

𝐵�̂�
𝑖,𝑗−1∕2 − 𝐵�̂�

𝑖,𝑗+1∕2

)

+ 𝛽�̂�𝑖,𝑗−1∕2𝐸
�̂�
𝑖,𝑗−1∕2 − 𝛽�̂�𝑖,𝑗+1∕2𝐸

�̂�
𝑖,𝑗+1∕2

)

+ 1

𝐴�̂�
𝑖,𝑗

(

𝑙�̂�𝑖+1∕2,𝑗𝛼𝑖+1∕2𝐵
�̂�
𝑖+1∕2,𝑗 − 𝑙�̂�𝑖−1∕2,𝑗𝛼𝑖−1∕2𝐵

�̂�
𝑖−1∕2,𝑗

+ 𝑙�̂�𝑖−1∕2,𝑗𝛽
�̂�
𝑖−1∕2,𝑗𝐸

�̂�
𝑖−1∕2,𝑗 − 𝑙�̂�𝑖+1∕2,𝑗𝛽

�̂�
𝑖+1∕2,𝑗𝐸

�̂�
𝑖+1∕2,𝑗

)

, (14)

with �̃� ≡ 𝛼𝑬 + 𝜷 × 𝑩 and �̃� ≡ 𝛼𝑩 − 𝜷 × 𝑬, respectively. Expressions
for the line and area elements are detailed in Appendix A. Up to this
point, we have assumed 𝛽�̂� as the only non-zero component, with a
purely radial dependence in 𝛼, and neglected all azimuthal derivatives
(axisymmetry). The evolution equations are then expressed as in the
typical (Yee, 1966) scheme

𝑩𝑛+1∕2 = 𝑩𝑛 − 𝛥𝑡 (𝛁 × �̃�
)𝑛 , (15)
2
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Fig. 1. Spherical Yee cell adopted in OSIRIS-GR with the location in the numerical
cell where each electromagnetic component is defined.

𝑬𝑛+1 = 𝑬𝑛 + 𝛥𝑡
(

𝛁 × �̃�
)𝑛+1∕2 − 4𝜋𝛥𝑡𝐽 𝑛+1∕2, (16)

𝑩𝑛+1 = 𝑩𝑛+1∕2 − 𝛥𝑡
2

(

𝛁 × �̃�
)𝑛+1 , (17)

with 𝐽 ≡ 𝛼𝒋 − 𝜌𝜷 and 𝑛 being the temporal index. Eq. (16) also shows
that to correctly push in time the electric field we need to gather the
particle’s half-step charge density and current (see Section 2.5 and
Appendix B). Due to the complex coupling introduced by Eqs. (11) and
(14), the poloidal components are pushed in time before the azimuthal
ones in Eqs. (16) and (17). By applying the Newtonian limit, we retrieve
the Minkowski version of the evolution equations in Belyaev (2015b)
and Cerutti et al. (2015). Notice that (9)–(14) can be applied to any
axisymmetric system given a diagonal spatial metric (e.g. spherical,
cylindrical, toroidal).

2.4. Particle pusher

In the 3+1 formalism, the equations of motion for a charged par-
ticle (Thorne and MacDonald, 1982; Philippov et al., 2015a; Parfrey
et al., 2019) are given by

d𝑟𝑖
d𝑡

𝒆𝑖 =
𝛼
𝛤
𝒖 − 𝜷, (18)

d𝑢𝑖
d𝑡

𝒆𝑖 =
𝛼𝑞
𝑚

(

𝑬 + 𝒖
𝛤

× 𝑩
)

+ 𝛼𝛤𝒈 + 𝛼𝑯 ⋅ 𝒖 + 𝑭 RR − 𝑭 Coord, (19)

where 𝒈 is the gravitational acceleration, 𝑯 is the gravitomagnetic
tensor, 𝒑 = 𝑚𝛤𝒗 = 𝑚𝒖 is the FIDO-measured momentum, 𝑞 and 𝑚
are the charge and mass of each macro-particle, 𝛤 =

√

𝜀 + 𝒖 ⋅ 𝒖 is
the particle’s special relativistic Lorentz factor, and 𝜀 = 0 (= 1) for

assless (massive) particles. Eq. (18) shows that the particle velocity
s composed of the FIDO-measured velocity, 𝛼𝒖∕𝛤 , and the FIDO’s

velocity, 𝜷. Eq. (19) details which forces dictate the particle dynam-
ics. From left to right, we identify the Lorentz, the gravitational, the
gravitomagnetic, the classical radiation reaction (Vranic et al., 2016;
Landau and Lifschitz, 1975), and the ‘‘coordinate’’ forces. The last term
comprises the generalized fictitious forces associated with the use of the
orthonormal vector basis:

𝑭 Coord = 𝑢𝑖
d𝒆𝑖
d𝑡

=

√

𝛾𝑖𝑖
√

𝛾𝑘𝑘
𝛤 𝑖
𝑘𝑗𝑢

�̂� d𝑥𝑗
d𝑡

𝒆𝑖 = 𝛤 𝑖
�̂�𝑗
𝑢�̂� d𝑥

𝑗

d𝑡
𝒆𝑖, 𝑘 ≠ 𝑖, (20)

here 𝛤 𝑖
𝑘𝑗 are the spatial Christoffel symbols defined in Appendix A.

e advance in time the contravariant positions and the orthonormal
ontravariant momenta, i.e. 𝒓 ≡ 𝑟𝑖𝒆𝑖 and 𝒖 ≡ 𝑢𝑖𝒆𝑖. To do so, we employ
novel variant of the Strang splitting method to advance in time the

quations of motion (Strang, 1968), which uses leapfrogged positions
4

nd velocities. Thus, defining the positions centred in integer time steps
and the 𝒖 velocities in half-time steps, the discretized equations of
motion read:

𝒖∗ = 𝒖𝑛−1∕2 + 𝛥𝑡
2
𝐹 𝑛
𝐿
(

𝒓𝑛, 𝒖𝑛−1∕2
)

, (21)

𝒖∗∗ = 𝒖∗ + 𝛥𝑡𝐹 𝑛
𝐺
(

𝒓𝑛, 𝒖∗
)

, (22)

𝒖𝑛+1∕2 = 𝒖∗∗ + 𝛥𝑡
2
𝐹 𝑛
𝐿
(

𝒓𝑛, 𝒖∗∗
)

, (23)

𝒓𝑛+1 = 𝒓𝑛 + 𝛥𝑡𝑓 𝑛+1∕2 (𝒓𝑛, 𝒖𝑛+1∕2
)

, (24)

with

𝐹 𝑛
𝐿
(

𝒓𝑛, 𝒖𝑛−1∕2
)

=
𝛼 (𝒓𝑛) 𝑞

𝑚
(𝑬𝑛 (𝒓𝑛) + �̄�𝑛 × 𝑩𝑛 (𝒓𝑛)) , (25)

𝑛
𝐺
(

𝒓𝑛, 𝒖∗
)

= 𝛼 (𝒓𝑛)𝛤
(

𝒖∗
)

𝒈 (𝒓𝑛) + 𝛼 (𝒓𝑛)𝑯 (𝒓𝑛) ⋅ 𝒖∗

+ 𝑭𝑅𝑅
(

𝒓𝑛, 𝒖∗
)

− 𝑭 𝐶𝑜𝑜𝑟𝑑
(

𝒓𝑛, 𝒖∗
)

, (26)

𝑓 𝑛+1∕2 (𝒓𝑛, 𝒖𝑛+1∕2
)

= �̄�𝒖𝑛+1∕2 − �̄�, (27)

where the terms with a bar highlight the approximated terms. The
choice for �̄� defines if the simulation will be using the Boris and Shanny
(1972), the Vay (2008), or the Higuera–Cary (HC) method (Higuera and
Cary, 2017) for the electromagnetic force. For the systems we are inter-
ested in, the HC method is preferred as it is volume-preserving in the
phase space and accurately captures the 𝐸 × 𝐵 drift even when under-
resolving the cyclotron frequency (Higuera and Cary, 2017; Ripperda
et al., 2018). The algorithm used to evaluate Eqs. (22) and (24) is the
second-order Heun’s (or Runge–Kutta) method.

This generalization of the leapfrog method allows using very effi-
cient methods, such as the ones employed in flat spacetime particle-in-
cell codes, while keeping the time centring of the evolution Eqs. (21)–
(24). In each time step, we only need one interpolation of the elec-
tromagnetic fields. We check if the relativistic cyclotronic frequency
is resolved locally, for each macro-particle, with at least ten temporal
steps. If this is not the case, we subtract the particle’s perpendicular
momenta and add the 𝐸×𝐵 drift similarly to Bacchini et al. (2020). We
perform this verification step when evaluating the Lorentz force. This
algorithm to push particles in time is general and can also be applied
to model photon dynamics in a fixed background metric (geodesic
motion).

In neutron stars, the general relativistic effects in the particle push
may be seen as minor corrections to the particle motion very close to
the star. In future works, we intend to detail the differences between
simulations using a complete GR description and simulations that use
a flat spacetime push with the frame-dragging effect in the field solver
(Philippov and Spitkovsky, 2018; Chen et al., 2020; Philippov et al.,
2020; Bransgrove et al., 2022). This study may reveal if a numerically
more expensive GR algorithm is necessary for neutron star magneto-
sphere simulations. Nevertheless, a complete implementation provides
versatility to study plasma dynamics around more compact sources
such as black holes.

2.5. Current deposition scheme

The only missing piece to complete the particle-in-cell algorithm is
the evaluation of the charged current density in Eq. (16). This current
term is the source term in the electric field evolution equation and cap-
tures the coupling between the electromagnetic fields and the charged
particles. In the absence of sources, the Yee algorithm (Yee, 1966)
ensures that the time-independent Maxwell’s equations are always
satisfied if initially satisfied. However, in the presence of sources, the
only way to satisfy Gauss’s law (5) is through the charge conservation
condition:
𝜕𝜌
𝜕𝑡

+ 𝛁 ⋅ 𝑱 = 0. (28)

An important challenge is then to design an algorithm capable of
satisfying this condition to machine precision in an arbitrary curvilinear
grid. Such algorithms are readily available for Cartesian grids for any
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𝜌

Fig. 2. Schematic of two particle trajectories on a non-uniform grid. The particle to
the left has an inter-cell motion of 3 splits, represented in 3 colours. The particle to
the right is used as an example of the current deposition scheme for a single split.

interpolation order (Esirkepov, 2001). The usual way to go around this
challenge for curvilinear grids is to employ a divergence-cleaning algo-
rithm; however, these algorithms are significantly less computationally
efficient and, from a numerical point of view, their properties are less
well known and explored (in a systematic way) . Here, we present
the general-relativistic generalization of the current deposition scheme
first described in Cruz et al. (2023) that conserves charge to machine
precision in the non-uniform grid in Fig. 1, even for very high stellar
compactness values. It is important to note that this general-relativistic
charge conservation scheme is the first of its kind in the literature.

The charge deposition scheme is placed after the particle push and
before the field solver. In this way, it has full access to the initial
and final positions of each macro-particle, i.e. 𝒓𝑛 and 𝒓𝑛+1, as well
as their half-step velocities, 𝒖𝑛+1∕2. The first allows us to deposit the
initial and final charge density in the grid nodes, i.e. 𝜌𝑛𝑖,𝑗 and 𝜌𝑛+1𝑖,𝑗
are known, following Appendix B. Reconstructing the charged current
density from the half-step velocities and the charge densities to satisfy
Eq. (28) is the challenge we need to overcome. The solution to this
problem was inspired in the seminal work by Villasenor and Buneman
(1992) (hereafter VB) that suggested the computation of the charged
current density directly from inverting Eq. (28), thus enforcing it by
construction. As a particle moves from its initial position 𝒓𝑛 to its final
position 𝒓𝑛+1, it may cross grid cell boundaries, hence continuously
changing its macro-particle shape. To address this, we split the inter-
cell motion into several intra-cell trajectories and tackle each split
individually, as shown in Fig. 2. Without loss of generality, we will
describe how to retrieve the charged current density contribution from
a single macro-particle given that its motion is bound to a single cell.
The algorithm starts by splitting the divergence operator into its radial
and meridional components:

(𝛁 ⋅ 𝑱 ) = (𝛁 ⋅ 𝑱 )�̂� + (𝛁 ⋅ 𝑱 )�̂� . (29)

The VB method suggests that each component of (29) can be used to
evaluate 𝐽 �̂�

𝑖+1∕2,𝑗 and 𝐽 �̂�
𝑖,𝑗+1∕2 by computing the temporal derivatives of

the charge density when the particle moves purely along the radial
(meridional) direction with an average meridional (radial) position.
Here, we take a different approach due to the continuous change in
5

the particle shape. We assume that the particle shape changes more
significantly along the radial direction; thus, (𝛁⋅𝑱 )�̂� cannot be evaluated
at a fixed average radius. To overcome this issue, we compute it via

(𝛁 ⋅ 𝑱 )�̂� = (𝛁 ⋅ 𝑱 ) − (𝛁 ⋅ 𝑱 )�̂� , (30)

with the right-hand side terms given by

(𝛁 ⋅ 𝑱 )𝑛+1∕2𝑖,𝑗 = −
𝜕𝜌𝑖,𝑗
𝜕𝑡

|

|

|

|

|

𝑟𝑛+1 ,𝜃𝑛+1

𝑟𝑛 ,𝜃𝑛
= −

𝜌𝑖,𝑗
(

𝑟𝑛+1, 𝜃𝑛+1
)

− 𝜌𝑖,𝑗 (𝑟𝑛, 𝜃𝑛)
𝛥𝑡

, (31)

(𝛁 ⋅ 𝑱 )�̂�,𝑛+1∕2𝑖,𝑗 = −
𝜕𝜌𝑖,𝑗
𝜕𝑡

|

|

|

|

|

𝑟𝑛+1 ,�̄�

𝑟𝑛 ,�̄�
= −

𝜌𝑖,𝑗
(

𝑟𝑛+1, �̄�
)

− 𝜌𝑖,𝑗
(

𝑟𝑛, �̄�
)

𝛥𝑡
, (32)

with �̄� = (𝜃𝑛+1 + 𝜃𝑛)∕2 being the average meridional position of the
particle during the split motion. Notice that the poloidal components
of the divergence could also be written as

(𝛁 ⋅ 𝑱 )�̂�𝑖,𝑗 =
𝐴�̂�
𝑖+1∕2,𝑗𝐽

�̂�
𝑖+1∕2,𝑗 − 𝐴�̂�

𝑖−1∕2,𝑗𝐽
�̂�
𝑖−1∕2,𝑗

𝑉𝑖,𝑗
=

𝐴�̂�
𝑖+1∕2,𝑗𝐽

�̂�
𝑖+1∕2,𝑗

𝑉𝑖,𝑗
, (33)

(𝛁 ⋅ 𝑱 )�̂�𝑖,𝑗 =
𝐴�̂�
𝑖,𝑗+1∕2𝐽

�̂�
𝑖,𝑗+1∕2 − 𝐴�̂�

𝑖,𝑗−1∕2𝐽
�̂�
𝑖,𝑗−1∕2

𝑉𝑖,𝑗
=

𝐴�̂�
𝑖,𝑗+1∕2𝐽

�̂�
𝑖,𝑗+1∕2

𝑉𝑖,𝑗
, (34)

where 𝑉𝑖,𝑗 is the volume of the cell evaluated at the cell node, see Ap-
pendix A. To justify the disappearance of the second terms in Eqs. (33)
and (34), we use the scheme presented in Fig. 2. Note that each split
deposits the charged current density in the grid cell its trajectory is
bound to. Finally, we obtain the poloidal components of the current by
combining Eqs. (32) with (33), and (30) with (34):

𝐽 �̂�,𝑛+1∕2
𝑖+1∕2,𝑗 =

𝑉𝑖,𝑗
𝐴�̂�
𝑖+1∕2,𝑗

(𝛁 ⋅ 𝑱 )�̂�,𝑛+1∕2𝑖,𝑗 (35)

𝐽 �̂�,𝑛+1∕2
𝑖,𝑗+1∕2 =

𝑉𝑖,𝑗

𝐴�̂�
𝑖,𝑗+1∕2

(𝛁 ⋅ 𝑱 )�̂�,𝑛+1∕2𝑖,𝑗 . (36)

Due to the axisymmetric condition, Eq. (28) does not restrict the
azimuthal component of the current. Nevertheless, we can construct
it via

𝐽 �̂�,𝑛+1∕2
𝑖,𝑗 = �̄�𝑖,𝑗

(

�̄� 𝑢�̂�,𝑛+1∕2

𝛤
(

𝒖𝑛+1∕2
) − 𝛽�̂�

)

, (37)

where the bared quantities correspond to a temporal average over the
initial and final positions, e.g.

̄𝑖,𝑗 ≡
𝜌𝑖,𝑗 (𝑟𝑛, 𝜃𝑛) + 𝜌𝑖,𝑗

(

𝑟𝑛+1, 𝜃𝑛+1
)

2
. (38)

Also, recall that the total current density is the sum of the contributions
of all macro-particles, which, in turn, is a summation over all the splits
for each macro-particle.

The current deposit algorithm presented above conserves charge
to machine precision independently of the selected coordinates (polar
spherical or logical spherical, see Appendix C). The main difference
between both is, in fact, the choice of the cell centre position, modifying
the effective particle shape. The logical spherical coordinate system
possesses a uniform Cartesian-like grid and asymmetric particle shape,
thus solving the cell expansion issue characteristic of the symmetric
particle shape and non-uniform grid case (i.e., polar spherical case).
The latter case requires some particles to deposit charge and current
densities in more than two consecutive cells (Cruz et al., 2023).

2.6. Boundary conditions

We now discuss the boundary conditions available in the OSIRIS-
GR particle-in-cell framework. As the OSIRIS code allows for two
possible domains (full or half meridional domain), the field and particle
boundary conditions change accordingly.



New Astronomy 112 (2024) 102261R. Torres et al.

𝐵
t
t
a
f
r

m
t
f

w
2.6.1. Field boundary conditions
The meridional boundaries are of two kinds: axial or equatorial.

The axial boundary condition ensures the axisymmetric condition. Due
to the locations of each field component within a spherical Yee grid
cell (see Fig. 1), only the 𝐸 �̂�, 𝐽 �̂�, 𝐵�̂� , 𝐸�̂� and 𝐽 �̂� components lie in the
boundary, hence need to be corrected:

𝐸�̂�
𝑎𝑥𝑖𝑠 = 𝐽 �̂�

𝑎𝑥𝑖𝑠 = 𝐵�̂�
𝑎𝑥𝑖𝑠 = 0. (39)

All field component values are mirrored and saved in the guard cells
for usage in the field evolution equations. For example, 𝐵�̂� changes
direction when crossing the axis, thus changing the sign in the guard
cells and being set to zero on the axis, while 𝐵�̂� does not invert its
direction on the guard cells, hence being copied.

As for the equatorial boundary condition, the physical condition
to be satisfied is the magnetospheric up-and-down symmetry. In this
boundary, we mirror 𝐵�̂�, 𝐵�̂�, 𝐸 �̂� , and 𝐽 �̂� , and copy the rest of the
components.

The radial boundaries also take two options: star or open. The star
radial boundary condition mimics the surface of a perfect rotating
spherical conductor threaded by a dipolar magnetic field. We impose on
the interior guard cells and on the surface components (i.e. 𝐸�̂�, 𝐸 �̂� and
�̂�) the interior electromagnetic solution of an isolated compact neu-

ron star (equations (144)-(147) in Torres et al. (2023)). We compute
he guard cell values of the current components such that their values
re progressively filtered (i.e. with an increasing filter order starting
rom 0 for the first radial cell to the desired order 𝑛 for the (𝑛 + 1)th
adial cell - see Appendix D for more details).

The open radial boundary, placed at the outer frontier of the do-
ain, is a Mur-like absorbing boundary condition (Mur, 1981) designed

o absorb outwardly propagating electromagnetic waves. This condition
or an arbitrary field component 𝛷 in flat spacetime reads:

𝜕𝛷
𝜕𝑡

+ 𝜕𝛷
𝜕𝑟

+ 𝛷
𝑟

|

|

|

|

|𝑟=𝑟𝑚𝑎𝑥

= 0, (40)

which is the Sommerfeld radiation condition in spherical coordinates
(Novak and Bonazzola, 2004; Espinoza et al., 2014). In Appendix E,
we present the extension of Eq. (40) for curved spacetime and use it
to correct the fields that lie in the exterior boundary (i.e. 𝐸�̂�, 𝐸 �̂� , and
𝐵�̂�). This open boundary condition was already used in Torres et al.
(2023) and demonstrated efficient absorption of transient electromag-
netic waves launched from a compact neutron star in vacuum. We take
the same procedure for the charged current density as in the inner
radial boundary.

2.6.2. Particle boundary conditions
Particle boundary conditions can be of two types: open or reflecting.

In the radial direction, we employ open (or absorbing) boundary con-
ditions on both domain frontiers. Particles that cross these boundaries
are subtracted from the simulation. In the meridional direction, we
use reflecting (or specular) boundary conditions. Particles are reflected
back to the simulation domain with no energy loss.

2.7. Particle injection mechanism

OSIRIS allows for several plasma injection mechanisms. Here we
limit the discussion to the ones used in the simulations presented in
upcoming sections. We distinguish two types of simulations, with or
without heuristic pair production (Cruz et al., 2022). For the latter,
we inject pair plasma from the stellar surface at a constant rate with
number density 𝑛inj every timestep. Electrons and positrons are initial-
ized in corotation and with a parallel velocity of 0.5 [c]. This injection
procedure is limited by the local value of the magnetization parameter
𝜎∗, given by:

𝜎∗ =
𝐵2
∗

( )

2
, (41)
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4𝜋𝛤 𝑛+ + 𝑛− 𝑚𝑒𝑐
here 𝐵∗ is the local amplitude of the magnetic field, 𝛤 is the Lorentz
factor of the injected particles, and 𝑛± is the number density of
positrons or electrons. Setting a minimum value for 𝜎∗ yields a maxi-
mum value of the injected plasma density. With the parallel component
of the velocity, we can control the injected current provided to the
neutron star’s magnetosphere. Then, the magnetosphere extracts the
sign of the charges required to drive the magnetospheric currents and
sustain the global torsion of the magnetic field lines. The goal is to
mimic the plasma supply provided by the vacuum work function and
the pair-producing cascade close to the stellar surface, i.e. the polar
cap gap, while still populating both the closed field line region and the
return current. Previous works using global particle-in-cell simulations
have already taken this approach as it is a computationally efficient
way to populate the magnetosphere without requiring expensive quan-
tum electrodynamics (QED) processes (Cerutti et al., 2015; Philippov
et al., 2015b). Nevertheless, these processes are already implemented
in the OSIRIS framework, to model QED cascades in future ultra-intense
laser experiments (Grismayer et al., 2016, 2017) or in local neutron star
polar caps (Cruz et al., 2021).

The second approach is to sustain a cold corotating atmosphere
close to the surface, similarly to Hu and Beloborodov (2022) and
Bransgrove et al. (2022). We characterize the atmosphere by its value
at the surface, 𝑛0, and the scale height of the exponentially decaying
profile, 𝜎𝑎𝑡𝑚:

𝑛𝑎𝑡𝑚 (𝑟) = 𝑛0𝑒
−(𝑟−𝑅∗)∕𝜎𝑎𝑡𝑚 , 𝑟 ≤ 𝑅∗ + 𝑘𝑎𝑡𝑚𝜎𝑎𝑡𝑚. (42)

We ensure the non-depletion of this atmosphere up to 𝑘𝑎𝑡𝑚 standard
deviations from its base by injecting 𝑛inj plasma number density every
timestep when required. In the current study, we consider a plasma
composed of electrons and positrons, the injection of ions is deferred
to future studies. This approach differs from the previous one as it
allows the magnetosphere to regulate the flux of plasma extracted from
the corotating atmosphere. This extraction mechanism would then seed
the cascading QED process. To reduce the computational cost of each
simulation, we model the cascade with a heuristic pair production
(Philippov et al., 2015a,b; Philippov and Spitkovsky, 2018; Chen et al.,
2020; Guépin et al., 2020; Cruz et al., 2022, 2023). This model for the
operation of the vacuum gap defines a threshold energy 𝛾𝑡ℎ𝑟 for a parti-
cle to pair produce. Particles that satisfy this condition can pair produce
if their radial position corresponds to the range 𝑅∗ ≤ 𝑟 ≤ 𝑅PP. Also,
this threshold energy has a polar dependence to inhibit pair production
close to the polar axis, where the magnetic conversion does not occur
due to the infinite magnetic field line curvature. The secondary pair
is emitted at the same place and with the same momentum direction
as the parent with a Lorentz factor of 𝛾𝑝𝑎𝑖𝑟∕2. These parameters are
user-defined and can be adjusted to study different magnetospheric
solutions. This model has shown to be a good model for the polar cap
and the outer gaps (Philippov et al., 2015a,b; Philippov and Spitkovsky,
2018; Chen et al., 2020; Guépin et al., 2020; Cruz et al., 2022, 2023).

2.8. Simulation initialization and transient phase

Simulations start in vacuum with a prescribed general-relativistic
dipolar magnetic field (Rezzolla et al., 2001; Torres et al., 2023)
threading the neutron star surface. Equivalently, the angular velocity
of the star can be either in full rotation or gradually spun to its desired
value. For the first scenario, the general-relativistic electric field (Torres
et al., 2023) must be prescribed at 𝑡 = 0. In the second scenario, the
rotation imparted by the stellar boundary condition (see Section 2.6.1)
generates the self-consistent electric field by launching Alfvénic torsion
waves (Cerutti et al., 2015). At 𝑡 = 0, we initiate the plasma injection
mechanism described in Section 2.7. Due to the high magnetization, the
extracted charges from the surface/atmosphere are accelerated along
field lines, generating a poloidal current that opens up the field lines
that cross the light-cylinder radius, located at 𝑅𝐿𝐶 ≡ 𝑐∕𝛺∗. Beyond this

distance, particles can no longer co-rotate with the field lines anchored
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to the stellar surface as they would need to co-rotate at speeds faster
than the speed of light. These particles then sustain the torsion of the
field lines that acquire a toroidal component. In the aligned rotator
case, when the magnetic and rotation axes are aligned, the extracted
current at the poles is negative due to the predominant outflow of
electrons. The magnetosphere self-organizes to close the electric cur-
rent, which generates the return current. This positive electric current
neutralizes the charge density of the neutron star and flows between
the closed and open field lines in a Y-shaped structure. Beyond the Y-
point, the current sheet sustains the toroidal and poloidal magnetic field
reversal at the equator. The magnetospheric solution starts to form in
the back of the outwardly propagating Alfvénic torsion wave. We have
assumed that after two rotation periods of the star, the magnetospheric
solution has converged to the quasi-steady state.

3. General relativity and the polar cap emission

Coherent radio emission from the polar caps of a neutron star
enabled the discovery of pulsars. The pulsed emission profile origi-
nates from the cosmic lighthouse effect, which relies on the misalign-
ment angle 𝜒 between the magnetic and rotation axis. Recent works
ave demonstrated the generation of pulsar radio emission from non-
tationary pair plasma discharges (Philippov et al., 2020; Cruz et al.,
021). Rotation-induced vacuum gaps, regions of an unscreened par-
llel electric field, potentiate the acceleration of particles to very high
nergies and subsequent emission of gamma-ray photons via curvature
adiation. These hard photons are absorbed in super-strong magnetic
ields and create pairs, generating a QED cascade that populates the
agnetosphere with a dense electron-positron plasma. The pair pro-
uction bursts are generated at an angle to the local magnetic field,
avouring the induction of electromagnetic modes (Cruz et al., 2021).
owever, these models rely on efficient particle acceleration along the
olar cap field lines for QED processes to kick in. Beloborodov (2008)
nd Timokhin and Arons (2012) addressed the particle accelerator
roblem at the polar cap. These works identified the 𝛼 ≡ 𝑗𝑚∕𝑗GJ

parameter determinant in defining under which conditions particles
accelerate up to relativistic energies and can produce secondary pairs.
The motivation behind this parameter, which is the ratio between the
electric current extracted from the polar cap and the local co-rotation
current 𝑗GJ = −𝛺∗ ⋅ 𝐵∕2𝜋, is that when 0 < 𝛼 < 1, the accelerator is
inefficient because the extracted current is enough to sustain the twist
of the magnetic field lines near the light cylinder, given by

𝑗𝑚 = 1
4𝜋

(

𝛁 × 𝑩magnetosphere
)

∥ . (43)

When 𝛼 > 1 or 𝛼 < 0, charges extracted from the surface/atmosphere
are insufficient to carry the magnetospheric required current. This
current-starved state generates an electric field that accelerates par-
ticles. This flow becomes unstable to QED cascading, thus supplying
the additional carriers. Under such conditions, the polar cap becomes
an efficient accelerator, and pulsar radio emission is viable. However,
three-dimensional particle-in-cell simulations of low obliquity rotators
(i.e., 𝜒 ≤ 40◦) showed weak particle acceleration in the bulk of
the polar region (Philippov et al., 2015b), confirming estimates using
the 𝛼 parameter (Bai and Spitkovsky, 2010; Timokhin and Arons,
2012). Therefore, low obliquity rotators could not generate pulsar radio
emission, which is unsupported by observations.

The aligned rotator (i.e., 𝜒 = 0◦) constitutes the least favourable
configuration for the pulsar mechanism occurrence. We can use this
configuration as a robustness diagnostic for any other model that could
explain the radio emission. Here we discuss the general-relativistic
effects and adopt the aligned rotator configuration.

In the 3+1 formalism, we reformulate the 𝛼 parameter analysis
for the efficiency of the polar cap accelerator as the 4-norm of the
current 𝑗𝜇𝑗𝜇 . Equivalently, we have an efficient accelerator for 𝑗𝜇𝑗𝜇 > 0
(i.e., spacelike current) or inefficient accelerator for 𝑗𝜇𝑗𝜇 < 0 (i.e., time-
like current) (Belyaev and Parfrey, 2016; Gralla et al., 2016; Huang
7

et al., 2018). In this way, we can use the spacelike current as an
observable for field lines that will sustain pair creation and are viable
locations for the pulsar radio emission. Therefore, characterizing the
spacelike current region may lead to the direct characterization of the
emitted polar radio beam, bridging the gap between numerical models
and observations.

The wind region of the magnetosphere (the volume of open field
lines that extend beyond the light cylinder radius) is somewhat similar
for both the dipolar and split-monopolar magnetic field configurations
near the rotation axis. The main difference is the existence of a closed
field line region at the equator which reduces the number of open
field lines crossing the light cylinder. As we are interested in the polar
cap of the neutron star magnetosphere, we will neglect this effect and
assume, hereafter, that the field configuration resembles that of a split
monopole. Taking small angles from the axis, we can approximate the
electric current as solely pointing in the radial direction. Hence, the
4-norm of the electric current is given by

𝑗𝜇𝑗
𝜇 = 𝒋 ⋅ 𝒋 − (𝜌𝑐)2 ≈ 𝑗 �̂�2 − (𝜌𝑐)2 ≈

(

𝜌GJ𝑐
)2

(

(

𝐵�̂�

𝐸 �̂�

)2

− 1

)

, (44)

where we assumed the magnetospheric solution is close to the force-
free regime where the charge density closely follows the co-rotation
value 𝜌 ∼ 𝜌GJ and the radial current approximates to the ratio between
the azimuthal magnetic field and the polar component of the electric
field, as obtained by Lyutikov (2011). Although simple, Eq. (44) is
powerful enough to provide us with intuition on the interplay between
magnetospheric plasma injection and general-relativistic effects. The
first is made explicit through 𝐵�̂� that measures the torsion of the
field lines, which is more efficient in the force-free regime where a
strong poloidal current gets extracted from the polar cap. The second
point relates to the frame-dragging effect (Beskin, 1990; Muslimov
and Tsygan, 1992; Philippov et al., 2015a; Torres et al., 2023), which
reduces the induced electric field due to the mismatch between the
stellar and the spacetime rotation. In the force-free regime, the wind
region possesses 𝐵�̂� ∼ 𝐸 �̂� , corresponding to the null electric current
case. This case is not particularly interesting as this would mean that,
in flat spacetime, the aligned rotator would not be able to emit in the
radio band. However, the frame-dragging effect reduces 𝐸 �̂� raising the
ratio above unity and leading to the possibility of pulsar radio emission
(Philippov et al., 2015a).

To validate this intuitive picture drawn from Eq. (44), we sim-
ulated the neutron star magnetosphere with no pair production and
injected plasma from the surface with parallel velocity as described
in Section 2.7. This injection method has two advantages: (1) di-
rect control over the extracted poloidal current limited by the cold
magnetization parameter; (2) successfully reproduces the force-free
magnetospheric solution. Simulations ran in the half-domain setup for
𝑅𝑠∕𝑅∗ ∈ [0.0, 0.6] and 𝜎∗ ∈ [1000, 2000], presented in Fig. 4. As
the maximum meridional extension predicted by force-free models for
the spacelike current region (Belyaev and Parfrey, 2016; Gralla et al.,
2016), 𝜃SL, is a function of the stellar compactness, the meridional
resolution changed accordingly for each simulation to resolve this
region with at least 20 numerical cells. This angle also changes with
the stellar angular velocity, fixed at 𝛺∗ = 0.1 [c rad∕R∗] for this
set of simulations. Table 1 contains the detailed list of parameters
used. It is important to reiterate that our study takes into account all
general-relativistic effects, not just the frame-dragging, unlike previous
works on neutron stars (e.g., Philippov and Spitkovsky (2018), Chen
et al. (2020) and Bransgrove et al. (2022)). In fact, as is shown in
Fig. 3, this approximation leads to an overestimation of both the
polar cap and spacelike angles of ∼ 21.8% for 𝑅𝑠∕𝑅∗ = 0.5 (typical
stellar compactness selected), following the general-relativistic force-
free prediction given in Gralla et al. (2016). This overestimation leads
to macroscopic magnetospheric changes, including an increased effec-

tive open flux tube area, spin-down luminosity, and wider generated
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Table 1
Simulation parameters used for the first numerical experiment (Section 3), shown in Figs. 4 and 5. These simulations take on average 200k CPU core hours.

Run 𝜇∗
[

mec2R2
∗∕e

]

𝛺∗
[

c rad∕R∗
]

𝑅𝑠
[

R∗
]

𝜎∗ Injection 𝑛inj 𝑣∥ [c] Resolution Spacelike region

1 707 0.1 0.0 1000 Surface 400 0.5 2048 × 3072 ✓

2 707 0.1 0.2 1000 Surface 400 0.5 2048 × 7168 ✓

3 707 0.1 0.3 1000 Surface 400 0.5 2048 × 5120 ✓

4 707 0.1 0.4 1000 Surface 400 0.5 3072 × 4096 ✓

5 707 0.1 0.5 1000 Surface 400 0.5 2048 × 3072 ✓

6 707 0.1 0.6 1000 Surface 400 0.5 2048 × 3072 ✓

7 707 0.1 0.0 1500 Surface 400 0.5 2048 × 3072 ✗

8 707 0.1 0.3 1500 Surface 400 0.5 2048 × 5120 ✗

9 707 0.1 0.4 1500 Surface 400 0.5 2048 × 3072 ✓

10 707 0.1 0.5 1500 Surface 400 0.5 2048 × 3072 ✓

11 707 0.1 0.6 1500 Surface 400 0.5 2048 × 3072 ✓

12 707 0.1 0.7 1500 Surface 400 0.5 2048 × 3072 ✓

13 707 0.1 0.0 2000 Surface 400 0.5 2048 × 3072 ✗

14 707 0.1 0.4 2000 Surface 400 0.5 2048 × 3072 ✗

15 707 0.1 0.5 2000 Surface 400 0.5 2048 × 3072 ✗

16 707 0.1 0.6 2000 Surface 400 0.5 2048 × 3072 ✓

17 707 0.1 0.7 2000 Surface 400 0.5 2048 × 3072 ✓

18 707 0.1 0.7 4000 Surface 400 0.5 2048 × 3072 ✗
t
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Fig. 3. Force-free estimates of the maximum polar cap, 𝜃PC, and spacelike, 𝜃SL,
oloidal extension at the neutron star surface for varying stellar compactness values,
𝑠∕𝑅∗. Curves are obtained using the model developed in Gralla et al. (2016) for a
eneral-relativistic description of force-free electrodynamics. The complete description
s presented in blue. Estimates neglecting the frame-dragging contribution and the
apse function are presented in green and orange, respectively. We conclude that not
onsidering the lapse function leads to an overestimate of the open flux tube and
ffective particle acceleration volume, thus a macroscopic inaccuracy.

adio beam. This point is particularly important when simulating mag-
etospheric environments of compact neutron stars approaching the
olman–Oppenheimer–Volkoff mass limit (Kalogera and Baym, 1996;
omani et al., 2022) or long-lived hypermassive neutron stars (Falcke
nd Rezzolla, 2014; Chirenti et al., 2019; Chirenti et al., 2023; Selvi
t al., 2024).

The first striking feature in Fig. 4 is the inexistence of the spacelike
egion for some non-zero compactness simulations. The explanation
ies in the poloidal current and, consequently, the degree of field line
orsion. When 𝜎∗ = 1000, the extracted poloidal current is very close
o the expected for the force-free split-monopole case, thus ensuring
�̂� ∼ 𝐸 �̂� . In this way, any general-relativistic reduction of the electric

ield results in a spacelike current, following Eq. (44). Lower plasma
upply cases represented by higher magnetizations yield a decrease in
he poloidal current extracted from the polar cap. The 𝐵�̂� reduction
o longer guarantees the existence of the spacelike region at any
ompactness, thus explaining the appearance of cut-off conditions as
hown in Fig. 5. Fig. 5 highlights the first direct comparison between
lobal particle-in-cell simulations and force-free model predictions for
he meridional extension of the spacelike current volume. Results show
remarkable agreement in the force-free limit but start to deviate for
ore charge-starved magnetospheric solutions. Nevertheless, the force-

ree estimates limit the predicted spacelike extension from above, thus
t is still a good estimate for the maximum generated radio beam width.
8

From the observational point of view, this shows the robustness of
he pulsar radio emission mechanism at any inclination. We have just
hown that the spacelike region appears at any compactness for force-
ree magnetospheric solutions, even for the least favourable inclination
onfiguration (the aligned rotator). Nevertheless, the dependence of
he radio beam generation mechanism on the overall magnetospheric
olution could explain why some neutron stars are radio-quiet or may
resent intermittent behaviour. Weak pulsars or pulsars near the death
ine, where pair production is no longer very efficient, could be strong
andidates for this scenario. Also, our model predicts narrower radio
eam widths for older low-obliquity pulsars, whose magnetospheres
re more charge-starved. In some cases, this width reduction can reach
alf the force-free value, which may be measurable through obser-
ations. In particular, observations of millisecond pulsars report a
ystematic tendency for smaller inferred luminosities and narrower
mission beams (Kramer et al., 1998), which support our findings.
hus, the compactness of millisecond pulsar magnetospheres and devia-
ions from force-free solutions may explain the reduction of the angular
adius of the generated radio beams.

. Transition from weak to energetic pulsars

In the previous section, we validated the intuitive picture given
y Eq. (44). However, we adopted a controlled injection methodology
hat drove the system to the desired solution. In this section, we
mprove the magnetospheric model by capturing the gap dynamics
hrough heuristic ‘‘on-the-spot’’ pair production (Cruz et al., 2022),
.e. in the limit of vanishing photon mean free path. Under these
ircumstances, solutions become sensitive to the upstream gap plasma
upply from the neutron star surface. The charges lifted from the
urface form an atmosphere maintained as described in Section 2.7,
eeding self-consistently the magnetosphere with cold plasma. We fol-
ow the PSG non-stationary gap model by sustaining a minimum atmo-
pheric plasma density at the base 𝑛0 ≡ 𝑛+ + 𝑛− ∼ 2𝑛GJ. A weak parallel
omponent of the electric field persists at the base of some magnetic
ield lines, providing an initial kick to those particles extracted from
he atmosphere.

Fig. 6 shows the quasi-stationary state of a millisecond neutron
tar with compactness 𝑅𝑠∕𝑅∗ = 0.3 (e.g., Bhattacharyya et al. (2017))
nd angular velocity 𝛺∗ = 0.2

[

c rad∕R∗
]

for different pair production
efficiencies 𝜂 given by:

𝜂 ≡
𝛾max
𝛾thr

∈ {38, 77, 155, 622}, (45)

where 𝛾max ∼ 𝐵∗𝛺2
∗ is the estimated maximum achievable particle

Lorentz factor. The magnetic field amplitude controls the pair produc-

tion efficiency by keeping constant the threshold and secondary pair



New Astronomy 112 (2024) 102261R. Torres et al.
Fig. 4. Temporally averaged 4-norm of the electric current for a combination of different stellar compactness and cold magnetization values. This diagnostic allows for the
identification of field lines where efficient particle acceleration is expected. The red lines represent the magnetic field lines that start at the maximum predicted angle for the
spacelike region (𝜃SL) and the polar cap (𝜃PC) (as predicted by Gralla et al. (2016)). The grey lines represent the magnetic field lines. The results show efficient particle acceleration
at any compactness for 𝜎∗ = 1000, i.e. high plasma supply case. Also, at lower plasma supply, particle acceleration occurs only after a certain value of compactness, e.g. 𝑅𝑠∕𝑅∗ ≳ 0.4
for 𝜎∗ = 1500.
Table 2
Simulation parameters used for the second numerical experiment (Section 4), shown in Fig. 5. These simulations take on average 500k CPU core hours.

Run 𝜇∗
[

mec2R2
∗∕e

]

𝛺∗
[

c rad∕R∗
]

𝑅𝑠
[

R∗
]

Injection 𝑛inj 𝑛0 𝑣∥ [c] 𝜎atm 𝑘atm Resolution

1 11 312 0.2 0.3 Atmosphere 400 2𝑛GJ 0.0 𝑅∗∕80 4 2048 × 3072
2 22 624 0.2 0.3 Atmosphere 800 2𝑛GJ 0.0 𝑅∗∕80 4 2048 × 3072
3 45 248 0.2 0.3 Atmosphere 1600 2𝑛GJ 0.0 𝑅∗∕80 4 2048 × 3072
4 180 992 0.2 0.3 Atmosphere 6400 2𝑛GJ 0.0 𝑅∗∕80 4 2048 × 3072
energy at 𝛾thr = 25 [𝑚𝑒𝑐2] and 𝛾pair = 8 [𝑚𝑒𝑐2]. Also, we restrict pair
production to be active only up to three stellar radii (i.e., 𝑅PP = 3𝑅∗).
Table 2 summarizes the simulation parameters used in this numerical
experiment. The low pair production efficiency case, with 𝜂 ∼ 38,
highlights the typical solution of a weak pulsar with a persistent
outer gap (Shinya and Shinpei, 2012; Gruzinov, 2012, 2013, 2015;
Chen et al., 2020). This gap is a consequence of the inability of the
surface and the pair production in the volumetric return current to
supply plasma to the region behind the null surface, i.e. the region
where the poloidal magnetic field lines curve towards the equator. As
the efficiency increases, the amplitude of the gap’s parallel electric
field reduces until it becomes almost zero, when the magnetosphere
transitions to a force-free solution. The volumetric return current that
occupied a portion of the polar cap for low-efficiency values now
occupies lower latitudes, increasing the effective polar cap area up to
the maximum poloidal extension angle 𝜃PC, as predicted by force-free
models (Gralla et al., 2016; Belyaev and Parfrey, 2016). Consequently,
the magnetosphere can increase the electric current driven through the
9

open flux tube, leading to a jump in the Poynting flux luminosity. In this
model, and for simplicity, we kept the pair production efficiency con-
stant in the magnetosphere. However, different QED processes play a
role in distinct magnetospheric regions (Chen and Beloborodov, 2014),
which may lead to differential pair production efficiencies (deferred
for future work). Magnetospheres that continuously oscillate between
weak and quasi-force-free states, depending on the morphology of the
outer gap, can explain the observed phenomenon of pulsar luminosity
intermittency (similar to Li et al. (2012)).

Several crucial changes accompany the transition from weak to
force-free solutions: (1) the Y-point moves closer to the light-cylinder
radius due to the more efficient screening of the equatorial superrota-
tion region (Shinya and Shinpei, 2012; Hu and Beloborodov, 2022);
(2) the stronger poloidal current driven through the magnetosphere
induces a higher torsion of the magnetic field lines in the toroidal
direction. The latter is vital for the activation of the polar cap. At
fixed compactness (in this case 𝑅 ∕𝑅 = 0.3), Fig. 5 shows that the
𝑠 ∗
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Fig. 5. Maximum poloidal extension of the spacelike region (𝜃SL) as function of the
stellar compactness 𝑅𝑠∕𝑅∗. The grey line corresponds to the force-free estimate in Gralla
et al. (2016). The circles correspond to the maximum and minimum measured angles
extracted from numerical simulations presented in Fig. 4. This figure captures the
transition from inactive to active polar caps with increasing compactness, e.g. for the
𝜎∗ = 1500 (2000) case, the polar cap activates for 𝑅𝑠∕𝑅∗ ≳ 0.4 (0.5).

polar cap may present a spacelike volumetric region only if the mag-
netosphere drives a stronger current, characteristic of higher plasma
supply scenarios. With heuristic pair production, the efficiency controls
the plasma supplied from the polar cap gap to the magnetosphere,
thus having the same effect as the surface plasma supply from the
previous section. In Fig. 6, we observe the appearance of the spacelike
volume in the polar cap for efficiencies 𝜂 ≳ 155. However, many pro-
cesses affect this minimum efficiency value 𝜂min: (1) the frame-dragging
effect for higher compactness neutron stars reduces 𝜂min due to the
reduction of the poloidal electric field; (2) evident interplay between
the outer and inner polar cap gap, more efficient pair production at
the Y-point (e.g., including photon–photon processes) pulls the return
current away from the polar cap thus increasing the field line torsion
of the magnetosphere, which reduces 𝜂min; (3) a denser neutron star
atmosphere also facilitates the launch of a stronger poloidal current, in
a similar way as in point 2. In particular, point 2 suggests a correlation
between the radio beam and the existence of the outer gap. Intermittent
pulsars may also present intermittent radio beams, potential candidates
for explaining pulse nullings. We have also performed simulations
where we inject an atmospheric plasma composed of electrons and
ions, where the ions have the same mass and charge as positrons but
are not allowed to pair produce (Philippov and Spitkovsky, 2018). As
expected, the injection of ions leads to a lower pair plasma supply to
the outer magnetosphere of weak pulsars, thus increasing the minimum
efficiency value 𝜂min. Apart from a shift of the magnetospheric solution
towards charge-starvation, we do not observe significant changes in the
outer gap dynamics or magnetospheric structure. However, this point
may change if ions possess realistic 𝑞∕𝑚, which we differ to a future
study. Also, the impact of ion injection on the magnetosphere is more
significant in charge-starved pulsar solutions due to the high degree
of charge separation, thus this effect is diluted for denser solutions
approaching the force-free regime.
10
Solutions with very low pair production efficiencies are sustained
solely by pair plasma generated at the return current region and
progressively tend to the ‘‘dead pulsar’’ solution (electrosphere), corre-
sponding to the no pair production case (Cruz et al., 2023). Solutions
with even higher pair production efficiencies than the ones presented
in this study tend to the force-free regime and possess an active polar
cap, i.e. in the accelerator regime. In this sense, we retrieve the same
conclusions as in the previous section: low pair production efficiencies
(i.e., low plasma supply) require higher stellar compactnesses for the
activation of the pulsar mechanism; higher pair production efficiencies
(i.e., high plasma supply) relax the compactness restriction. Neverthe-
less, for low-obliquity rotators, compactness is crucial in the generation
phase of the radio beam along the magnetic axis. Also, as observed in
the previous section, the width of the radio beam deviates from the
force-free estimate depending on the charge-starvation state. Thus, for
older and weaker low-obliquity pulsars, the radio beam width should
be reduced.

Another important feature on the structure of the magnetosphere
is the location of the Y-point, which for all simulations presented is lo-
cated at a significant fraction of the light-cylinder radius (i.e. 𝑟Y∕𝑅LC ∼
0.6− 0.8), consistent with previous kinetic models of neutron star mag-
netospheres (Chen et al., 2020; Guépin et al., 2020; Cruz et al., 2023;
Hakobyan et al., 2023). The spatial restriction imposed on the heuristic
pair production (𝑅PP = 3𝑅∗) limits the supply of plasma to the outer
magnetosphere, in particular, to regions close to the Y-point. This weak
supply of plasma beyond 𝑅LC explains the formation of the persistent
outer gap, volumetric return current and wide equatorial current sheet.
This is in contrast to the typical ideal force-free magnetosphere with
abundant plasma supply, clear and localized Y-shaped return current
and thin equatorial current sheet. Wider current sheets dissipate energy
at a much slower rate, thus we expect our novel reduced-domain model
(i.e., imposing equatorial symmetry) to be accurate in modelling weak
pulsar magnetospheres in the aligned rotator configuration. We have
also verified the convergence of the presented results by doubling the
number of particles per cell injected every timestep.

Particularly interesting is the systematic formation of core
component-associated beamlets at lower pair production efficiencies
(see positronic charge density for 𝜂 = 38 − 77 simulations in Fig. 6).
These beamlets are generated by the cyclic opening of a fragile gap near
the magnetic pole of the star. As pair production is prohibited close to
the axis due to the small curvature of the magnetic field lines, some
electrons from the magnetosphere are reversed back to the star, thus
intermittently shorting out the accelerating gap from above (Lyubarsky,
2009). This cyclic behaviour allows the magnetosphere to drive the
required quasi-steady-state polar current that supports the magnetic
field line torsion in the outer magnetosphere. We conjecture that these
beamlets are responsible for the narrow dwarf pulses observed during
ordinary pulse nullings of PSR B2111+46 in Chen et al. (2023), referred
to as ‘‘particle raindrops’’ by the authors.

5. Conclusions

Understanding neutron star magnetosphere dynamics is of utmost
importance to reveal the locations of efficient particle acceleration and
radiation generation. The connection between the rich pulsar observa-
tions and theoretical models is only possible through global ab initio
simulations. In particular, due to the extreme nature of such astro-
physical environments, kinetic models must capture self-consistent QED
processes and general relativistic effects. This paper introduces a new
general-relativistic module for the particle-in-cell code OSIRIS (Fonseca
et al., 2002), intended to study plasma dynamics in intense electro-
magnetic and gravitational fields, capturing self-consistently GR effects
in all components of the PIC algorithm (field solver, particle pusher,
charge and current deposit scheme).

We designed two numerical experiments to gain a deeper insight
into the role of general relativity in activating the polar cap, focusing on
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Fig. 6. Panels showing the positronic charge density (𝜌+), 4-norm of the current (𝑗𝜇𝑗𝜇), FIDO-measured radial current (𝐽 �̂�), and parallel component of the electric field (𝐸∥) for
increasing pair production efficiency (𝜂). Field components are multiplied by the radial distance squared (𝑟2) to highlight magnetospheric features further away from the star.
Magnetic field lines are in grey and the magnetic field lines that start at the maximum spacelike angle (𝜃SL) and polar cap extension angle (𝜃PC) are shown in red. This figure
captures the transition from a weak to force-free solution, obtained by increasing the stellar magnetic moment and, hence, the pair production efficiency. Consequently, the Y-point
(at 𝑟∕𝑅∗ ∼ 𝑟Y) approaches the 𝑅LC, the polar cap extends to 𝜃PC, the parallel electric field component almost vanishes everywhere, and the spacelike current and positrons from
pair production appear in the polar cap (see 𝑗𝜇𝑗𝜇 zoom insets). The location of the low-multiplicity beamlets is highlighted in the positronic charge density insets close to the
poloidal axes.
the conditions for efficient particle acceleration. Therefore, we used the
4-norm of the current to probe under what circumstances the emission
of a coherent radio beam along the magnetic axis is viable. In the
first experiment, we injected plasma at 0.5 [c] along the magnetic
field lines, controlled by the local magnetization, to reproduce different
quasi-stationary magnetospheric states. This setup allowed for a struc-
tured parametric scan over the plasma supply and stellar compactness.
Without the general-relativistic effects, a low obliquity rotator would
not be able to accelerate particles efficiently enough to potentiate
the radio beam generation independently of the plasma supply. The
general relativistic frame-dragging effect reduces the poloidal electric
field, thus increasing the current amplitude. We show that this GR
effect activates the polar cap of young and energetic neutron stars
at any non-zero compactness, thus providing a robust mechanism for
radio beam generation. For older neutron stars, it depends on both the
compactness and plasma supply. Nevertheless, we show that GR could
enable radio emission even for weak pulsars that drive weaker poloidal
currents. Therefore, weak pulsars may be observable in the radio
spectrum beyond their expected death line, some of which can present
themselves with narrower beams concerning force-free estimates. We
note, however, that measuring such deviations is challenging due to
other competing effects, such as the observer’s line of sight limita-
tion or the misalignment angle 𝜒 , requiring a full three-dimensional
model extension. Previous kinetic studies of pulsar magnetospheres
at arbitrary inclinations and low plasma injection rates demonstrated
a similar behaviour of the magnetospheric solution (Kalapotharakos
et al., 2018; Brambilla et al., 2018), with decreased Poynting flux and
an outer gap beyond the null surface and around the separatrix region.
Consequently, the volumetric field-aligned magnetospheric current and
11
the torsion of the magnetic field lines decrease for these weak pulsar
solutions. Following the conclusions from this work, we expect a reduc-
tion of the spacelike volume (𝑗𝜇𝑗𝜇 > 0 or 𝛼 > 1) in the outflowing region
of the polar cap (Bai and Spitkovsky, 2010; Philippov and Kramer,
2022), where pair production and the generation of the radio beam
are expected. However, this effect should be more prominent in low-
obliquity or very charge-starved pulsars, where this deviation from
the force-free solution produces clear differences in the expected beam
width. Our findings and conjecture seem to agree with observations of
millisecond pulsars, which do not follow the scaling predicted from a
canonical pulsar model for the inferred luminosity and angular radius
of the generated radio beam (Kramer et al., 1998). The compactness of
their magnetospheres and deviations from the force-free solution may
explain such systematic tendencies.

In the second experiment (Section 4), we improve the accuracy of
the previous model by resolving the polar cap gap dynamics using
a heuristic ‘‘on-the-spot’’ pair production model. Here, we allow pair
production to populate only regions of efficient particle acceleration.
The magnetosphere self-regulates to drive the required currents that
sustain the magnetic field line torsion. By varying the pair production
efficiency, i.e. through an increase in the magnetic field amplitude,
we observe a clear transition between the weak and force-free pulsar
solutions at fixed compactness (fiducial value of 𝑅𝑠∕𝑅∗ = 0.3). Once
again, young and energetic neutron stars support strong poloidal cur-
rents, characteristic of a denser force-free magnetospheric solution, and
possess active polar caps at any non-zero stellar compactnesses. Older
pulsars, i.e. pulsars approaching their death line, transition to weak
pulsar solutions and must rely on both the pair production efficiency

(plasma supply) and stellar compactness for the presence of efficient



New Astronomy 112 (2024) 102261R. Torres et al.

m

𝑙

𝑙

𝐴

𝐴

√

𝐴

w
r

𝐼

particle acceleration and consequent radio beam. In Fig. 6, we demon-
strate the existence of a minimum pair production efficiency for which
the spacelike current develops in the bulk of the polar cap. The previous
numerical experiment also captured this transient behaviour of the
spacelike current via varying the plasma supply at fixed compactness
(see Fig. 5). Also, simulations highlight the poloidal current-mediated
interplay between the polar cap and outer gaps. Magnetospheres with
such null surface gaps develop a volumetric return current, constricting
the polar cap area and limiting the poloidal current in the open mag-
netic field line bundle. Consequently, Eq. (44) requires a lower poloidal
electric field to activate the polar cap discharge, achieved by increasing
the stellar compactness. Magnetospheres with pair production near the
Y-point populate these exterior regions with plasma, relaxing the polar
cap poloidal extension and pair production efficiency at the poles.
This interconnection between outer and inner gaps may explain the
intermittency of certain observed pulsars or even justify the existence
of pulse nullings. In particular, weak pulsar solutions generate low-
multiplicity plasma beamlets near the magnetic axis, compatible with
the observed narrow-width dwarf pulses in Chen et al. (2023).

In this work, we have employed a novel reduced-domain approach
to model the global magnetosphere of a neutron star. This reduced
model allows for simulations with higher spatiotemporal resolution and
better macro-particle statistics, at the expense of introducing an up–
down equatorial symmetry. Consequently, by construction, this model
does not capture the development of the kink instability in the equato-
rial current sheet (Cerutti et al., 2015; Philippov et al., 2015a). In that
sense, we do not expect our method to model correctly the dissipation
properties of thin current sheets, characterized by frequent magnetic
reconnection events and plasmoid formation (Hakobyan et al., 2019,
2023; Schoeffler et al., 2023). However, we expect good agreement for
weak pulsar solutions with no pair production near 𝑅LC, which possess
a volumetric return-current and wide equatorial current sheet (with no
significant dissipation/reconnection events occurring). Also, the loca-
tion of the Y-point is consistent with similar full-domain particle-in-cell
simulations (Chen et al., 2020; Guépin et al., 2020; Cruz et al., 2023;
Hakobyan et al., 2023), indicating that this reduced model preserves
the main elements of a neutron star magnetosphere in the aligned
rotator configuration.

Future works with more accurate pair production models, i.e.
heuristic models including non-zero photon mean free path and
geodesic propagation, or even modelling QED processes more accu-
rately with Monte Carlo techniques (Cruz et al., 2021), should explore
this global outer-to-inner gap dynamics. Also, the variation of the
upstream plasma supply from the stellar surface/atmosphere may affect
the dynamics of the polar cap gap and its dependency on the driven
magnetospheric current, requiring further investigation. In particular,
with the surface/atmospheric injection of electron-ion plasma instead
of pair plasma, which affects the discharge dynamics on the return-
current, modifying the plasma supply to the outer magnetosphere.
Also, three-dimensional models of weak pulsar magnetospheres for
low-obliquity rotators may unveil the importance of GR in the pulsar
observational appearance.

CRediT authorship contribution statement

R. Torres: Writing – original draft, Visualization, Validation, Soft-
ware, Methodology, Investigation, Data curation. T. Grismayer: Writ-
ing – review & editing, Supervision, Resources, Project administration,
Funding acquisition, Conceptualization. F. Cruz: Supervision, Soft-
ware, Project administration, Methodology, Conceptualization. R.A.
Fonseca: Software, Conceptualization. L.O. Silva: Writing – review
& editing, Supervision, Software, Resources, Project administration,
Funding acquisition, Conceptualization.
12
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is partially supported by the European Research Council
(ERC-2015-AdG Grant 695088) and FCT (Foundation for Science and
Technology, Portugal) under the project X-MASER No. 2022.02230.
PTDC. RT is supported by FCT (Portugal) (Grant PD/BD/142971/2018)
in the framework of the Advanced Program in Plasma Science and
Engineering (APPLAuSE, FCT Grant PD/00505/2018). We acknowl-
edge EuroHPC for granting access to LUMI (Large Unified Modern
Infrastructure, Kajaani, Finland) within the EuroHPC-JU project EHPC-
REG-2021R0038, where the simulations presented in this work were
performed. The authors thank the anonymous referee for the thoughtful
and detailed comments that have significantly improved the
manuscript.

Appendix A. Metric dependent quantities

We show expressions of the line and areal elements that allow the
determination of the curl terms in Eqs. (9)–(14) for the logical spherical
coordinate system (𝑟, 𝜃, 𝜙), i.e. (𝑟, 𝜃, 𝜙) = (log 𝑟, −cos 𝜃, 𝜙) with the

etric line element given in Eq. (3):

�̂�
𝑖+1∕2 = ∫

𝑟𝑖+1

𝑟𝑖

√

𝛾𝑟𝑟d𝑟′ =

[

𝛼𝑒𝑟
′
+

𝑅𝑠
2

log
2𝑒𝑟′ (1 + 𝛼) − 𝑅𝑠

𝑅𝑠

]𝑟𝑖+1

𝑟𝑖

, (A.1)

�̂�
𝑖,𝑗+1∕2 = ∫

𝜃𝑗+1

𝜃𝑗

√

𝛾𝜃𝜃d𝜃
′ = 𝑒𝑟𝑖

[

arcsin 𝜃′
]𝜃𝑗+1
𝜃𝑗

, (A.2)

𝑙�̂�𝑖,𝑗 = ∫

𝜙+𝛥𝜙

𝜙

√

𝛾𝜙𝜙d𝜙′ = 𝑒𝑟𝑖
√

1 − 𝜃2𝑗 𝛥𝜙, (A.3)

�̂�
𝑖,𝑗+1∕2 = ∫

𝜃𝑗+1

𝜃𝑗
∫

𝜙+𝛥𝜙

𝜙

√

𝛾𝜃𝜃𝛾𝜙𝜙d𝜃
′d𝜙′ = 𝑒2𝑟𝑖

[

𝜃′
]𝜃𝑗+1
𝜃𝑗

𝛥𝜙, (A.4)

�̂�
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𝑟𝑖
∫
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4
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𝑠
8

log
2𝑒𝑟′ (1 + 𝛼) − 𝑅𝑠

𝑅𝑠

]𝑟𝑖+1

𝑟𝑖

, (A.5)
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The volume element can also be evaluated via

𝑉𝑖+1∕2,𝑗+1∕2 = ∫

𝑟𝑖+1

𝑟𝑖
∫

𝜃𝑗+1

𝜃𝑗
∫

𝜙+𝛥𝜙

𝜙

√

𝛾𝑟𝑟𝛾𝜃𝜃𝛾𝜙𝜙d𝑟
′d𝜃′d𝜙′

= 𝐼 �̂�𝑖+1∕2𝐼
�̂�
𝑗+1∕2𝐼

�̂� = 𝐼 �̂�𝑖+1∕2
[

𝜃′
]𝜃𝑗+1
𝜃𝑗

𝛥𝜙, (A.7)

hich is used in the charge conservation scheme of Section 2.5. The
adial part of the volume integral is given by

�̂�
𝑖+1∕2 =

[

𝛼𝑒𝑟′

24

(

8𝑒2𝑟
′
+ 10𝑒𝑟

′
𝑅𝑠 + 15𝑅2

𝑠

)

+
5𝑅3

𝑠
16

log
2𝑒𝑟′ (1 + 𝛼) − 𝑅𝑠

𝑅

]𝑟𝑖+1

. (A.8)
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The same procedure can be repeated for any diagonal spatial metric
to retrieve the metric elements of other metric or coordinate systems.

In Section 2.4, the spatial Christoffel symbols used in Eq. (20) for
the logical spherical coordinate system are given by:

𝛤 ̂̃𝑟
𝑖𝑗
=

⎡

⎢

⎢

⎢

⎣

3
2 − 1

2𝛼2 0 0
0 − 𝛼

√

1−𝜃2
0

0 0 −𝛼
√

1 − 𝜃2

⎤

⎥

⎥

⎥

⎦

, (A.9)
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⎥

⎥
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⎦

. (A.11)

Appendix B. Charge deposition scheme

In the 3+1 formalism, we can retrieve the charge conservation
condition via the divergence of the Ampére’s law:

𝛁 ⋅ [𝛁 × (𝛼𝑩 − 𝜷 × 𝑬)] = 𝛁 ⋅
[ 𝜕𝑬
𝜕𝑡

+ 4𝜋 (𝛼𝒋 − 𝜌𝜷)
]

, (B.1)

which simplifies to

0 =
𝜕𝜌
𝜕𝑡

+ 𝛁 ⋅ (𝛼𝒋 − 𝜌𝜷) = 𝜕𝜌
𝜕𝑡

+ 𝛁 ⋅ 𝑱 (B.2)

using Gauss’s law (5) and the vector calculus property that states that
the divergence of a curl of a vector field is always zero.

For the sake of clarification, we start by defining that each macro-
particle, located at (𝑟𝑝, 𝜃𝑝), has the same shape as the cell it is in, which
is centred at (𝑟𝑖+1∕2, 𝜃𝑗+1∕2). Each macro-particle occupies a volume
given by the particle shape function 𝑆(𝑟, 𝜃, 𝑟𝑝, 𝜃𝑝), which we will define
later. The number of particles in each macro-particle, 𝑁𝑝, is given by

∫𝑉
𝑛
(

𝑟, 𝜃
)

𝑑𝑉 = 𝑁𝑝, (B.3)

where 𝑛(𝑟, 𝜃) is the particle number density, which we will assume to
be constant within each cell (i.e. waterbag-like). In this way, we can
obtain the particle number density in each grid cell:

𝑛
(

𝑟𝑖+1∕2, 𝜃𝑗+1∕2
)

=
𝑁𝑝

𝑉𝑖+1∕2,𝑗+1∕2
=

𝑁𝑝

𝐼 �̂�𝑖+1∕2𝐼
�̂�
𝑗+1∕22𝜋

, (B.4)

using Eqs. (A.7) and (A.8). The extension of this expression to an
arbitrary particle position taking the continuous limit reads

𝑛
(

𝑟𝑝, 𝜃𝑝
)

=
𝑁𝑝

𝐼 �̂�𝑝𝐼 �̂�𝑝 2𝜋
, (B.5)

ith

𝐼 �̂�𝑝 =
[

𝛼𝑒𝑟′

24

(

8𝑒2𝑟
′
+ 10𝑒𝑟

′
𝑅𝑠 + 15𝑅2

𝑠

)

+
5𝑅3

𝑠
16

log
2𝑒𝑟′ (1 + 𝛼) − 𝑅𝑠

𝑅𝑠

]𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

, (B.6)

𝐼 �̂�𝑝 =
[

𝜃′
]𝜃𝑚𝑎𝑥
𝜃𝑚𝑖𝑛

= 𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛 = 𝛥𝜃, (B.7)

where 𝑟𝑚𝑖𝑛 = 𝑟𝑝 − 𝛥𝑟∕2, 𝑟𝑚𝑎𝑥 = 𝑟𝑝 + 𝛥𝑟∕2, 𝜃𝑚𝑖𝑛 = 𝜃𝑝 − 𝛥𝜃∕2 and 𝜃𝑚𝑎𝑥 =
𝜃𝑝+𝛥𝜃∕2 are the poloidal limits of the macro-particle, and 𝛥𝑟 and 𝛥𝜃 are
the spatial dimensions of the corresponding grid cell. The continuous
limit ensures that the particle shape is a smooth function of the particle
position that satisfies exactly Eqs. (B.3) and (B.4) when (𝑟𝑝, 𝜃𝑝) =
(𝑟𝑖+1∕2, 𝜃𝑗+1∕2). The particle shape function is inferred from Eq. (B.5)
as

𝑆
(

𝑟, 𝜃, 𝑟𝑝, 𝜃𝑝
)

=
[

𝐼 �̂�𝑝
(

𝑟𝑝
)

𝐼 �̂�𝑝
(

𝜃𝑝
)

2𝜋
]−1

𝑏0

( 𝑟 − 𝑟𝑝
)

𝑏0

(

𝜃 − 𝜃𝑝
̃

)

, (B.8)
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𝛥𝑟 𝛥𝜃
here 𝑏0 is the zeroth order b-spline function given by 𝑏0(𝑥) = 1 if
𝑥| < 0.5 and 𝑏0(𝑥) = 0 otherwise. The charge density at any position
ue to a macro-particle located at (𝑟𝑝, 𝜃𝑝) with 𝑁𝑝 particles of charge
𝑝 reads

𝑝
(

𝑟, 𝜃, 𝑟𝑝, 𝜃𝑝
)

= 𝑞𝑝𝑁𝑝𝑆
(

𝑟, 𝜃, 𝑟𝑝, 𝜃𝑝
)

. (B.9)

onsequently, the contribution of the macro-particle’s charge density
o the charge density evaluated at the grid nodes is defined through
he volume weighting technique as

𝑖,𝑗
(

𝑟𝑝, 𝜃𝑝
)

=
∫𝑉𝑖,𝑗 𝜌𝑝

(

𝑟, 𝜃, 𝑟𝑝, 𝜃𝑝
)

𝑑𝑉𝑖,𝑗
𝑉𝑖,𝑗

=
2𝜋 ∫

𝑟𝑖+1∕2
𝑟𝑖−1∕2

∫
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(

𝑟, 𝜃, 𝑟𝑝, 𝜃𝑝
)
√

𝛾𝑟𝑟𝛾𝜃𝜃𝛾𝜙𝜙d𝑟d𝜃

𝑉𝑖,𝑗

= 2𝜋𝑞𝑝𝑁𝑝 �̂� (𝑟𝑝
)

 �̂� (𝜃𝑝
)

, (B.10)

here  �̂�(𝑟𝑝) and  �̂�(𝜃𝑝) are spline functions given by:

 �̂� (𝑟𝑝
)

=
𝐼 �̂�
⟨𝑝⟩

[

𝑟
⟨

→ 𝑟
⟩

]

𝐼 �̂�𝑝
[

𝑟𝑚𝑖𝑛 → 𝑟𝑚𝑎𝑥
]

𝐼 �̂�𝑖
[

𝑟𝑖−1∕2 → 𝑟𝑖+1∕2
] , (B.11)

 �̂� (𝜃𝑝
)

=
𝐼 �̂�
⟨𝑝⟩

[

𝜃
⟨

→ 𝜃
⟩

]

𝐼 �̂�𝑝
[

𝜃𝑚𝑖𝑛 → 𝜃𝑚𝑎𝑥
]

𝐼 �̂�𝑗
[

𝜃𝑗−1∕2 → 𝜃𝑗+1∕2
]

, (B.12)

pecifying the limits taken for each integral function between square
rackets. The new integration limits 𝑟< = max(𝑟𝑚𝑖𝑛, 𝑟𝑖−1∕2), 𝜃< =
ax(𝜃𝑚𝑖𝑛, 𝜃𝑖−1∕2), 𝑟> = min(𝑟𝑚𝑎𝑥, 𝑟𝑖+1∕2), and 𝜃> = max(𝜃𝑚𝑎𝑥, 𝜃𝑖+1∕2) arise

rom the integral of the 𝑏0 functions present in Eq. (B.8).
The total charge density at the grid position (𝑖, 𝑗) is the sum of (B.10)

ver all the particles that contribute, i.e.

𝑖,𝑗 =
∑

𝑝
𝜌𝑖,𝑗

(

𝑟𝑝, 𝜃𝑝
)

. (B.13)

ppendix C. Charge conservation

We demonstrate that the code conserves charge to machine preci-
ion independently of the selected coordinate system. To exemplify,
e use the standard spherical coordinate system with a non-uniform
rid spacing in both radial and meridional directions, i.e. uniform
pacing in log 𝑟 and −cos 𝜃, and initialize particles with a thermal
istribution of velocities in all directions, i.e. 𝒖thermal∕𝑐 = (2.0, 2.0, 2.0),
n the vicinity of a rotating neutron star with dipolar magnetic field
∗ = 1000 [𝑚𝑒𝑐2∕𝑒𝑅∗] and 𝛺∗ = 0.1 [𝑐 rad∕𝑅∗], see upper-left panel in
ig. C.7. Also, we selected a compactness parameter 𝑅𝑠∕𝑅∗ = 0.5 to
how that the scheme is valid for significant curved spacetimes. Every
teration, we compute the deviation from the continuity equation given
y

continuity ≡ 𝜕𝜌
𝜕𝑡

+ 𝛁 ⋅ 𝑱 , (C.1)

𝑛+1∕2
cont. 𝑖,𝑗 ≡

𝜌𝑛+1𝑖,𝑗 − 𝜌𝑛𝑖,𝑗
𝛥𝑡

+ (𝛁 ⋅ 𝑱 )�̂�,𝑛+1∕2𝑖,𝑗 + (𝛁 ⋅ 𝑱 )�̂�,𝑛+1∕2𝑖,𝑗 , (C.2)

and evaluate the grid average value of that quantity, shown in the right
panel of Fig. C.7. Under the same conditions, but now using the logical
coordinate system, i.e. using a uniform grid in (𝑟, 𝜃) = (log 𝑟,−cos 𝜃),
yields the results in Fig. C.8. Apart from small numerical fluctuations,
the grid averaged deviation of the continuity equation stays close to
machine precision over the test duration for both cases.

Appendix D. Progressive filter

We explain in more detail the implementation of the generic pro-
gressive filter applied to the first and last radial domain cells. In
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Fig. C.7. Charge conservation diagnostic for a randomized sample of electrons initialized with thermal velocities. This setup uses nonlinear grid spacings in both 𝑟 (logarithmic)
and 𝜃 (equal area) to highlight that the proposed scheme works even when not using logical coordinate systems. Left panels show the initial and final states, the right panel
displays the temporal evolution of the spatial averaged diagnostic.
Fig. C.8. Charge conservation diagnostic for a randomized sample of electrons initialized with thermal velocities. This setup uses uniform grid spacings in both 𝑟 and 𝜃, i.e. using
the logical coordinate system. Left panels show the initial and final states, the right panel displays the temporal evolution of the spatial averaged diagnostic.
particular, this progressive filter is used to filter the current density
grid components, in this appendix designated 𝑓𝑘

𝑖 with 𝑖 and 𝑘 being the
cell index and the filtering order, respectively. Outside the simulation
domain, the current density is unknown, thus invalidating high-order
smoothing near the boundaries. Instead of not filtering the boundary
cells or filling the guard cells with unphysical field values, we compute
the exterior current component values such that only the first and last
cells remain unfiltered.
14
Within the OSIRIS framework, smoothing any field component to
order 𝑛 requires a single-passage kernel with 2𝑛+1 entries. For example,
the single-passage first-, second-, and third-order kernels read

1 =
[

𝐾1
1 𝐾1

2 𝐾1
3
]

, (D.1)

2 =
[

𝐾2
1 𝐾2

2 𝐾2
3 𝐾2

4 𝐾2
5
]

, (D.2)

3 =
[

𝐾3
1 𝐾3

2 𝐾3
3 𝐾3

4 𝐾3
5 𝐾3

6 𝐾3
7
]

, (D.3)
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with 𝐾 being the weight given to each neighbour. The third-order
iltered value of the first four cells yields
3
1 = 𝐾3

1𝑓
0
−2 +𝐾3

2𝑓
0
−1 +𝐾3

3𝑓
0
0 +𝐾3

4𝑓
0
1 +𝐾3

5𝑓
0
2 +𝐾3

6𝑓
0
3 +𝐾3

7𝑓
0
4 , (D.4)

𝑓 3
2 = 𝐾3

1𝑓
0
−1 +𝐾3

2𝑓
0
0 +𝐾3

3𝑓
0
1 +𝐾3

4𝑓
0
2 +𝐾3

5𝑓
0
3 +𝐾3

6𝑓
0
4 +𝐾3

7𝑓
0
5 , (D.5)

𝑓 3
3 = 𝐾3

1𝑓
0
0 +𝐾3

2𝑓
0
1 +𝐾3

3𝑓
0
2 +𝐾3

4𝑓
0
3 +𝐾3

5𝑓
0
4 +𝐾3

6𝑓
0
5 +𝐾3

7𝑓
0
6 , (D.6)

𝑓 3
4 = 𝐾3

1𝑓
0
1 +𝐾3

2𝑓
0
2 +𝐾3

3𝑓
0
3 +𝐾3

4𝑓
0
4 +𝐾3

5𝑓
0
5 +𝐾3

6𝑓
0
6 +𝐾3

7𝑓
0
7 , (D.7)

where the terms in red are the unknown field values inside the guard
cells. Eqs. (D.4)–(D.7) highlight that we can filter the fourth cell using
the third-order single passage filter in Eq. (D.3), the third cell using the
second-order single passage filter in Eq. (D.2), the second cell using the
first-order single-passage filter in Eq. (D.1), and the first cell remains
unfiltered, i.e.

𝑓 3
3 = 𝑓 2

3 = 𝐾2
1𝑓

0
1 +𝐾2

2𝑓
0
2 +𝐾2

3𝑓
0
3 +𝐾2

4𝑓
0
4 +𝐾2

5𝑓
0
5 , (D.8)

𝑓 3
2 = 𝑓 1

2 = 𝐾1
1𝑓

0
1 +𝐾1

2𝑓
0
2 +𝐾1

3𝑓
0
3 , (D.9)

𝑓 3
1 = 𝑓 0

1 . (D.10)

Inserting Eqs. (D.4)–(D.6) into Eqs. (D.8)–(D.10) determines the three
unknown field components defined in the guard cells, i.e.

𝑓 0
0 = 1

𝐾3
1

[(

𝐾2
1 −𝐾3

2
)

𝑓 0
1 +

(

𝐾2
2 −𝐾3

3
)

𝑓 0
2

+
(

𝐾2
3 −𝐾3

4
)

𝑓 0
3 +

(

𝐾2
4 −𝐾3

5
)

𝑓 0
4 +

(

𝐾2
5 −𝐾3

6
)

𝑓 0
5 −𝐾3

7𝑓
0
6
]

, (D.11)

𝑓 0
−1 =

1
𝐾3

1

[

−𝐾3
2𝑓

0
0 +

(

𝐾1
1 −𝐾3

3
)

𝑓 0
1 +

(

𝐾1
2 −𝐾3

4
)

𝑓 0
2

+
(

𝐾1
3 −𝐾3

5
)

𝑓 0
3 −𝐾3

6𝑓
0
4 −𝐾3

7𝑓
0
5
]

, (D.12)
0
−2 =

1
𝐾3

1

[

−𝐾3
2𝑓

0
−1 −𝐾3

3𝑓
0
0 +

(

1 −𝐾3
4
)

𝑓 0
1 −𝐾3

5𝑓
0
2

− 𝐾3
6𝑓

0
3 −𝐾3

7𝑓
0
4
]

. (D.13)

ll other field values are filtered using the third-order single passage
ernel.

ppendix E. Mur open boundary

We discuss the implementation of the exterior radial boundary
ondition that mimics an open radiation boundary. We define the
eneric wave equation in spherical coordinates

𝛷 (𝑡, 𝑟, 𝜃, 𝜙) = 𝜎 (𝑡, 𝑟, 𝜃, 𝜙) , (E.1)

here 𝜎 is the source term and □ is the d’Alembertian operator. Since
e place this absorbing boundary at the extreme of the domain, i.e. 𝑟 =
𝑚𝑎𝑥 with 𝑅𝑚𝑎𝑥 ≫ 𝑅∗, we can neglect the effect of the source term.
lso, electromagnetic perturbations that propagate radially outwards
re dominantly radial due to the geometry and dynamics of the system,
.e. 𝜕𝜃𝛷 ≈ 0. With axisymmetry (𝜕𝜙𝛷 = 0), we can neglect the
’Alembertian operator for the angular derivatives:

𝛷 (𝑡, 𝑟, 𝜃, 𝜙) ≈
(

𝜕2𝑡 − 𝜕2𝑟 −
2
𝑟
𝜕𝑟
)

𝛷 = 0. (E.2)

The radiation condition impinging on a spherical shell placed far from
the compact point source derived in Sommerfeld (1949) reads

lim
𝑟→∞

(

𝜕𝑟 + 𝜕𝑡
)

(𝑟𝛷) = 0, (E.3)

describes only the outward propagating component of Eq. (E.2) and is
hereafter designated as the Sommerfeld condition. At a finite distance
from the source, it approximates to Novak and Bonazzola (2004) and
Espinoza et al. (2014)

𝜕𝑡𝛷 + 𝜕𝑟𝛷 + 𝛷
𝑟

|

|

|

|

|𝑟=𝑅𝑚𝑎𝑥

= 0, (E.4)
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which is exact for pure monopolar waves.
In General Relativity, using the 3+1 formalism in spherical co-
ordinates, the modification of the differential operators leads to the
generalization of Eq. (E.4) as

𝛼−1𝜕𝑡𝛷 + 𝛼𝜕𝑟𝛷 + 𝛷
𝑟

|

|

|

|

|𝑟=𝑅𝑚𝑎𝑥

= 0, (E.5)

which we discretize adopting a spatiotemporal centring at (𝑟, 𝑡) =
(𝑟𝑁+1∕2, 𝑡𝑛+1∕2):

𝛷𝑛+1 −𝛷𝑛

𝛼𝛥𝑡

|

|

|

|

|𝑟𝑁+1∕2

+
𝛼𝑁+1𝛷𝑁+1 − 𝛼𝑁𝛷𝑁

𝛥𝑟

|

|

|

|

|

𝑛+1∕2

+ 𝛷𝑛+1∕2

𝑟

|

|

|

|

|𝑟𝑁+1∕2

= 0, (E.6)

where 𝑁 and 𝑁 +1 are the radial indices of the last cell of the domain
and the first guard cell outside of it, respectively. The field components
that lie in the outer grid frontier, i.e. at 𝑟 = 𝑟𝑁+1, are 𝐸�̂�, 𝐸 �̂� , and
𝐵�̂�, which means that Eq. (E.6) needs to be adapted for each of these
components. Recalling that we are using the leapfrog method to push
the electromagnetic field components in time, we see that we have
the electric field components at times 𝑛 and 𝑛 + 1, while the magnetic
field components are available at times 𝑛 and 𝑛 + 1∕2, for the first half
push, and 𝑛 + 1∕2 and 𝑛 + 1, for the second half push. Consequently,
the algorithm to compute the correct field value outside the domain,
i.e. 𝛷𝑛+1

𝑁+1, differs for the electric and magnetic field components.

E.1. Electric field

Here we discuss the algorithm with 𝛷 representing 𝐸�̂� and 𝐸 �̂� . The
irst term in Eq. (E.6) is already in the right temporal positions but
equires the correct spatial centring:

𝛷𝑛+1 −𝛷𝑛

𝛼𝛥𝑡

|

|

|

|

|𝑟𝑁+1∕2

= 1
𝛥𝑡

[

1
2

(

𝛷𝑛+1
𝑁+1

𝛼𝑁+1
+

𝛷𝑛+1
𝑁
𝛼𝑁

)

− 1
2

(

𝛷𝑛
𝑁+1

𝛼𝑁+1
+

𝛷𝑛
𝑁

𝛼𝑁

)]

.

(E.7)

In opposition, the second term is in the right spatial position and
requires the correct temporal centring:

𝛼𝑁+1𝛷𝑁+1 − 𝛼𝑁𝛷𝑁
𝛥𝑟

|

|

|

|

|

𝑛+1∕2

= 1
𝛥𝑟

[𝛼𝑁+1
2

(

𝛷𝑛+1
𝑁+1 +𝛷𝑛

𝑁+1

)

−
𝛼𝑁
2

(

𝛷𝑛+1
𝑁 +𝛷𝑛

𝑁
)

]

. (E.8)

The last term in Eq. (E.6) is more complicated because we need to
centre it in time and space:

𝛷𝑛+1∕2

𝑟

|

|

|

|

|𝑟𝑁+1∕2

= 1
2

⎡

⎢

⎢

⎣

𝛷𝑛+1∕2
𝑁+1
𝑟𝑁+1

+
𝛷𝑛+1∕2

𝑁
𝑟𝑁

⎤

⎥

⎥

⎦

= 1
4

[

𝛷𝑛+1
𝑁+1 +𝛷𝑛

𝑁+1
𝑟𝑁+1

+
𝛷𝑛+1

𝑁 +𝛷𝑛
𝑁

𝑟𝑁

]

. (E.9)

Inputting Eqs. (E.7)–(E.9) into (E.6) and solving for the corrected field
outside the domain, we get:

𝛷𝑛+1
𝑁+1 =

(

1
𝛼𝑁+1𝛥𝑡

+
𝛼𝑁+1
𝛥𝑟

+ 1
2𝑟𝑁+1

)−1

×
[

𝛷𝑛
𝑁+1

(

1
𝛼𝑁+1𝛥𝑡

−
𝛼𝑁+1
𝛥𝑟

− 1
2𝑟𝑁+1

)

−𝛷𝑛+1
𝑁

(

1
𝛼𝑁𝛥𝑡

−
𝛼𝑁
𝛥𝑟

+ 1
2𝑟𝑁

)

+𝛷𝑛
𝑁

(

1
𝛼𝑁𝛥𝑡

+
𝛼𝑁
𝛥𝑟

− 1
2𝑟𝑁

)]

(E.10)

Notice that to compute this, we require knowledge of the term 𝛷𝑛+1
𝑁

that is available on the grid, and the knowledge of the terms 𝛷𝑛
𝑁+1

and 𝛷𝑛
𝑁 that need to be saved in memory as, otherwise, they would be

overwritten on the grid.
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E.2. Magnetic field

The approach taken to correct the out-of-bound 𝐵�̂� is very similar
but it must be split into two steps, as in the magnetic evolution
algorithm. Therefore, we need to compute 𝛷𝑛+1∕2

𝑁+1 (𝛷𝑛+1
𝑁+1) after the first

second) half-step. To obtain these expressions, we need to repeat the
ame procedure as for the electric field with the extra step of adding
nd subtracting the half-step value, i.e. Eq. (E.7) reads

𝛷𝑛+1 −𝛷𝑛

𝛼𝛥𝑡

|

|

|

|

|𝑟𝑁+1∕2

= 1
2𝛥𝑡

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝛷𝑛+1∕2
𝑁+1
𝛼𝑁+1

+
𝛷𝑛+1∕2

𝑁
𝛼𝑁

⎞

⎟

⎟

⎠

−

(

𝛷𝑛
𝑁+1

𝛼𝑁+1
+

𝛷𝑛
𝑁

𝛼𝑁

)

⎤

⎥

⎥

⎦

+ 1
2𝛥𝑡

⎡

⎢

⎢

⎣

(

𝛷𝑛+1
𝑁+1

𝛼𝑁+1
+

𝛷𝑛+1
𝑁
𝛼𝑁

)

−
⎛

⎜

⎜

⎝

𝛷𝑛+1∕2
𝑁+1
𝛼𝑁+1

+
𝛷𝑛+1∕2

𝑁
𝛼𝑁

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

,

(E.11)

which we repeat for Eqs. (E.8) and (E.9). Grouping terms that depend
on the temporal indices 𝑛 and 𝑛+1∕2 yields the first half-step correction:

𝛷𝑛+1∕2
𝑁+1 = −

𝛼𝑁+1
𝛼𝑁

𝛷𝑛+1∕2
𝑁 +𝛷𝑛

𝑁+1

(

1 −
𝛼2𝑁+1𝛥𝑡

𝛥𝑟
−

𝛼𝑁+1𝛥𝑡
2𝑟𝑁+1

)

+𝛷𝑛
𝑁

(

𝛼𝑁+1
𝛼𝑁

+
𝛼𝑁+1𝛼𝑁𝛥𝑡

𝛥𝑟
−

𝛼𝑁+1𝛥𝑡
2𝑟𝑁

)

. (E.12)

We obtain the second half-step correction through the terms that
depend on the temporal indices 𝑛 + 1 and 𝑛 + 1∕2, giving

𝛷𝑛+1
𝑁+1 =

(

1
𝛼𝑁+1

+
𝛼𝑁+1𝛥𝑡

𝛥𝑟
+ 𝛥𝑡

2𝑟𝑁+1

)−1

×
[

1
𝛼𝑁+1

𝛷𝑛+1∕2
𝑁+1 + 1

𝛼𝑁
𝛷𝑛+1∕2

𝑁 −𝛷𝑛+1
𝑁

(

1
𝛼𝑁

−
𝛼𝑁𝛥𝑡
𝛥𝑟

+ 𝛥𝑡
2𝑟𝑁

)]

. (E.13)

n this case, we need to save in memory the values of 𝛷𝑛
𝑁 and 𝛷𝑛

𝑁+1
or Eq. (E.12), and 𝛷𝑛+1∕2

𝑁 and 𝛷𝑛+1∕2
𝑁+1 for Eq. (E.13). The other compo-

ents are readily available on the grid.
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